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1. Let DN :=

{
xn

d

dx
, |Z 3 n ≥ N

}
be a set of linear operators on smooth

real functions. For which values of N ∈ Z ∪ {±∞} do they generate a
real Lie algebra, and are there isomorphic ones among them? Note that
any linear combination of basis vectors has only finitely many nonzero
coefficients.

Reason: Infinite-Dimensional Lie Algebras.

Solution: Let DN be the Lie algebra generated by DN . Then[
xn

d

dx
, xm

d

dx

]
= xn

d

dx
◦ xm d

dx
− xm d

dx
◦ xn d

dx
= (m− n)xn+m−1 d

dx

defines a closed Lie structure for the values N ∈ {−∞, 0, 1, . . . ,+∞}.
Now

DN/[DN ,DN ] = span

{
xn

d

dx
|N ≤ n ≤ 2N − 1

}
are of different dimensions N for different values of N ≥ 1. Hence none
of them are isomorphic. Since [D0,D0] = D0 this is true for N ≥ 0.
Moreover D+∞ = {0} and [D−∞,D−∞] = D−∞.

Since any linear combinations of the basis vectors contains only finitely
many nonzero coefficients, D−∞ � D0 :

Let Dn := xn
d

dx
. If X =

∑
k≥0 xkDk ∈ D0 with m = max{k |xk 6= 0}

then

(adD0)m+1(X) =
m∑
k=1

(adD0)mxkkDk−1

=
m∑
k=2

(adD0)mxkk(k − 1)Dk−2

...

=
m∑

k=m

(adD0)xk
k!

(k −m)!
Dk−m

= xmm![D0, D0] = 0

Assume there is an isomorphism ϕ : D0 −→ D−∞. Then

(adϕ(D0))k(ϕ(X)) = ϕ((adD0)k(X))
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Hence there is an element Y := ϕ(D0) ∈ D−∞ such that for any vector
ϕ(X) ∈ D−∞ there is an n ∈ N such that (adY )n(ϕ(X)) = 0. Since ϕ
is an isomorphism, this is especially true for all ϕ(X) = Dn (n ∈ Z).
Let Vm := span{. . . , Dm−1, Dm}. Say

Y = Dm +R with R ∈ Vm−1

[Y,Dn] = [Dm, Dn] + [R,Dn] ≡ (n−m)Dn+m−1 mod Vn+m−2

[Y, [Y,Dn]] = (n−m)(n− 1)Dn+2m−2 mod Vn+2m−3

[Y, [Y, [Y,Dn]]] = (n−m)(n− 1)(n+m− 2)Dn+3m−3 mod Vn+3m−4

...

Thus adY acts nilpotent on Dn only if the leading coefficient becomes
zero, i.e. if

0 = (n−m)(n− 1)(n+m− 2)(n+ 2m− 3)(n+ 3m− 4) · · ·
= (n−m)(n−m+ 1 · (m− 1)) + (n−m+ 2 · (m− 1)) · · ·
⇐⇒

0 = (n−m) + k(m− 1) = n− k +m(k − 1) for some k ∈ N0

⇐⇒
k(m− 1) = m− n for some k ∈ N0

If m 6∈ {0, 1, 2} then we choose n = 2 so k =
m− 2

m− 1
6∈ N0, and

(adY )k(D2) 6= 0 for all k ∈ N0. If m = 2 we choose n = 3, and again
we get a k = −1 6∈ N0. For m = 1 we can also choose n = 2 without
a solution for k ∈ N0. It remains to consider the case m = 0 in which
case we choose n = −1 so that there is no solution for k ∈ N0.

2. Let c ∈ (0, 1). Show that the function f : [0, c] −→ R

f(x) =

−
1

log x
if 0 < x ≤ c

0 if x = 0

is uniformly continuous, but not Hölder continuous.

Reason: Hölder Continuity.

Solution: Set δ := e−1/ε for an ε > 0. Then

|f(x)− f(0)| = | − 1

log x
− 0| = − 1

log x
< − 1

log δ
= ε
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for all |x| < δ which shows that f(x) is continuous at 0, hence contin-
uous on [0, c].

For the sake of completion we will show that every continuous function
on a closed interval [a, b] is automatically uniformly continuous (Theo-
rem of Heine).

Assume f(x) was not uniformly continuous. Then there is an ε > 0
such that for every n ∈ N exist points yn, zn ∈ [a, b] with

|yn − zn| <
1

n
and |f(yn)− f(zn)| ≥ ε

We choose a convergent subsequence (ynk) ⊆ (yn) by the theorem of
Bolzano-Weierstraß. Say p := limn→∞ ynk ∈ [a, b]. Since |ynk − znk| <
n−1
k we have p := limn→∞ znk , too. By continuity of f(x) we thus get∣∣∣ lim

n→∞
(f(ynk)− f(znk))

∣∣∣ = f(p)− f(p) = 0

which contradicts |f(ynk)− f(znk)| ≥ ε for all k ∈ N.

It remains to show that f(x) is not Hölder continuous. Assume it is
and there are C > 0 and α ∈ (0, 1] such that

|f(x)− f(0)| = f(x) ≤ Cxα ∀ x ∈ (0, c]

This means by the rule of L’Hôpital

C ≥ lim
x↓0

f(x)

xα
= lim

x↓0

(−x−α)′

(log x)′
= lim

x↓0
αx−α = lim

x↓0

α

xα
=∞

which is obviously a contradiction.

3. Consider the equation pV − C(A − B√p + T ) = 0 where A,B,C are
constant parameters, p = p(T, V ) vapor pressure, V = V (T, p) mo-
lar volume, and T = T (p, V ) absolute temperature. Prove by three
different methods that(

∂V

∂T

)
p

·
(
∂T

∂p

)
V

·
(
∂p

∂V

)
T

= −1

Reason: Antoine Equation.

Solution: Let f(p, V, T ) = pV − C(A−B√p+ T ) = 0.
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(a) Implicit Function Theorem.

We get from the implicit function theorem applied to resp.

f(T, V (T )) = 0 =⇒ ∂f

∂T
+
∂f

∂V
· ∂V
∂T

= 0 =⇒
(
∂V

∂T

)
p

=

−
(
∂f

∂T

)
(
∂f

∂V

)


f(p, T (p)) = 0 =⇒ ∂f

∂p
+
∂f

∂T
· ∂T
∂p

= 0 =⇒
(
∂T

∂p

)
V

=

−
(
∂f

∂p

)
(
∂f

∂T

)


f(V, p(V )) = 0 =⇒ ∂f

∂V
+
∂f

∂p
· ∂p
∂V

= 0 =⇒
(
∂p

∂V

)
T

=

−
(
∂f

∂V

)
(
∂f

∂p

)


Multiplication and reducing the quotients yield the result.

(b) Implicit Differentiation.

∂f

∂T
= 0 = p

∂V

∂T
− C =⇒

(
∂V

∂T

)
p

=
C

p

∂f

∂p
= 0 = V +

CB

2
√
p
− C∂T

∂p
=⇒

(
∂T

∂p

)
V

=
V

C
+

B

2
√
p

∂f

∂V
= 0 = V · ∂p(V )

∂V
+ p+BC

∂
√
p(V )

∂V

= V

(
∂p

∂V

)
T

+ p+
BC

2
√
p
·
(
∂p

∂V

)
T

=⇒
(
∂p

∂V

)
T

= − p

V +
BC

2
√
p

5
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Hence

(
∂V

∂T

)
p

·
(
∂T

∂p

)
V

·
(
∂p

∂V

)
T

is equal to

C

p
·
(
V

C
+

B

2
√
p

)
·
(
−

2p
√
p

2V
√
p+BC

)
= −

(
2V
√
p

2p
√
p

+
BC

2p
√
p

)
·
(
−

2p
√
p

2V
√
p+BC

)
= −1

(c) Solving for the Functions.

f(p, V, T ) = 0 =⇒ V =
C

p
· (A−B√p+ T ) =⇒

(
∂V

∂T

)
p

=
C

p

f(p, V, T ) = 0 =⇒ T =
pV

C
− A+B

√
p =⇒

(
∂T

∂p

)
V

=
V

C
+

B

2
√
p

To solve f(p, V, T ) = 0 for p, we have to consider a quadratic
equation in

√
p > 0.

0 = p+
CB

V

√
p− CA+ CT

V

√
p = −CB

2V
+

√
C2B2

4V 2
+
CA+ CT

V

p =

(
1

2V

(
−CB +

√
C2B2 + 4V C(A+ T )

))2

6
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(
∂p

∂V

)
T

=
∂p

∂V
=
∂(
√
p2)

∂V
) = 2

√
p ·

∂(
√
p)

∂V

= 2
√
p · ∂

∂V

{
1

2V

(
−CB +

√
C2B2 + 4V C(A+ T )

)}
= 2
√
p ·
{
− 1

2V 2

(
−CB +

√
C2B2 + 4V C(A+ T )

)}
+ 2
√
p · 1

2V
· 1

2
· 4C(A+ T )√

C2B2 + 4V C(A+ T )

= −
√
p

V 2
(−CB + CB + 2V

√
p) +

2
√
pC(A+ T )

V ·
(
CB + 2V

√
p
)

= −2p

V
+

2
√
p
(
pV + CB

√
p
)

V ·
(
CB + 2V

√
p
)

=
−2pCB − 4pV

√
p+ 2

√
ppV + 2CBp

V ·
(
CB + 2V

√
p
)

= −
2p
√
p

CB + 2V
√
p

=
−p

V +
CB

2
√
p

and thus(
∂V

∂T

)
p

·
(
∂T

∂p

)
V

·
(
∂p

∂V

)
T

=
C

p
·
(
V

C
+

B

2
√
p

)
· −p

V +
CB

2
√
p

=

(
V

p
+

CB

2p
√
p

)
·
−2p
√
p

2V
√
p+ CB

=
−2V

√
p

2V
√
p− CB

− CB

2V
√
p+ CB

= −1

4. Calculate (
∂V

∂T

)
p

and

(
∂V

∂p

)
T

for V = V (T, p) from the equation of state(
p+

a

V 2

)
(V − b) = R · T ; a, b, R > 0

Reason: Van der Waals Equation.

Solution:
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(a) If we differentiate
(
p+

a

V 2

)
(V −b) = R ·T along T with constant

p we get

R = (V − b)
(
∂

∂T

(
p+

a

V 2

))
p

+
(
p+

a

V 2

)( ∂

∂T
(V − b)

)
p

=
2(b− V )a

V 3

(
∂V

∂T

)
p

+
(
p+

a

V 2

)(∂V
∂T

)
p

=
1

V 3

(
2ab− aV + pV 3

)(∂V
∂T

)
p(

∂V

∂T

)
p

=
RV 3

pV 3 − aV + 2ab

(b) If we differentiate
(
p+

a

V 2

)
(V − b) = R ·T along p with constant

T we get

0 = (V − b)
(
∂

∂p

(
p+

a

V 2

))
T

+
(
p+

a

V 2

)( ∂

∂p
(V − b)

)
T

= (V − b)
(

1− 2a

V 3

(
∂V

∂p

)
T

)
+
(
p+

a

V 2

)(∂V
∂p

)
T

= (V − b) +

(
2a(b− V )

V 3
+
pV 3

V 3
+
aV

V 3

)(
∂V

∂p

)
T(

∂V

∂p

)
T

=
V 3(b− V )

pV 3 − aV + 2ab

5. Let σ ∈ Aut(Sn) be an automorphism of the symmetric group Sn (n ≥
4) such that σ sends transpositions to transpositions, then prove that σ
is an inner automorphism. Determine the inner automorphism groups
of the symmetric and the alternating groups for n ≥ 4.

Reason: Inner Automorphisms of Permutation Groups.

Solution: Suppose that σ(1, r) = (ar, br) for each r ∈ {1, 2, . . . ., n |n >
3}. Then for r ≥ 3

σ(1, r, 2) = σ((1, 2)(1, r)) = σ(1, 2)σ(1, r) = (a2, b2)(ar, br)

is an element of order 3, hence either ar ∈ {a2, b2} or br ∈ {a2, b2}.
By symmetry reasons we may assume that ar ∈ {a2, b2} for all r ≥ 3.

8
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We claim that either ar = a2 for all r or ar = b2 for all r. Assume
that instead there are r 6= s such that ar = a2 and as = b2. Note that
(1, r, 2)(1, s, 2) = (1, s)(2, r) is of order 2. However,

σ((1, r, 2)(1, s, 2)) = (a2, b2)(ar, br)(a2, b2)(as, bs)

= (a2, b2)(a2, br)(a2, b2)(b2, bs) = (b2, bs, br)

is of order 3 if 2 6= r 6= s 6= 2. This is a contradiction. Thus we
either have a2 = ar or b2 = br for all r ≥ 3. W.l.o.g. let a2 = ar, i.e.
σ(1, r) = (a2, br) for all r ≥ 3. Since σ is an isomorphism, we have
br 6= bs if r 6= s because σ(1, r) 6= σ(1, s). Let π be a permutation for
which π(1) = a2 and π(r) = br for all r ≥ 3. This uniquely determines
π, because we determined n− 1 values, and bijectivity determines the
last value. Now

σ(1, r) = (ar, br) = (a2, br) = π ◦ (1, r) ◦ π−1

and σ = Inn(π) ∈ Inn(Sn).

Consider G
π−→ Inn(G) defined by g 7−→ (x 7→ g−1xg). Then kerπ =

Z(G) and Inn(G) ∼= G/Z(G). Since the alternating groups An are sim-
ple for n > 4, we have Inn(An) ∼= An. The symmetric groups Sn for
n > 4 have only An as nontrivial normal subgroup, i.e. Sn ∼= An o Z2.
Furthermore the centers of Sn are trivial, i.e. Inn(Sn) ∼= Sn. In case of
n = 4 we also have the Klein four-group

V4 = [A4, A4] / A4 / S4.

Since V4 is not abelian, it cannot be the center of either permutation
group, i.e. Inn(A4) ∼= A4 and Inn(S4) ∼= S4.

6. Consider a code C ⊆ Fnq with minimal Hamming distance d > n · q − 1

q
.

Prove that the number of possible code words is restricted by

c := #C ≤ d

d− n · q − 1

q

Reason: Plotkin Bound.

Solution: Let s :=
∑

(x,y)∈C×C d(x, y) be the sum of all Hamming

9
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distances in C. Since d(x, y) ≥ d for different code words x, y we im-
mediately have

s ≥ c · (c− 1) · d.
We want to show that

s ≤ c2 · n ·
(

1− 1

q

)
= c2 · n · q − 1

q

from which we get

c(c− 1)d ≤ c2n
q − 1

q
⇐⇒ cd− cnq − 1

q
≤ d⇐⇒ c ≤ d

d− nq − 1

q

which we will have to show. Let C = {x(1), . . . , x(c)}. We define the
number of code words that have an a ∈ Fq at k−th position by

tk(a) := #{1 ≤ j ≤ c |x(j)
k = a}.

Obviously
∑

a∈Fq tk(a) = c. The number of pairs (x, y) ∈ C × C which

are different at position k is
∑

a∈Fq tk(a)(c− tk(a)). Therefore the sum
of all Hamming distances equals

s =
n∑
k=1

∑
a∈Fq

tk(a)(c− tk(a)) =
n∑
k=1

c2 −
∑
a∈Fq

tk(a)2


According to the Cauchy-Schwarz inequality we have∑

a∈Fq

tk(a)

2

≤

∑
a∈Fq

tk(a)2

 ·
∑
a∈Fq

12

 = q ·
∑
a∈Fq

tk(a)2

−
∑
a∈Fq

tk(a)2 ≤ −1

q

∑
a∈Fq

tk(a)

2

s =
n∑
k=1

c2 −
∑
a∈Fq

tk(a)2

 ≤ n∑
k=1

c2 − 1

q

∑
a∈Fq

tk(a)

2
=

n∑
k=1

(
c2 − 1

q
c2

)
= nc2

(
1− 1

q

)

10
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7. Prove that the Cantor dust on the real line contains uncountable in-
finitely many points, and that it is a fractal by calculating its Hausdorff-
Besicovitch dimension.

Reason: Cantor Set.

Solution: Cantor dust is constructed by cutting out the interval (1/3, 2/3)
from [0, 1], then cutting out the middle third from the remaining inter-
vals and so on.

We can ask at any step of the construction for any remaining point,
whether a point is placed on the left or on the right from the nearest
removed interval. Let’s write a ”0” for left and a ”1” for right. The
result is an infinite, binary sequence that determines the given point
of the Cantor dust, and vice versa: each such sequence determines a
point in the Cantor dust. The Cantor dust is therefore equivalent to
[0, 1]N, which is equivalent to the real numbers. Since the real numbers
are uncountable infinitely many, the Cantor dust is, too.

To determine the fractal Hausdorff dimension DH , we cover the object
with the least number N(ε) of circles of diameter ε and define

DH = − lim
ε→0

logεN(ε).

This means in our case

ε 1 1/3 1/9 1/27 1/81 . . .
N(ε) 1 2 4 8 16 . . .

i.e. N(3−n) = 2n and N(ε) = 2− log3 ε = ε−
log 2
log 3 , i.e. DH =

log 2

log 3
≈

0.631. The Cantor dust is a fractal, since DH > DT = 0, the topologi-
cal dimension DT .

11
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8. Define the harmonic number H(p) = 1 +
1

2
+

1

3
+ . . .+

1

p− 1
=
a

b
.

Show that p2 | a for primes p > 3.

Reason: Theorem of Wolstenholme.

Solution: Consider the polynomial

f(x) =

p−1∏
k=1

(x− k) = xp−1 − ap−2(p)xp−2 ± . . .− a1(p)x+ a0(p)

where a0(p) = (p−1)! and a1(p) = (p−1)!H(p). We want to show that

p2 | a1(p). We therefore pass to the finite field Fp, so that Fp[x] 3 f(x)
(∗)
=

xp−1−1. Hence p | ak(p) for all 1 ≤ k ≤ p−2 and a0(p) = (p−1)! ≡ −1
mod p. This is known as Wilson’s theorem.

(∗) The polynomial xp−x = x(xp−1−1) has only simple zeros, because
(xp − x)′ = pxp−1 − 1 6≡ 0 mod p. But there are at most p numbers in
Fp for the p many zeros, hence Fp[x] 3 x(x−1)(x−2) · · · (x−(p−1)) =
xp − x = x · f(x).

f(p) = (p− 1)! = pp−1 − ap−2(p)pp−2 ± . . .− a1(p)p+ a0(p)

= pp−1 − ap−2(p)pp−2 ± . . .− a1(p)p+ (p− 1)!

a1(p) = pp−2 − ap−2(p)pp−3 ± . . .+ a2(p)p

From p > 3 and p | ak follows that p2 | a1(p) = (p − 1)!H(p) and thus
p2 |H(p) because p is prime.

9. An ideal coin is thrown three times in a row and then an ideal dice is
thrown twice in a row. Each time you toss a coin you get one point
if the coin shows ”tails” and two points if the coin shows ”heads”. If
you add the total of the two dice rolls to this number of points, you get
the total number of points. Furthermore, let A be the event ”the total
number of points achieved is odd”, B be the event ”the total of the
two dice rolls is divisible by 5”, and C the event ”the number of points
achieved in the three coin tosses is at least 5”. Investigate whether A,
B, C are pairwise stochastically independent. Also investigate whether
A, B, C are stochastically independent.

Reason: Stochastic.

Solution: The phase space Ω = {1, 2}3 × {1, 2, . . . , 6}2 and p(ω) :=
1

|Ω|
=

1

23 · 62
=

1

288
for all ω ∈ Ω, such that (Ω, p) is a Laplace

12
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experiment. With ~ω = (ω1, . . . , ω5) ∈ Ω let ωi for i ∈ {1, 2, 3} be the
points achieved in the i−th coin flip, ω4 the points of the first die roll,
ω5 the points of the second. Then

A =

{
(ω1, . . . , ω5) ∈ Ω |

5∑
i=1

ωi = 2n− 1 for some n ∈ N

}
,

B = {(ω1, . . . , ω5) ∈ Ω |ω4 + ω5 ∈ {5, 10}} ,

C =

{
(ω1, . . . , ω5) ∈ Ω |

3∑
i=1

ωi =∈ {5, 6}

}
.

We can choose ω1, . . . , ω4 arbitrarily and have 3 possibilities left to an
odd total number of points. There are 4 possibilities to achieve 5 by
rolling the dice, and 3 to get 10. To end up with 5, resp. 6 points in
the coin flips, there are 3, resp. 1 chances. Hence

P (A) =
23 · 6 · 3

288
=

1

2
, P (B) =

23 · (4 + 3)

288
=

7

36
, P (C) =

(3 + 1) · 62

288
=

1

2

Moreover

~ω ∈ A ∩B ⇐⇒

(
3∑

k=1

ωk ∈ {4, 6} ∧ ω4 + ω5 = 5

)

∨

(
3∑

k=1

ωk ∈ {3, 5} ∧ ω4 + ω5 = 10

)

P (A ∩B) =
4 · 4 + 4 · 3

288
=

7

72
=

1

2
· 7

36
= P (A) · P (B)

~ω ∈ A ∩ C ⇐⇒

(
3∑

k=1

ωk = 5 ∧ ω4 + ω5 ∈ {2, 4, 6, 8, 10, 12}

)

∨

(
3∑

k=1

ωk = 6 ∧ ω4 + ω5 ∈ {3, 5, 7, 9, 11}

)

P (A ∩ C) =
3 · 18 + 1 · 18

288
=

72

288
=

1

4
=

1

2
· 1

2
= P (A) · P (C)

~ω ∈ B ∩ C ⇐⇒
3∑

k=1

ωk ∈ {5, 6} ∧ ω4 + ω5 ∈ {5, 10}

P (B ∩ C) =
4 · 7
288

=
7

72
=

1

2
· 7

36
= P (B) · P (C)

13
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which proves that the events are pairwise independent. Finally we have

~ω ∈ A ∩B ∩ C ⇐⇒

(
3∑

k=1

ωk = 6 ∧ ω4 + ω5 = 5

)

∨

(
3∑

k=1

ωk = 5 ∧ ω4 + ω5 = 10

)

P (A ∩B ∩ C) =
1 · 4 + 3 · 3

288
=

13

288
6= 14

288
=

1

2
· 7

36
· 1

2
= P (A) · P (B) · P (C)

which means that they are not independent as a whole.

10. Show

Cn :=

(
2n

n

)
−
(

2n

n+ 1

)
=

n∏
k=1

4k − 2

k + 1

and determine all primes in {Cn}.

Reason: Catalan Numbers.

Solution:

Cn =

(
2n

n

)
−
(

2n

n+ 1

)
=

(2n)!

n!n!
− (2n)!

(n+ 1)!(n− 1)!

=
(2n)!(n+ 1)− (2n)!n

n!(n+ 1)!
=

(2n)!

n!(n+ 1)!

Cn+1

Cn
=

(2n+ 2)!

(n+ 1)!(n+ 2)!
· n!(n+ 1)!

(2n)!

=
(2n+ 2)(2n+ 1)

(n+ 2)(n+ 1)
=

2(2n+ 1)

n+ 2
=

4n+ 2

n+ 2

Since C1 = 1 we get

Cn =
4n− 2

n+ 1
· Cn−1 =

4n− 2

n+ 1
· 4n− 6

n
· Cn−2 = . . . =

n∏
k=1

4k − 2

k + 1

C0 = C1 = 1 , C2 = 2 , C3 = 5 , C4 = 14 , C5 = 42

Cn =
1

n+ 1

(
2n

n

)
=

2n(2n− 1) · . . . · (n+ 2)

n!

= 2 · 2n− 1

n− 1
· . . . · n+ 2

2
> 2n−1 ≥ 2n for n ≥ 4

14
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All prime factors of

Cn = 2n · (2n− 1) · (2n− 2) · . . . · 1
(n+ 1) · n · . . . · 1

are less than 2n. Thus it is impossible that Cn itself is prime if n ≥ 4.

11. (HS-1) Check whether there is a natural number n ∈ N such that√
n+
√
n+ 4 ∈ Q. Note that zero is no natural number.

Reason: Irrational Numbers.

Solution: Assume
√
n+
√
n+ 4 ∈ Q. Then

Q 3
(√

n+
√
n+ 4

)2

= 2n+ 4 + 2
√
n(n+ 4)︸ ︷︷ ︸
∈Q

If
√
n(n+ 4) = a

b
, then a2 = b2 · n · (n + 4) and n(n + 4) is a square

number (e.g. by the fundamental theorem of arithmetic).

n2 + 2n+ 2 ≤ n2 + 4n

(n+ 1)2 = n2 + 2n+ 1 < n2 + 4n < n2 + 4n+ 4 = (n+ 2)2

n(n+ 4) = n2 + 4n ∈ ((n+ 1)2, (n+ 2)2)

so n(n+ 4) cannot be a square number contradicting our assumption.

12. (HS-2) Assume that n ∈ N is odd, and {a1, a2, . . . an} = {1, 2, . . . , n}.
Prove that

(a1 − 1) · (a2 − 2) · . . . · (an−1 − (n− 1)) · (an − n)

is always even.

Reason: Pigeon Hole Principle.

Solution: n = 2m+1 for somem ∈ N.Among the numbers {a1, . . . , an} =
{1, . . . , n} are therefore at mostm numbers even, namely {2, 4, . . . , 2m}.
The set {a1, a3, . . . , an} of numbers with an odd index contains m+1 =
n−m many numbers, so at least one of them has to be odd. Thus at
least one of the factors (a1−1), (a3−3), . . . , (an−n) is an even number,
i.e. the product

∏n
k=1(ak − k) is even, too.

13. (HS-3) Show that for every natural number n ∈ N there is a c = c(n) ∈
R such that for all real numbers a > 0

a+ a2 + a3 + . . .+ a2n−1 + a2n ≤ c(n) ·
(
1 + a2n+1

)
.

15
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Show that there is a smallest solution among all possible values c(n)
and determine it.

Reason: Calculus.

Solution: Let a > 0 be a real number. Then we have

0 ≤ 1− (n+ 1)a2n+1 − a2n+2 + (n+ 1)a2n+3 for all n ∈ N0

For n = 0 it is 1−a−a2 +a3 = (1−a)(1−a2) = (1−a)2(1+a) ≥ 0 and
for n = 1 we have 1− 2a3− a4 + 2a5 = (a− 1)2(a+ 1)(2a2 + a+ 1) ≥ 0.

1− (n+ 2)a2n+3 − a2n+4 + (n+ 2)a2n+5

= a2(1− (n+ 1)a2n+1 − a2n+2 + (n+ 1)a2n+3) + 1− a2 − a2n+3 + a2n+5

≥ 1− a2 − a2n+3 + a2n+5

= (1− a2)(1− a2n+3) = (1− a)2(1 + a) · 1− a2n+3

1− a
= (1− a)2(1 + a)(1 + a+ a2 + . . .+ a2n+2) ≥ 0

We now prove again by induction (case n = 1 see above) that

a+ a2 + a3 + . . .+ a2n−1 + a2n ≤ n ·
(
1 + a2n+1

)
.

0 ≤ −a− a2 − a3 + . . .− a2n−1 − a2n + n+ na2n+1 and

0 ≤ 1− (n+ 1)a2n+1 − a2n+2 + (n+ 1)a2n+3 hence

0 ≤ 1− (n+ 1)a2n+1 − a2n+2 + (n+ 1)a2n+3 + n+ na2n+1 − a− . . .− a2n

0 ≤ 1 + n− a− . . .− a2n+1 − a2n+2 + (n+ 1)a2n+3

a+ a2 + a3 + . . .+ a2n + a2n+1 + a2n+2 ≤ (n+ 1)(1 + a2n+3)

Therefore c = c(n) = n is a possible solution. It remains to show that
it is already the minimal solution, i.e. for any real number c < n we
must find a real number a > 0 such that

a+ a2 + a3 + . . .+ a2n−1 + a2n > c(n) ·
(
1 + a2n+1

)
.

However, with c < n we have 2c < 2n which is exactly our requirement
if we choose a = 1.

14. (HS-4) Given an integer k, determine all pairs (x, y) ∈ Z2 such that

x2 + k · y2 = 4 and k · x2 − y2 = 2

16
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Reason: Conic Sections.

Solution: Assume (x, y) is an integer solution. Then

x2 + k(kx2 − 2) = x2(1 + k2)− 2k = 4

0 < x2(1 + k2) = 2(k + 2)

We can therefore exclude all k ≤ −3.

k = −2 : 0 < 2 = −2x2 − y2 ≤ 0  
k = −1 : 0 < 2 = −x2 − y2 ≤ 0  
k = 0 : 0 < 2 = −y2 ≤ 0  
k = 1 : 2x2 = 2 · 3 = 6 =⇒ x2 = 3 =⇒ x 6∈ Z  

k = 2 : 5x2 = 2 · 4 = 8 =⇒ x2 =
8

5
=⇒ x 6∈ Z  

k = 3 : 10x2 = 10 =⇒ x = ±1 =⇒ y = ±1

k > 3 ∧ y2 = 0 =⇒ 2 = k · x2 = 4 · k > 12  
k > 3 ∧ x2 = 0 =⇒ y2 = −2  
k ≥ 4 ∧ x2 ≥ 1 ∧ y2 ≥ 1 =⇒ 4 = x2 + ky2 ≥ 1 + 4 · 1 = 5 

Our equation system is thus not solvable, except k = 3, in which case
all four pairs {(x, y) ∈ Z2 |x = ±1, y = ±1} are the only solution. It is
easy to check, that these pairs are indeed solutions.

15. (HS-5) Prove for every natural number n ∈ N
1 · 3 · 5 · . . . · (2n− 1)

2 · 4 · 6 · . . . · 2n
<

1√
2n+ 1

Reason: Inequality.

Solution: For k = 1, . . . , n

(2k − 1) · (2k + 1) = 4k2 − 1 < 4k2 =⇒ 2k − 1

2k
<

2k

2k + 1

=⇒
n∏
k=1

2k − 1

2k
<

n∏
k=1

2k

2k + 1

=⇒

(
n∏
k=1

2k − 1

2k

)2

<

(
n∏
k=1

2k − 1

2k

)
·

(
n∏
k=1

2k

2k + 1

)
=

1

2n+ 1

=⇒
n∏
k=1

2k − 1

2k
<

1√
2n+ 1

17
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2 May 2021

1. Integrate ∫ ∞
0

∫ ∞
0

e
−
(
x+y+λ3

xy

)
x−

2
3y−

1
3 dx dy

Reason: Liouville’s Formula.

Solution: Set R(λ) =
∫∞

0

∫∞
0
e
−
(
x+y+λ3

xy

)
x−

2
3y−

1
3 dx dy and z :=

λ3

xy
.

Then

dz

dx
= − λ3

x2y
= −λ

3

y

(yz
λ3

)2

= −yz2 ⇒ dx = − λ3

yz2
dz

R′(λ) = −
∫ ∞

0

∫ ∞
0

3λ2

xy
· e−

(
x+y+λ3

xy

)
· x−

2
3 · y−

1
3 dx dy

= 3

∫ ∞
0

∫ 0

∞

z

λ
· e−

(
λ3

yz
+y+z

)
λ3

yz2
· 1

λ2
· y

2
3 · z

2
3 · y−

1
3 dz dy

= −3

∫ ∞
0

∫ ∞
0

e
−
(
λ3

yz
+y+z

)
· y−

2
3 · z−

1
3 dz dy

= −3R(λ)

Hence R(λ) = R(0)e−3λ and

R(0) =

∫ ∞
0

∫ ∞
0

e−x−y · x−
2
3 · y−

1
3 dx dy =

∫ ∞
0

x
1
3
−1e−x dx ·

∫ ∞
0

y
2
3
−1e−y dy

= Γ

(
1

3

)
Γ

(
1− 1

3

)
=

π

sin(π/3)
=

2π√
3

and R(λ) =
2π√

3
· e−3λ

2. Let Fn be the free group of rank n with generators {w1, . . . , wn}. Then

m∏
i=1

wbiai ∈ [Fn, Fn]⇐⇒ ∀mk=1

∑
ai=k

bi = 0

Reason: Abstract Algebra.

Solution: Denote the right-hand side property by (P). Then

(1) if two elements of Fn satisfy (P), then so does their product,
(2) each element of the form [x, y] (i.e. each generator of [Fn, Fn])
satisfies (P).

which proves the direction from left to right.
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Now assume (P). We proceed by the length of the word m. The cases
m = 0 and m = 1 are obviously true.

wb1k xw
b2
k y = [w−b1k , x−1]xwb1+b2

k y

If wb1k xw
b2
k y satisfies (P), so does xwb1+b2

k y. But now the length of the
latter is one less than the length of the former and the induction hy-
pothesis applies.

Another way to see the statement is as follows: For an arbitrary group
G, we have g ∈ [G,G] if and only if ḡ = g[G,G] = 1̄ in the abelianiza-
tion G/[G,G]. For the free group G = Fn we have Fn/[Fn, Fn] = Zn
and the stated property follows immediately.

3. Calculate ∫ π

0

∫ π

0

∫ π

0

1

1− cosx cos y cos z
dx dy dz

Reason: Watson Integral.

Solution: We start with the Weierstraß substitution t = tan(x/2).

cosx =
1− t2

1 + t2

dt

dx
=

d

dx
tan
(x

2

)
=

1

2

(
1 + tan2

(x
2

))
=

1 + t2

2
=⇒ dx =

2 dt

1 + t2

x = r sin θ cosϕ , dx = r cos θ cosϕdθ

y = r sin θ sinϕ , dy = r sin θ cosϕdϕ

z = r cos θ , dz = cos θ dr

19
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and rewrite

I :=

∫ π

0

∫ π

0

∫ π

0

1

1− cosx cos y cos z
dx dy dz

= 8

∫ ∞
0

∫ ∞
0

∫ ∞
0

1

1 + x2
· 1

1 + y2
· 1

1 + z2

1− 1− x2

1 + x2
· 1− y2

1 + y2
· 1− z2

1 + z2

dx dy dz

= 8

∫ ∞
0

∫ ∞
0

∫ ∞
0

dx dy dz

(1 + x2)(1 + y2)(1 + z2)− (1− x2)(1− y2)(1− z2)

= 4

∫ ∞
0

∫ ∞
0

∫ ∞
0

dx dy dz

x2 + y2 + z2 + x2y2z2

= 4

∫ π/2

0

∫ π/2

0

∫ ∞
0

r2 sin θ dr dθ dϕ

r2 + r2 sin2 θ cos2 ϕ r2 sin2 θ sin2 ϕ r2 cos2 θ

= 4

∫ π/2

0

∫ π/2

0

∫ ∞
0

dr

1 +
(
r sin θ

√
cos θ

√
sinϕ cosϕ

)4

︸ ︷︷ ︸
=:s

sin θ dθ dϕ

= 4

∫ ∞
0

ds

1 + s4
·
∫ π/2

0

dθ√
cos θ

·
∫ π/2

0

dϕ√
sinϕ cosϕ

= 4 · π

2
√

2
·

Γ

(
1

4

)2

2
√

2π
·

Γ

(
1

4

)2

2
√
π

=
1

4
Γ

(
1

4

)4

= 2πω2 = 2G2π3 ≈ 43.198

with the Gauß constant G =
2

π

∫ 1

0

ds√
1− s4

.

4. Let G be a finite group, K a field such that char(K) - |G|, and (ρ, V )
and (τ,W ) linear representations of G over K. The K−linear mapping

Sym : HomK(V,W ) −→ HomK(V,W )

ϕ 7−→ Sym(ϕ) =
1

|G|
∑
g∈G

τ(g) ◦ ϕ ◦ ρ(g−1)

is a projection onto the subspace

HomK((ρ, V ), (τ,W )) = {ϑ : V −→ W | ∀g∈G : τ(g) ◦ ϑ ◦ ρ(g−1) = ϑ}
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of HomK(V,W ). Prove (mention) all five claims.

Reason: Group Representations.

Solution:

(a) Well-definition. The element |G| = 1 + . . . + 1 ∈ K has a mul-
tiplicative inverse since char(K) - |G|, hence Sym is well-defined.

(b) Homomorphism of representations. Let h ∈ G,ϕ ∈ HomK(V,W ).

τ(h) ◦ Sym(ϕ) =
1

|G|
∑
g∈G

τ(h) ◦ τ(g) ◦ ϕ ◦ ρ(g−1)

=
1

|G|
∑
g∈G

τ(hg) ◦ ϕ ◦ ρ(g−1h−1h)

u=hg
=

1

|G|
∑
u∈G

τ(u) ◦ ϕ ◦ ρ(u−1) ◦ ρ(h)

= Sym(ϕ) ◦ ρ(h)

(c) Linearity.

Sym(αϕ+ βϑ) = α Sym(ϕ) + β Sym(ϑ)

is a direct consequence of the definition of Sym .

(d) Image is a subspace of HomK(V,W ). We just have proven that
Sym is a K−linear homomorphism of representations, i.e. espe-
cially spans a subspace of all K−linear homomorphisms V −→ W.

(e) Sym is a projection onto HomK((ρ, V ), (τ,W )). Let ϑ be a ho-
momorphism of representations, i.e. τ(g) ◦ ϑ ◦ ρ(g−1) = ϑ. Thus

Sym(ϑ) =
1

|G|
∑
g∈G

τ(g) ◦ ϑ ◦ ρ(g−1) =
1

|G|
∑
g∈G

ϑ =
1

|G|
· |G| · ϑ = ϑ

and especially Sym ◦ Sym = Sym and

Sym(HomK(V,W )) ⊆ HomK((ρ, V ), (τ,W ))

5. Let f(x) = x3 − 49

6
x2 +

39

2
x − 31

3
. Prove that there are at least one

a, b such that f 2(a) = a , f(a) 6= a and f 4(b) = b , fk(b) 6= b (k < 4)
where fn := f ◦ fn−1, f 1 = f.
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Is this true for every even power?

Reason: Theorem of Sharkovskii.

Solution: We observe that f(1) = 2, f(2) = 4, f(4) = 1, which means
f 3(1) = f(f(f(1))) = 1. This means that x = 1 is a periodic point
of order 3 of the continuous function f : R −→ R. A periodic point
p of order m is a point such that fm(p) = p and fk(p) 6= p for some
m ∈ N and all 0 < k < m. The claim now follows from the theorem of
Sharkovskii:

Consider the total (Sharkovskii) order ”4S”

3, 5, 7, 9, . . . , 2·3, 2·5, 2·7, . . . , 22 ·3, 22 ·5, . . . , 23 ·3, . . . , . . . , 24, 23, 22, 2, 1

of the natural numbers. If the continuous function f : R −→ R has
a periodic point of order m, and m 4S n, then there is at least one
periodic point of order n.

Since we have a periodic point of order 3, we have at least one periodic
point of any order.

6. Prove the equivalence of the theorem of Pythagoras with the following
transversal theorem about isosceles triangles:

Given an isosceles triangle 4ABC with baseline AB ⊆ g, peak C, i.e.
|AC| = |BC|, and g the straight along the baseline. Moreover let P ∈ g
be an arbitrary point. Then

|CP |2 = |CA|2 + |PA| · |PB| if P 6∈ AB
|CP |2 = |CA|2 − |PA| · |PB| if P ∈ AB
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Reason: Geometry.

Solution: The height h divides the baseline AB into equal halves and
intersects g at point D. We thus get two right triangles 4PDC and
4BDC on which we can apply the theorem of Pythagoras.

Case I: P 6∈ AB

|CP |2 = |CD|2 +

(
|AB|

2
+ |PA|

)2

|CB|2 = |CD|2 +

(
|AB|

2

)2

|CP |2 = |CB|2 −
(
|AB|

2

)2

+

(
|AB|

2
+ |PA|

)2

= |CB|2 + |PA|2 + 2 · |PA| · |AB|
= |CB|2 + |PA| · |PB| = |CA|2 + |PA| · |PB|

Case II: P ∈ AB
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|CP |2 = |CD|2 +

(
|AB|

2
− |PA|

)2

|CB|2 = |CD|2 +

(
|AB|

2

)2

|CP |2 = |CB|2 −
(
|AB|

2

)2

+

(
|AB|

2
− |PA|

)2

= |CB|2 + |PA|2 − 2 · |PA| · |AB|
= |CB|2 + |PA| · |PB| = |CA|2 − |PA| · |PB|

Conversely we consider the special case P = D. Then

|CD|2 = |CP |2 = |CA|2 − |PA| · |PB| = |CA|2 − |DA|2

is the transversal theorem for the isosceles triangle 4ABC, which is
the theorem of Pythagoras for the right triangle 4ADC. However, any
given right triangle can be mirrored at one of its legs to make it an
isosceles triangle for which the theorem of Pythagoras is a consequence
of the transversal theorem.

7. Let α be an algebraic number of degree n ≥ 1. Then there is a real

number c > 0 such that for all Q 3 p
q
6= α

∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qn

Reason: Liouville’s Approximation Theorem.

Solution: Let f(x) = anx
n + . . . + a1x + a0 ∈ Z[x] be the minimal

polynomial of α with an 6= 0. This means we can factorize f(x) =
(x−α) · g(x) in C[x]. The function R −→ C , x 7−→ g(x) is continuous,
i.e. there are real numbers c1, c2 > 0 such that |g(x)| ≤ c1 whenever
|α − x| < c2. Since f has only finitely many zeros, we may assume
w.l.o.g. that no other zero lies in the neighborhood of α, i.e. that
f(x) 6= 0 for all |α− x| < c2 and x 6= α. Set c := min{c2, c

−1
1 }.

Assume that there are p, q ∈ Z, q ≥ 1 such that∣∣∣∣α− p

q

∣∣∣∣ < c

qn
< c ≤ c2
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hence |g(p/q)| ≤ c1 and∣∣∣∣f (pq
)∣∣∣∣ =

∣∣∣∣pq − α
∣∣∣∣ · g(pq

)
<

c

qn
· c1 ≤

1

qn
=⇒

∣∣∣∣qnf (pq
)∣∣∣∣ < 1

But qnf

(
p

q

)
= anp

n + qan−1p
n−1 + . . . + qn−1a1p + qna0 ∈ Z which

implies that f

(
p

q

)
= 0 which can only happen if

p

q
= α in the chosen

neighborhood of α.

Another way to prove Liouville’s approximation theorem is the follow-
ing. If α = a+ ib 6∈ R then

|b|
qn
≤ |b| ≤

√(
a− p

q

)2

+ b2 =

∣∣∣∣α− p

q

∣∣∣∣
and c := |Im(α)| proves the statement of the theorem. We may thus
assume that α ∈ R. Let r > 0 and Mr := max{f ′(x) : |x − α| ≤ r}.
Now we choose c := min{r,M−1

r } and assume∣∣∣∣α− p

q

∣∣∣∣ ≤ r.

There is a ξ ∈
[
α,
p

q

]
i.e. especially |ξ − α| ≤ r, such that

f

(
p

q

)
= f

(
p

q

)
− f(α) =

(
p

q
− α

)
· f ′(ξ)

by the mean value theorem of differential calculus and |f ′(ξ)| ≤ Mr.

Again we have qnf

(
p

q

)
∈ Z. The polynomial f is irreducible over Z

by its minimality and so irreducible over Q by Gauß’s lemma for poly-

nomials. Then either α =
p

q
or f

(
p

q

)
6= 0. The former is impossible,

so the latter must hold. Then∣∣∣∣qnf (pq
)∣∣∣∣ ≥ 1 =⇒ 1

qn
≤
∣∣∣∣f (pq

)∣∣∣∣ =

∣∣∣∣pq − α
∣∣∣∣ · |f ′(ξ)|

=⇒ 1

qn
≤
∣∣∣∣pq − α

∣∣∣∣ ·Mr

=⇒
∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

Mrqn
≥ c

qn
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8. Let an+1 = 2 +
√

4 + an , a0 ≥ −4 , be a sequence of real numbers.
Determine - if existent - its limit in dependence of the initial value a0,
and show that an ∈ [2, 5] in cases where a0 ∈ [−4, 5], and an ≥ 5 in
cases where a0 ≥ 5 (n ∈ N).

Reason: Recursion.

Solution: By the monotony of the root function we get for a0 ∈ [−4, 5]
that a1 ∈ [2, 5] and by induction an ∈ [2+

√
6, 5] ⊆ [2, 5]. In case a0 ≥ 5

we have again by monotony and induction an ≥ 5.

an+1 − an = 2 +
√

4 + an − an =
4 + an − (an − 2)2

√
4 + an + an − 2

=
an(5− an)√

4 + an + an − 2
=

{
≥ 0 if an ∈ [2, 5]

≤ 0 if an ≥ 5

The sequence is thus monotone increasing for a0 ∈ [2, 5] and monotone
decreasing for a0 ≥ 5. This implies convergence in both cases (a1 is an
upper bound in the latter case). Now consider the fixed point equation

a = 2 +
√

4 + a =⇒ (a− 2)2 = 4 + a =⇒ a(a− 5) = 0

Testing both solutions gives us a = 5 as unique possible fixed point,
i.e. limn→∞ an = 5 for any initial value a0 ≥ −4.

9. Calculate center, foci, semi-axis, and area of the maximal inscribed
ellipse of the triangle (1, 1), (5, 2), (3, 6).

Reason: Geometry.

Solution: Set

C[x] 3 p(z) = (z − 1− i)(z − 5− 2i)(z − 3− 6i)

= z3 − (9 + 9i)z2 + (3 + 52i)z + (33− 39i)

The maximal inscribed ellipse of the triangle of zeros of p(x) is thus
the Steiner inellipse, where the sides of the triangle are tangents at
their midpoints. The foci are the zeros of p′(z) and the center the zero
of p′′(x) by Marden’s theorem.

0 = p′(z) = 3z2 − (18 + 18i)z + (3 + 52i)

= 3

(
z − (3 + 3i)−

√
−1 +

2i

3

)(
z − (3 + 3i) +

√
−1 +

2i

3

)
≈ 3 (z − 3.32− 4.05i) (z − 2.68− 1.95i)

0 = p′′(x) = 6 (z − (3 + 3i))
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Hence the center of the ellipse is (3, 3) and the foci (2.68, 1.95), (3.32, 4.05).
The area of an ellipse is given as A = πab, so we have to compute the
semi-axis of a Steiner inellipse within 4ABC with center S.

A = (1, 1) , B = (5, 2) , C = (3, 6) , S = (3, 3) ,

M :=
1

4

(
SC

2
+

1

3
AB

2
)
, N :=

1

4
√

3
·
∣∣∣det

(
~SC, ~AB

)∣∣∣
a =

1

2

(√
M + 2N +

√
M − 2N

)
, b =

1

2

(√
M + 2N −

√
M − 2N

)

M =
1

4

(
9 +

1

3
· 17

)
=

11

3

N =
1

4
√

3

∣∣∣∣det

([
0 4
3 1

])∣∣∣∣ =
√

3

a =
1

2
√

3

(√
11 + 6

√
3 +

√
11− 6

√
3

)
b =

1

2
√

3

(√
11 + 6

√
3−

√
11− 6

√
3

)
ab =

1

12

((
11 + 6

√
3
)
−
(

11− 6
√

3
))

=
√

3

A = π
√

3 ≈ 5.44 =
π

3
√

3
· A4

10. Let A,B ∈M(n,F) be two square n× n matrices over a field F. Show
that the minimal polynomials of AB and BA are the same in case A is
regular. Is it true as well, if A is singular?

Reason: Matrices and Minimal Polynomials.

Solution: For any polynomial p(x) ∈ F[x] we have

p(AB)A = Ap(BA) i.e. 0 = p(AB) = Ap(BA)A−1 ⇐⇒ p(BA) = 0

This means that the minimal polynomials of AB and BA divide each
other, and are therefore equal. Now set

A :=

[
1 0
0 0

]
, B :=

[
0 1
0 0

]
AB =

[
0 1
0 0

]
, BA =

[
0 0
0 0

]
so mAB(x) = x2 6= x = mBA(x).
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11. (HS-1) For which positive real numbers R 3 a, b > 0 does

f(a, b) =
a4

b4
+
b4

a4
− a2

b2
− b2

a2
+
a

b
+
b

a

assume a minimal value, and which one?

Reason: Real Numbers.

Solution:

f(a, b) =

(
a2

b2
+
b2

a2

)2

− 2−
(
a2

b2
+
b2

a2

)
+

(
a

b
+
b

a

)
=

(
a2

b2
+
b2

a2
− 1

2

)2

− 9

4
+

(
a

b
+
b

a

)
=

((
a

b
− b

a

)2

+
3

2

)2

− 9

4
+

(√
a

b
−
√
b

a

)2

+ 2

≥ 9

4
− 9

4
+ 2 = 2

where equality holds if and only if
a

b
=
b

a
which is equivalent to a = b

since both are positive. Hence f(a, b) assumes its minimal value if and
only if a = b in which case f(a, a) = 2.

12. (HS-2) Find all pairs (x, y) of integers such that

y2 = x · (x+ 1) · (x+ 7) · (x+ 8)

Reason: Integers.

Solution: Assume (x, y) is a solution, u := x+ 4 and t = u2 − (25/2).
Then

y2 = x(x+ 1)(x+ 7)(x+ 8) = (u− 4)(u− 3)(u+ 3)(u+ 4) = (u2 − 9)(u2 − 16)

y2 =

(
t+

7

2

)(
t− 7

2

)
= t2 − 49

4

49 = 4t2 − 4y2 = (2t− 2y)(2t+ 2y) with 2t ∈ Z
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Therefore {2t− 2y, 2t+ 2y} = {2x2 + 16x+ 7± 2y} = {±1,±7,±49}.

2t+ 2y 2t− 2y t y u x x(x+ 1)(x+ 7)(x+ 8)

49 1 25/2 12 5 1 144
−5 −9 144
0 −4 144

7 7 7/2 0 3 −1 0
−3 −7 0
4 0 0
−4 −8 0

1 49 25/2 −12 5 1 144
−5 −9 144
0 −4 144

−1 −49 −25/2 12 5 1 144
−5 −9 144
0 −4 144

−7 −7 −7/2 0 3 −1 0
−3 −7 0
4 0 0
−4 −8 0

−49 −1 −25/2 −12 5 1 144
−5 −9 144
0 −4 144

Possible pairs (x, y) are thus (−9,−12), (−9, 12), (−8, 0), (−7, 0),
(−4,−12), (−4, 12), (−1, 0), (0, 0), (1,−12), (1, 12).

13. (HS-3) Show that∣∣∣∣x− sin(x)(14 + cos(x))

9 + 6 cos(x)

∣∣∣∣︸ ︷︷ ︸
=:f(x)

≤ 10−4 for x ∈
[
0,
π

4

]

You may use π = 3.14159 + δ ,
√

2 = 1.41421 + ε with δ, ε ∈ (0, 10−5) .

Reason: Error Margins.

Solution: To shorten notation we set c := cos(x) and s := sin(x).
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Then

f ′(x) = 1− (14c+ c2 − s2)(9 + 6c)− (14s+ cs)(−6s)

(9 + 6c)2

=
1

(9 + 6c)2

[
(9 + 6c)2 − (9 + 6c)(14c+ c2 − s2)− 6s(14s+ cs)

]
=

1

(9 + 6c)2

[
81− 18c− 57c2 − 6c3 − 75s2

]
=

1

(9 + 6c)2

(
24− 18c− 6c3 − 18(1− c2)

)
=

6− 18c+ 18c2 − 6c3

(9 + 6c)2
=

2(1− c)3

3(3 + 2c)2

So f ′(x) > 0 for x ∈ (0, π/4] and f ′(0) = 0. This means that f(x) is
strictly monotone increasing on the interval [0, π/4]. Hence

0 ≤ f(x) ≤ f(π/4) =
π

4
− 1√

2
·

14 +
1√
2

9 + 6
1√
2

=
π

4
− 41

√
2− 25

42

Now π/4 = 0.7853975+
δ

4
< 0.7854 and

41
√

2− 25

42
=

41 · 1.41421− 25 + 41ε

42
>

32.98261

42
> 0.7853 , i.e. 0 ≤ f(x) < 0.7854− 0.7853 = 10−4.

14. (HS-4) If f(x) = anx
n + . . . + a1x + a0 ∈ R[x] is a real polynomial of

degree n which doesn’t have real zeros, and h ∈ R a real number, then

F (x) := f(x) + h · f ′(x) + h2 · f ′′(x) + . . .+ hn · f (n)(x)

doesn’t have real zeros either.

Reason: Polynomial Zeros.

Solution: F (x) is a real polynomial of degree n, too, and n has to be
even, so we may assume w.l.o.g. that f(x) > 0 for all x ∈ R, since we
could otherwise work with −f(x) instead. Since F (x) and f(x) are of
the same degree with the same leading coefficient an, F (x) has a global
minimum, because f(x) has, and their limits at x → ± are the same.
This means there is a point x0 such that F (x) ≥ F (x0) for all x ∈ R
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and it is sufficient to show that F (x0) > 0.

F (x) =
n∑
k=0

hk
dk

dxk
f(x) =

∞∑
k=0

hk
dk

dxk
f(x) =

(
1− h d

dx

)−1

f(x)

f(x) =

(
1− h d

dx

)
F (x) = F (x)− hF ′(x)

F (x) = f(x) + hF ′(x)

F (x0) = f(x0) + hF ′(x0) = f(x0) > 0

15. (HS-5) Solve the following real equations system:

x+ y = az

x− y = bz

x2 + y2 = cz

Reason: Calculus.

Solution: The first two equations can be rewritten as

x =
a+ b

2
z , y =

a− b
a

z

so

0 =

(
a+ b

2

)2

z2 +

(
a− b

2

)2

z2 − cz = z ·
(
a2 + b2

2
z − c

)
If z = 0 then x = y = 0 which is a solution for any choice of a, b, c ∈ R.
If a = b = 0 then x = y = 0 and cz = 0.

Now let a2 + b2 6= 0 and z =
2c

a2 + b2
, x =

c(a+ b)

a2 + b2
, y =

c(a− b)
a2 + b2

.

These are necessary and sufficient conditions to solve the equations.
We have therefore the following solutions:

a b c x y z

0 0 0 0 0 z
a b c 0 0 0

a b c
a+ b

a2 + b2
c

a− b
a2 + b2

c
2

a2 + b2
c
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3 April 2021

1. Let T be a planet’s orbital period, a the length of the semi-major axis
of its orbit. Then

T ′(a) = γ 3
√
T (a) , T (0) = 0

with a constant proportional factor γ > 0. Solve this equation for all
a ∈ R and determine whether the solution is unique and why.

Reason: Uniqueness in the theorem of Picard-Lindelöf.

Solution: Division by γ 3
√
T (a) yields

γ−1

∫ dT (a)

da
3
√
T (a)

da =

∫
1 da

γ−1

∫
1

3
√
T (a)

dT (a) = a− C

γ−1 3

2
3
√
T (a)2 = a− C

T (a) =

(
2γ

3
(a− C)

)3/2

= γ′(a− C)3/2

The global solutions are thus

T (a) =

{
0 , a ≤ C

γ′(a− C)3/2 , a > C

which are infinitely many, for any C ∈ R+
0 and γ′ = (2γ/3)3/2.

All conditions for the theorem of Picard-Lindelöf hold, except the Lip-
schitz continuity of f(a, T ) = γ 3

√
T (a) at T (0) = 0. The function

x 7−→ 3
√
x isn’t Lipschitz continuous in any neighborhood of 0. This

example shows that Lipschitz continuity is crucial for the uniqueness
part in the (local and global version) of the theorem of Picard-Lindelöf.

2. Show that the Hadamard (elementwise) product of two positive definite
complex matrices is again positive definite.

Reason: Schur product theorem.

Solution: A complex matrix A can be written as the sum of a Hermi-
tian and a skew-Hermitian matrix:

A =
1

2

(
A+ A†

)
+

1

2

(
A− A†

)
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Therefore, if A is positive definite, we have for x 6= 0

0 < 2〈Ax, x〉 = 〈
(
A+ A†

)
x, x〉+ 〈

(
A− A†

)
x, x〉

= 〈x,
(
A+ A†

)†
x〉+ 〈x,

(
A− A†

)†
x〉

= 〈x,
(
A+ A†

)
x〉 − 〈x,

(
A− A†

)
x〉

= 2〈x,A†x〉

and A is Hermitian. As such it can be unitary diagonalized, i.e. A =
UDU † for a real diagonal matrix D and a unitary matrix U. As all
eigenvalues of the positive definite matrix A are all positive, we can
draw the square root of D = R2. If we define

√
A := URU †

then
√
A ·
√
A = (URU †)(URU †) = URU−1URU † = UDU † = A and

the square root is Hermitian again:
√
A
†

=
√
A.

The Hadamard product of any two matrices A � B is defined by ele-
mentwise multiplication, i.e.

tr (Aτ diag(v̄)B diag(w)) =
n∑
k=1

[(ajiv̄j) (bijwi)]kk

=
n∑
k=1

( n∑
l=1

aliv̄lbljwj

)
ij


kk

=
n∑
k=1

n∑
l=1

(alkv̄lblkwk)

= v† (A�B)w

Now let’s assume that A,B are positive definite. Then

〈v, (A�B)v〉 = v†(A�B)v = tr (Aτ diag(v̄)B diag(v))

= tr
(√

A
√
A diag(v̄)

√
B
√
B diag(v)

)
= tr

((√
A diag(v̄)

√
B
)(√

B diag(v)
√
A
))

= tr

(√B diag(v)
√
A
)†

︸ ︷︷ ︸
=:C†

(√
B diag(v)

√
A
)

︸ ︷︷ ︸
=:C


= tr

(
C†C

)
=
∑
i,j

c̄ijcij > 0
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for v 6= 0 and equal to zero if and only if v = 0.

3. A function f : Sk −→ X is called antipodal if it is continuous and
f(−x) = −f(x) for all x ∈ Sk and any topological space X ⊆ Rm.

Show that the following statements are equivalent:

(a) For every antipodal map f : Sn −→ Rn there is a point x ∈ Sn
satisfying f(x) = 0.

(b) There is no antipodal map f : Sn −→ Sn−1.

(c) There is no continuous mapping f : Bn −→ Sn−1 that is antipodal
on the boundary.

Assume the conditions hold. Prove Brouwer’s fixed point theorem:

Any continuous map f : Bn −→ Bn has a fixed point.

Reason: Borsuk-Ulam Theorem.

Solution: (a) =⇒ (b) Assume there is a antipodal map f : Sn −→
Sn−1. If we compose it with the inclusion ι : Sn−1 ↪→ Rn then it remains
antipodal and according to (a) there is a point ι(f(x)) = 0 which can
only occur if f(x) = 0. However, f(Sn) ⊆ Sn−1 63 0, a contradiction.

(b) =⇒ (a) Assume there is a antipodal map f : Sn −→ Rn such
that f(x) 6= 0 for all x ∈ Sn. Then we define g : Sn −→ Sn−1 by

g(x) :=
f(x)

‖x‖
which is antipodal, too, contradicting (b).

(c) =⇒ (b) The map π(x1, . . . , xn, xn+1) = (x1, . . . , xn) is a homeo-
morphism from the upper hemisphere of Sn to Bn. If we had an an-
tipodal map f : Sn −→ Sn−1 then we would have an antipodal map
g : Bn −→ Sn−1 by g(x) := f(π−1(x)) which is antipodal on the bound-
ary, contradicting (c).

(b) =⇒ (c) Assume g : Bn −→ Sn−1 is continuous and antipodal on the
boundary. Then we define f : Sn −→ Sn−1 by f(x) := g(π(x)) for x
in the upper hemisphere and f(−x) := −g(π(x)). Thus f is antipodal,
contradicting (b).

That all these conditions actually hold, is the theorem of Borsuk-Ulam,
which can be proven by topological algebra. E.g. see Theorem 2.2. in
https://web.northeastern.edu/suciu/slides/Borsuk-Ulam-tapas05.pdf

Suppose there exists a continuous function f : Bn −→ Bn without
fixed point. We define g : Bn −→ Sn−1 such that g(x) is the point
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on Sn−1 which intersects with the ray from f(x) and x. This is a well-
defined retraction, as there are no fixed points at which the function
would be ill-defined. It is a retraction since a ray from anywhere in Bn

to a point on the boundary x ∈ ∂Bn = Sn−1 intersects the boundary
at x by construction. Now g(−x) = −g(x) for x ∈ Sn−1 which is not
possible according to (c).

4. Let Y be an affine, complex variety. Prove that Y is irreducible if and
only if I(Y ) is a prime ideal.

Reason: Hilbert’s Nullstellensatz.

Solution: Assume Y is irreducible and f, g ∈ OC(An) such that f ·g ∈
I(Y ). Then V (fg) = V (f) ∪ V (g) and

Y = (V (f) ∩ Y ) ∪ (V (g) ∩ Y ).

Since Y is irreducible, we have w.l.o.g. Y = V (f) ∩ Y, i.e. Y ⊆ V (f)
and f ∈ I(Y ).

Now let J := I(Y ) be a prime ideal. Let V (J) = Y1 ∪ Y2. Thus
J = I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2). Assume J 6= I(Y1), I(Y2). Then there
are fi ∈ I(Yi)− J. Since

f1f2 ∈ I(Y1) · OC(An) ∩ OC(An) · I(Y2) = I(Y1) ∩ I(Y2) = J

is a prime ideal, we have that either f1 ∈ J or f2 ∈ J contradicting the
choice of f1, f2. Hence w.o.l.g. we may assume I(Y ) = J =

√
J = I(Y1).

This implies Y = V (I(Y )) = V (I(Y1)) = Y1 and V (J) is irreducible.

5. Let p > 5 be a prime number. Show that(
6

p

)
= 1⇐⇒ p ≡ k (24) with k ∈ {1, 5, 19, 23}.

The parentheses are the Legendre symbol.

Reason: Quadratic Reciprocity Law.

Solution: (
6

p

)
=

(
2

p

)
·
(

3

p

)
which equals 1 if and only if both factors are = 1 or both are = −1.
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By the quadratic reciprocity law we have

(
3

p

)
= (−1)

p−1
2

(p
3

)
=


1 if p ≡ 1 (4) , p ≡ 1 (3) , i.e. p ≡ 1 (12)

−1 if p ≡ 1 (4) , p ≡ −1 (3) , i.e. p ≡ 5 (12)

−1 if p ≡ −1 (4) , p ≡ 1 (3) , i.e. p ≡ −5 (12)

1 if p ≡ −1 (4) , p ≡ −1 (3) , i.e. p ≡ −1 (12)(
2

p

)
= (−1)

p2−1
8 =

{
1 if p ≡ ±1 (8)

−1 if p ≡ ±5 (8)

If p ≡ a (n) , p ≡ b (m) and d = (n,m), then d can be written as
d = µm+ νn with (d, µ) = (d, ν) = 1 by Bézout’s Lemma. This means

µ(a− b) = µc1m− µc2n = c1µm− c2µn = c1d− c1νn− µc2n

=⇒ d |µ(a− b) =⇒ d | (a− b)

For n = 8,m = 12 we get d = 4.

p ≡ 1 (8) ∧ p ≡ −1 (12) =⇒ 4 | (1− (−1)) = 2  
p ≡ −1 (8) ∧ p ≡ 1 (12) =⇒ 4 | (−1− 1) = −2  
p ≡ 5 (8) ∧ p ≡ −5 (12) =⇒ 4 | (5− (−5)) = 10  
p ≡ −5 (8) ∧ p ≡ 5 (12) =⇒ 4 | (−5− 5) = −10  

Thus we have

(
2

p

)
=

(
3

p

)
= ±1 only if p has the same sign modulo

8 and 12

p = 8m± 1 = 12n+ pm1⇒ 2m = 3n⇒ 2|n, 3|m⇒ p ≡ ±1 (24)

p = 8m± 5 = 12n+ pm5⇒ 2m = 3n⇒ 2|n, 3|m⇒ p ≡ ±5 (24)

Thus p mod 24 ∈ {±1,±5} = {1, 5, 19, 23}.

6. Let f ∈ L2(R) and g : R −→ R be given as

g(t) := t

∫
R
χ[t,∞)(|x|) exp(−t2(|x|+ 1))f(x) dx

Show that g ∈ L1(R).

Reason: Functional Analysis.
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Solution: We observe χ[t,∞)(|x|) = χ(−∞,|x|](t) and define u(x) =∫
R χ[t,∞)(|x|)|t| exp(−t2(|x|+ 1)) dt. Then

u(x) =

∫ |x|
−∞
|t| exp(−t2(|x|+ 1)) dt

= −
∫ 0

−∞
t exp(−t2(|x|+ 1)) dt+

∫ |x|
0

t exp(−t2(|x|+ 1)) dt

=

[
exp(−t2(|x|+ 1))

−2(|x|+ 1)

]|x|
0

−
[

exp(−t2(|x|+ 1))

−2(|x|+ 1)

]0

−∞

=
exp(−|x|2(|x|+ 1))− 2

−2(|x|+ 1)

and thus

‖u‖2
2 =

∫
R

|exp(−|x|2(|x|+ 1))− 2|2

4(|x|+ 1)2
dx ≤

∫
R

4

4(|x|+ 1)2
dx = 2

Now the integral of |g| yields

‖g‖1 =

∫
R
|g(t)| dt ≤

∫
R

∫
R
|t|χ[t,∞)(|x|) exp(−t2(|x|+ 1))|f(x)| dx dt

The conditions of the theorem of Tonelli hold, because the function
under the integral is positive and as a product of continuous and mea-
surable functions, itself measurable. Thus

‖g‖1 ≤
∫
R

∫
R
|t|χ[t,∞)(|x|) exp(−t2(|x|+ 1))|f(x)| dt dx

=

∫
R
|u(x)f(x)| dx = ‖uf‖1 ≤ ‖u‖2‖f‖2 <∞

by Hölder’s inequality and the fact that u(x), f(x) ∈ L2(R).

7. (a) Let V be the pyramid with vertices (0, 0, 1), (0, 1, 0), (1, 0, 0) and
(0, 0, 0). Calculate ∫

V

exp(x+ y + z) dV

(b) Let A ∈ GL(d,R). Calculate∫
Rd

exp(−‖Ax‖2
2) dx

Reason: Integration.

Solution:

37



https://www.physicsforums.com/ 01/21-06/21

(a) V = {(x, y, z) ∈ R3|0 ≤ z ≤ 1, 0 ≤ x ≤ 1− z, 0 ≤ y ≤ 1− z − x}
is compact, g : V −→ R with g(x, y, z) = z exp(x + y + z) is
continuous, hence integrable, so by Fubini’s theorem∫
V

exp(x+ y + z) dV =

∫
V

exp(x+ y + z) d(x, y, z)

=

∫ 1

0

∫ 1−z

0

∫ 1−z−x

0

exp(x+ y + z) dy dx dz

=

∫ 1

0

∫ 1−z

0

(e− exp(x+ z)) dx dz

=

∫ 1

0

(e(1− z)− e+ exp(z)) dz

= e− 1

2
e− e+ (e− 1) =

e

2
− 1

(b) ϕ(x) = Ax is a C1−diffeomorphism with Dϕ = A and the trans-
formation theorem can be applied:∫

Rd
exp(−‖Ax‖2

2) dx =
1

| det(Dϕ)|

∫
Rd

exp(−‖x‖2
2) dx

=
1

| det(A)|

∫
Rd

d∏
k=1

exp(−x2
k) dxk

Tonelli
=

1

| det(A)|

d∏
k=1

∫
R

exp(−x2
k) dxk

=

√
π
d

| det(A)|

8. Consider the Hilbert space L2([0, 1]) and its subspaceK := spanC{x, 1}.
Let π⊥ : H −→ K be the orthogonal projection. Give an explicit for-
mula for π⊥ and calculate π⊥(ex).

Reason: Hilbert Spaces.

Solution: If {u, v} is a orthonormal basis of K, then the orthogonal
projection is given by π⊥(f) = 〈f, u〉u+〈f, v〉v and it is sufficient to de-
termine a orthogonal basis. We set u = 1 and apply the Gram-Schmidt
algorithm to get

v̄ = x− 〈x, 1〉1 = x−
∫ 1

0

t dt = x− 1

2
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‖v̄‖2 =

∫ 1

0

(
t− 1

2

)2

dt =
1

3
− 1

2
+

1

4
=

1

12

such that {u, v} =

{
u,

v̄

‖v̄‖

}
=

{
1,
√

12

(
x− 1

2

)}
and

π⊥(f) = 〈f, 1〉1 + 12 〈f, x− 1

2
〉
(
x− 1

2

)

π⊥(ex) = 〈ex, 1〉1 + 12 〈ex, x− 1

2
〉
(
x− 1

2

)
=

∫ 1

0

ex dx+ 3(2x− 1)

∫ 1

0

ex (2x− 1) dx

= (e− 1) + 3(2x− 1)(3− e) = 6x(3− e) + 4e− 10

9. Prove π1(Sn;x) = {e} for n ≥ 2.

Reason: Theorem of Seifert-van Kampen.

Solution: Assume there is a point a ∈ Sn such that π1(Sn; a) 3 g 6= e.
Set

U := Sn ∩
{
xn > −

1

2

}
, V := Sn ∩

{
xn <

1

2

}
where we may assume without loss of generality that a ∈ U ∩ V by
an appropriate choice of coordinates. Then U, V are homeomorphic to
an open ball, i.e. π1(U ;x) = π1(V ;x) = {0} because balls are simply
connected, Sn = U ∪ V, and U ∩ V ∼= Sn−1 × (0, 1), which is path
connected for n ≥ 2. Let

ιU : π1(U ∩ V ; a) −→ π1(U ; a)

ιV : π1(U ∩ V ; a) −→ π1(V ; a)

κU : π1(U ; a) −→ π1(Sn; a)

κV : π1(V ; a) −→ π1(Sn; a)

be the embeddings of the according fundamental groups. We can now
apply the theorem of Seifert-van Kampen which states, that for every
pair ϕU : π1(U ; a) −→ G , ϕV : π1(V ; a) −→ G of group homomor-
phisms, such that ϕU ◦ ιU = ϕV ◦ ιV , there is a unique group homo-
morphism ϕ : π1(Sn; a) −→ G with ϕU = ϕ ◦ κU and ϕV = ϕ ◦ κV . We
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get, however, with g ∈ G = π1(Sn; a) two different homomorphisms
ϕ1 = idG, ϕ2 ≡ e in case g 6= e. These satisfy the conditions k = 1, 2

ϕk(κU([γ])) = ϕk(e) = e = ϕU([γ])

ϕk(κV ([γ])) = ϕk(e) = e = ϕV ([γ])

since both, U, V are simply connected, in contradiction to the theorem
of Seifert-van Kampen. Hence g = e and π1(Sn; a) = {e}.

The same proof works in the more general case:

If X = U ∪ V with open sets U, V and U ∩ V is path connected, then
π1(U ;x) = π1(V ;x) = {e} implies π1(X;x) = {e}.

10. Let U ⊆ R2n be an open set and f ∈ C2(U,R) a twice continuously
differentiable function at a point ~a ∈ U. Prove that if f has a critical
point in ~a and the Hessian matrix Hf(~a) has a negative determinant,
then f has neither a local maximum nor a local minimum in ~a.

Reason: Taylor Series with Integral Remainder.

Solution: The Hessian matrix is symmetric, and thus diagonaliz-
able with real eigenvalues. Hence its determinant is negative, if there
is at least one positive and one negative eigenvalue, say Hf.~v+ =
λ+~v+ , Hf.~v− = λ+~v−. Since a is a critical point, we have Df(~a) = 0,
so the Taylor series with integral remainder is

f(~a+ ~h) = f(~a) +

∫ 1

0

(1− t)〈~h,Hf(~a+ t~h)~h〉 dt

〈~h,Hf(~a~h)〉 = λ+‖~h‖2 > 0 for ~h ∼ ~v+ and this product remains posi-
tive in a neighborhood of Hf(~a) by continuity. So for sufficiently small
~h we have

〈~h,Hf(
~

a+ t~h)~h〉 > 0 for all t ∈ [0, 1]

which results in f(~a + ~h) > f(~a). The same argument leads to the

inequality f(~a+ ~h) < f(~a) for sufficiently small ~h ∼ ~v−.

11. (HS-1) Show that every non-negative real polynomial p(x) can be writ-
ten as p(x) = a(x)2 + b(x)2 with a(x), b(x) ∈ R[x].

Reason: Fundamental Theorem of Algebra.

Solution: Every real polynomial can be written as a product with its
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complex zeros z1, . . . , zn

p(x) =
n∏
i=1

(x− zi)ri =
∏
i≤m

(x− zi)ri︸ ︷︷ ︸
zi∈R︸ ︷︷ ︸

=:a0∈R[x]

·
∏
i>m

(x− zi)ri︸ ︷︷ ︸
zi∈C︸ ︷︷ ︸

=:b0∈R[x]

All zeros of b0 occur as pairs of conjugate complex numbers such that
zi = ui + ivi can be are paired as

(x− zi)ri(x− z̄i)ri = ( (x− ui)2︸ ︷︷ ︸
=:bi(x)2∈R[x]

+v2
i )
ri > 0 ∀x ∈ R

Assume that some power rj in the first factor a0 is odd. Then p(zj− ε)
and p(zj + ε) would be real numbers of different sign, because b0(zj ±
ε) > 0 and the real roots zj are discrete. As we excluded this possibility,
a0(x) =: a1(x)2 is already a square polynomial. Hence with possible
repetitions

p(x) = a1(x)2 ·
k∏
i=1

(bi(x)2 + v2
i ) = a1(x)2 ·

k∏
i=1

det

(
bi(x) −vi(x)
vi(x) bi(x)

)
= a1(x)2 · det

(
B(x) −V (x)
V (x) B(x)

)
= a1(x)2 · (B(x)2 + V (x)2)

= (a1(x)B(x)︸ ︷︷ ︸
=:a(x)

)2 + (a1(x)V (x)︸ ︷︷ ︸
=:b(x)

)2

since matrix multiplication preserves this form:(
bi(x) −vi(x)
vi(x) bi(x)

)(
bj(x) −vj(x)
vj(x) bj(x)

)
=

(
bi(x)bj(x)− vi(x)vj(x) −(bi(x)vj(x) + bj(x)vi(x))
bj(x)vi(x) + bi(x)vj(x) bi(x)bj(x)− vi(x)vj(x)

)
12. (HS-2) Show that all Pythagorean triples x2 + y2 = z2 can be found by

(x, y, z) = d · (u2 − v2, 2uv, u2 + v2) with d, u, v ∈ N , u > v

and which are primitive (no common divisor of x, y, z) if and only if
u, v are coprime and one is odd and the other one even.

Reason: Pythagorean Triples.

41



https://www.physicsforums.com/ 01/21-06/21

Solution: All such triples form a Pythagorean triple, since

(u2− v2)2 + (2uv)2 = u4− 2u2v2 + v4 + 4u2v2 = u4 + 2u2v2 = (u2 + v2)2

If we have a Pythagorean triple x2 + y2 = z2 then(x
z

)2

+
(y
z

)2

= 1 ; a :=
x

z
, b :=

y

z

and the straight from (−1, 0) to (a, b) on the unit circle intersects the

y−axis at (0, t) where t =
b

a+ 1
=
v

u
with coprime natural numbers

u, v is the rational slope of that straight.

1 = a2 + b2 = a2 + t2(a+ 1)2

0 = (a+ 1)(a− 1) + t2(a+ 1)2

0 = (a− 1) + t2(a+ 1) = a(t2 + 1) + t2 − 1

a =
1− t2

1 + t2
, b = t · (a+ 1) =

2t

1 + t2

Hence

(x
z
,
y

z

)
=

1− v2

u2

1 +
v2

u2

,
2
v

u

1 +
v2

u2

 =

(
u2 − v2

u2 + v2
,

2uv

u2 + v2

)

We can now write (x, y, z) = d · (u2 − v2, 2uv, u2 + v2) and have the
desired form. In case u < v we can simply exchange u, v.

If u, v are both even, or both odd, then 2 divides all three numbers
x, y, z and the triple isn’t primitive. If u, v are not coprime, say d|u
and d|v, then d2|x, y, z and the triple isn’t primitive either.

Let us now assume that the conditions hold, i.e. u > v are coprime
and one is even and one is odd. Then we have to show that (x, y, z) is
primitive. Assume therefore that

d|x = u2 − v2 , d|y = 2uv , d|z = u2 + v2.

If d divides two of them, then it automatically divides the third one,
too. Let p|d an odd prime divisor. Then

p | (u2 − v2) ∧ p | (u2 + v2) =⇒ p | 2u2 ∧ p | 2v2

=⇒ p |u ∧ p | v
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which cannot be as we assumed that u, v are coprime. So 2 is the only
possible divisor of d and u2 − v2 = (u − v)(u + v) is even, which can
only be, if u, v are either both odd or both even, which we assumed is
not true. Finally only d = 1 is possible if those conditions on u, v hold,
i.e. (x, y, z) is primitive.

13. (HS-3) Write

8

√√√√√√2207− 1

2207− 1

2207− 1

2207− . . .

as
a+ b

√
c

d
.

Reason: Continued Fraction.

Solution: Let’s first consider the continued fraction. We define L0 =
2207 , Ln+1 = 2207 − 1/Ln. It is a strictly decreasing sequence within
the bounds 2206 < Ln < 2207 for n > 0.

2206 < L1 = 2207− 1

2207
< 2207 = L0 and by induction

0 < 1 < Ln =⇒ 0 <
1

Ln
< 1 =⇒ 2207 > 2207− 1

Ln
= Ln+1 > 2206

Set L0 = 2207 > 987
√

5 =: C and assume n is minimal such that
L0 > L1 > . . . > Ln−1 > Ln > (1/2)(L0 + C) ≥ Ln+1 = L0 − 1/Ln.

Ln >
1

2
(L0 + C) =⇒ 1

Ln
<

2

L0 + C

=⇒ − 1

Ln
> − 2

L0 + C

=⇒ L0 −
1

Ln
> L0 −

2

L0 + C
=
L2

0 + L0C − 2

L0 + C

Therfore
1

2
(L0 + C)2 =

1

2
L2

0 +
1

2
C2 > L2

0 − 2 or C2 > L2
0 − 4 which

cannot be true, since C2 = L2
0−4. Hence (1/2)(L0 +C) is a strict lower

bound for all Ln. But this implies Ln > Ln+1 :

Ln > Ln+1 ⇔ L2
n−L0Ln+1 > 0⇔ Ln >

1

2

(
L0 +

√
L2

0 − 4

)
=

1

2
(L0+C)
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This means we have a strictly decreasing sequence of real numbers
which are bounded from below, i.e. its limit exists. Thus

L := lim
n→∞

Ln = lim
n→∞

(
L0 −

1

Ln

)
= L0 −

1

limn→∞ Ln
= L0 −

1

L

0 = L2 − L0L+ 1 = L2 − 2207L+ 1⇐⇒ L =
1

2
(L0 + C)

because 2206 < L ≤ L1 < 2207 = L0. This means we have to calculate

8

√
1

2
(L0 + C) =

√√√√√√1

2
(L0 +

√
L2

0 − 4).

If 0 = x2 − ax+ 1 then

0 = (x2 − ax+ 1)(x2 + ax+ 1) = (x2 + 1)2 − a2x2 = x4 − (a2 − 2)x2 + 1

so the positive square root of y2− by+ 1 satisfies x2−
√
b+ 2x+ 1 = 0.

y2 − 2207y + 1 = 0 =⇒ x2 −
√

2207 + 2x+ 1 = x2 − 47x+ 1 = 0

y2 − 47y + 1 = 0 =⇒ x2 −
√

47 + 2x+ 1 = x2 − 7x+ 1

y2 − 7y + 1 = 0 =⇒ x2 −
√

7 + 2x+ 1 = x2 − 3x+ 1

=⇒ L =
1

2

(
3 +
√

5
)

14. (HS-4) To each positive integer with n2 decimal digits, we associate
the determinant of the matrix obtained by writing the digits in order
across the rows. For example, for n = 2, to the integer 8617 we as-

sociate det

([
8 6
1 7

])
= 50. Find, as a function of n, the sum of all

the determinants associated with n2−digit integers. Leading digits are
assumed to be nonzero; for example, for n = 2, there are 9000 deter-

minants: f(2) =
∑

1000≤N≤9999

det(N).

Reason: Determinants.

Solution: If n > 2 then all determinants appear as positive and
equal negative value in the sum: Fix all but the last two columns
(cn−1, cn). Then (cn, cn−1) is in the sum, too, but of opposite sign.
f(1) =

∑9
k=1 det(k) = 1 + . . . + 9 = 45. So it remains to determine

f(2).
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det

([
a b
c d

])
+ det

([
a b
e f

])
= ad− bc+ af − be = a(d+ f)− b(c+ e)

By the multilinearity of the determinant, the answer is the determinant
of the matrix whose first (resp. second) row is the sum of all possible
first (resp. second) rows. There are 90 first rows whose sum is the
vector (450, 405), and 100 second rows whose sum is (450, 450). Thus
the answer is

450 · 450− 450 · 405 = 450 · 45 = 20250

15. (HS-5) All squares on a chessboard are labeled from 1 to 64 in reading
order (from left to right, row by row top-down). Then someone places
8 rooks on the board such that none threatens any other. Let S be the
sum of all squares which carry a rook. List all possible values of S.

Reason: Chessboard.

Solution: The squares on a chessboard are usually labeled by numbers
1, . . . , 8 for the ranks and letters A, . . . , H for the files. Any order of
rooks require that each number and each letter is assumed exactly once,
so

S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + A+B + C +D + E + F +G+H

= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 0 + 8 + 16 + 24 + 32 + 40 + 48 + 56

= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 8 · (1 + 2 + 3 + 4 + 5 + 6 + 7)

= 9 ·
(

8

2

)
+ 8 = 9 · 28 + 8 = 260
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4 March 2021

1. Prove that all derivations D := Der(L) of a semisimple Lie algebra L
are inner derivations M := ad(L).

Reason: Semisimple Lie Algebras.

Solution: Since the center Z(L) = ker ad(L) = {0} of L is trivial, we
have an isomorphism M ∼= L. Furthermore

[δ, ad(X)](Y ) = δ(ad(X)(Y ))− ad(X)(δ(Y ))

= [δ(X), Y ] + [X, δ(Y )]− [X, δ(Y )]

= ad(δ(X))(Y )

i.e. M E D is an ideal, and the Killing-form KM of M is the restriction
of the Killing-form KD of D. Let

M⊥ = {δ ∈ D |KD(δ, ad(X)) = 0 ∀X ∈ L}

As the Killing-form of L is non-degenerated, so is KM , hence M⊥∩M =
{0}. Since both, M⊥ and M are ideals in D, we obtain [M,M⊥] = {0}.
This means D = M ⊕M⊥ because dimM + dimM⊥ = dimD. Let
δ ∈M⊥. Then by the above equation

{0} = [M⊥,M ] 3 [δ, ad(X)] = ad(δ(X))

we get δ(X) ∈ Z(L) = {0}, i.e. M⊥ = {0} and D = M.

2. Give four possible non-isomorphic meanings for Zp.

Reason: Localizations, p-adics and Factorization.

Solution: The most common meaning is probably the factor ring

Zp = Z/p · Z = Z/ ∼p= {0, 1, . . . , p− 1 | p ≡ 0} = Fp

with the equivalence relation a ∼p b⇐⇒ p | (a− b).

A subset S of a commutative ring R with 1 is called multiplicative
closed, if 1 ∈ S and a, b ∈ S implies a · b ∈ S. Now (s, a) ∼S (t, b)⇐⇒
u ·(sb−at) = 0 for some u ∈ S defines an equivalence relation on S×R.
Its factor ring S ×R/ ∼S=: S−1R is called localization of R according
to S. There are two natural multiplicative sets:

The set {1, p, p2, p3, . . .} is obviously multiplicative closed for any given
p ∈ Z− {0}. In this case we can write

{pn |n ∈ N0}−1Z = Zp =
(
pN0
)−1 Z = pN0 × Z/ ∼pN0
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where (pn, a) ∼pN0 (pm, b) ⇐⇒ pk(bpn − apm) = 0 for some k ∈ N0.
Hence

Zp =

{
a

pn

∣∣∣∣ a ∈ Z ∧ n ∈ N0

}
⊆ Q

is the localization of Z at the element p.

Another naturally multiplicative closed set is S = R − P where P is
a prime ideal of R, since this is exactly the definition of a prime ideal.
We can thus localize R at the prime ideal P and write it RP . This
means in our case for a prime ideal (p) = p · Z in Z that

Zp = (pZ)−1Z = (p)× Z/ ∼(p)=
{ a
b

∣∣∣ a, b ∈ Z ∧ p - b} ⊆ Q
Finally we look at the p-adic numbers Qp for a given prime p. They are
an extension field of the rationals and can be written as

∑∞
i=−∞ aip

i

with coefficients ai ∈ {0, 1, . . . , p − 1}. Then we have the subring of
integers of p−adic numbers

Qp ⊇ Zp =

{
∞∑

i=−∞

ai · pi
∣∣∣∣∣ ai = 0∀ i < 0

}
= lim←−

n∈N
Z/pnZ ⊇ Z

3. Let T ⊆ (Zn+,4) with the partial natural ordering. Then there is a
finite subset S ⊆ T such that for every t ∈ T exists a s ∈ S with s 4 t.

α 4 β ⇐⇒ αi ≤ βi for all i = 1, . . . , n

Reason: Gordan-Dickson Lemma.

Solution: There are no infinite descending chains under the natural
ordering in (Zn+,4), i.e. the set Tmin of minimal elements of T is the
smallest subset with the required property, and we must show that
S = Tmin is finite.

We proceed by induction along n. The case n = 1 is obvious, since
|Tmin| = 1 in this case. Now assume n > 1 and that the statement is
true for all k < n. For k ≥ 0 we define

Uk = {t′ ∈ Zn−1
+ | (t′, k) ∈ T} ∧ U :=

⋃
k≥0

Uk

The sets (Uk)min and Umin are finite by induction hypothesis. Therefore
exists an m ≥ 0 such that Umin ⊆ U0 ∪ . . . ∪ Um. Set

S :=
m⋃
k=0

((Uk)min × {k}) ⊆ T.
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which is thus finite. Let t = (t′, k) ∈ T with t′ ∈ Zn−1
+ and k ≥ 0. If

k ≤ m, then there is a u ∈ (Uk)min with u 4 t′. Therefore (u, k) ∈ S
and (u, k) 4 (t′, k). If k > m, then there is by the choice of m a l ≤ m
and a u ∈ (Ul)min with u 4 t′, i.e. (u, l) 4 (t′, k). Since (t′, k) ∈ T
was an arbitrary element of T, we have proven that S has the required
property.

Another proof is possible by using Hilbert’s basis theorem. The mono-
mial ideal 〈xα |α ∈ T 〉 is generated by a finite set {xα |α ∈ T} by
Hilbert’s basis theorem. This set is necessarily of the form {xα |α ∈ S}
for a finite subset S ⊆ T. As a generating set of the ideal, S has the re-
quired property. The Lemma of Gordan-Dickson is therefore a corollary
of Hilbert’s basis theorem.

4. (a) Solve the following linear differential equation system:

ẏ1(t) = 11y1(t)− 80y2(t) ∧ ẏ2(t) = y1(t)− 5y2(t)

y1(0) = 0 ∧ y2(0) = 0

(b) Which solutions do y1(0) = ±ε ∧ y2(0) = ±ε have?

(c) How does the trajectory for y1(0) = 0.001 ∧ y2(0) = 0.001 behave
for t→∞?

(d) What will change if we substitute the coefficient −80 by −60?

(e) Calculate (approximately) the radius of the osculating circle at t =
π/12 for both trajectories with initial condition y(0) = (−1, 1).

Reason: Unstable Vortex and Repeller.

Solution:

(a) The system can be written as ẏ(t) = Ay(t) with y(t) = (y1(t), y2(t))

and A =

[
11 −80
1 −5

]
. Obviously solves y(t) ≡ 0 the problem, and

is a stable solution.

(b) To determine a general solution, we set y(t) = eλtu and find

ẏ(t) = λeλtu = Ay(t) = eλtAu

so we have to solve (A − λ)u = 0 which yields the eigenvalues
λ1,2 = 3± 4i and eigenvectors

u ∈{(1− 2i,−i/4)τ , (−20i, 1− 2i)τ}
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The general solution is thus the linear combination

y(t) = c1e
λ1tu1 + c2e

λ2tu2

ẏ(t) = c1λ1e
λ1tu1 + c2λ2e

λ2tu2[
y1(t)
y2(t)

]
= c1e

(3+4i)t

[
1− 2i
−i/4

]
+ c2e

(3−4i)t

[
−20i
1− 2i

]
[
ẏ1(t)
ẏ2(t)

]
= c1(3 + 4i)e(3+4i)t

[
1− 2i
−i/4

]
+ c2(3− 4i)e(3−4i)t

[
−20i
1− 2i

]
= c1e

(3+4i)t

[
11− 2i
1− 3i/4

]
+ c2e

(3−4i)t

[
−80− 60i
−5− 10i

]
= c1e

(3+4i)t

[
11(1− 2i)− 80(−i/4)

(1− 2i)− 5(−i/4)

]
+ c2e

(3−4i)t

[
11(−20i)− 80(1− 2i)

(−20i)− 5(1− 2i)

]
= c1e

λ1tAu1 + c2e
λ2tAu2

= c1ẏ1(t) + c2ẏ2(t)

y1(t) = e3t · e4it ·
[
1− 2i
−i/4

]
= e3t · (cos(4t) + i sin(4t)) ·

[
1− 2i
−i/4

]
y1(t)

e3t
=

[
cos(4t) + 2 sin(4t)

(1/4) sin(4t)

]
+ i

[
sin(4t)− 2 cos(4t)
−(1/4) cos(4t)

]

y2(t) = e3t · e−4it ·
[
−20i
1− 2i

]
= e3t · (cos(4t)− i sin(4t)) ·

[
−20i
1− 2i

]
y2(t)

e3t
=

[
−20 sin(4t)

cos(4t)− 2 sin(4t)

]
+ i

[
−20 cos(4t)

−2 cos(4t)− sin(4t)

]
Hence the real solutions are given by

y(t) = αe3t

[
cos(4t) + 2 sin(4t)

(1/4) sin(4t)

]
+ βe3t

[
−20 sin(4t)

cos(4t)− 2 sin(4t)

]
and[

y1(±ε)
y2(±ε)

]
= αe±3ε

[
cos(4ε)± 2 sin(4ε)
±(1/4) sin(4ε)

]
+ βe±3ε

[
∓20 sin(4ε)

cos(4ε)∓ 2 sin(4ε)

]
and[

y1(0)
y2(0)

]
=

[
±ε
±ε

]
= α

[
1
0

]
+ β

[
0
1

]
= ±ε

[
1
0

]
± ε

[
1
0

]
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This means that the solutions next to the fixed point (0, 0) drift
away from it, and that any disturbance of the fixed point’s initial
condition repels from it. The origin is an unstable vortex.

(c) The trajectory from the initial condition

[
y1(0)
y2(0)

]
=

[
1/1000
1/1000

]
is

y(t) =
1

1000
e3t

[
cos(4t)− 18 sin(4t)

cos(4t)− (7/4) sin(4t)

]
t→∞−→

[
oscillates ±∞
oscillates ±∞

]

(Image produced with MatheGrafix.de - not scaled e3t → e0.3t)

(d) The system now writes ẏ(t) = By(t) with y(t) = (y1(t), y2(t))

and B =

[
11 −60
1 −5

]
. Again y(t) ≡ 0 solves the linear problem,

and is a stable solution. However we now have the characteristic
polynomial

t2 − 6t+ 5 = (t− 1)(t− 5)

and real eigenvalues µ1,2 with eigenvectors

u ∈ {(6, 1)τ , (10, 1)τ}

and general solution

y(t) = αet
[
6
1

]
+ βe5t

[
10
1

]
Thus we not only have two real and positive eigenvalues now, we
also don’t have a vortex anymore at (0, 0). The vector field has
now a repeller at the origin.
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(e) The radius of the osculating circle is the reciprocal curvature and
defined by the formula

R(y(t)) =

∣∣∣∣ (ẏ2
1(t) + ẏ2

2(t))3/2

ẏ1(t) · ÿ2(t)− ÿ1(t) · ẏ2(t)

∣∣∣∣
The initial condition y(0) = (−1, 1) result in the two trajectories

yA(t) = e3t

[
−22 sin(4t)− cos(4t)
−(9/4) sin(4t) + cos(4t)

]
ẏA(t) = e3t

[
−62 sin(4t)− 91 cos(4t)
−(43/4) sin(4t)− 6 cos(4t)

]
ÿA(t) = e3t

[
550 sin(4t)− 521 cos(4t)
−(33/4) sin(4t)− 61 cos(4t)

]

yB(t) = et
[
33/2
11/4

]
− e5t

[
35/2
7/4

]
ẏB(t) = et

[
33/2
11/4

]
− e5t

[
175/2
35/4

]
ÿB(t) = et

[
33/2
11/4

]
− e5t

[
875/2
175/4

]

ẏA(π/12) = eπ/4
[
−31
√

3− 91/2

−(43/8)
√

3− 3

]
≈
[
−217.56
−27

]
ÿA(π/12) = eπ/4

[
275
√

3− 521/2

−(33/8)
√

3− (61/2)

]
≈
[

473.34
−82.57

]
R(yA(t)) ≈ 342.71

ẏB(π/12) = eπ/12

[
33/2
11/4

]
− e5π/12

[
175/2
35/4

]
≈
[
−302.53
−28.82

]
ÿB(π/12) = eπ/12

[
33/2
11/4

]
− e5π/12

[
875/2
175/4

]
≈
[
−1598.39
−158.41

]
R(yB(t)) ≈ 15, 104.4

51



https://www.physicsforums.com/ 01/21-06/21

This calculation shows, that both solutions are very different even
for small paths (t ≈ 0.2618). The unstable vortex (A) has a low
curvature, but it is still large compared to the curvature of the
repeller (B). And all due to a reduction of one single coefficient
about 25%. It also shows the importance of stability considerations
for the solutions of even simple differential equations.

5. Consider the ideal I = 〈x2y + xy, xy2 + 1〉 ⊆ R[x, y] and compute a
reduced Gröbner basis to determine the number of irreducible compo-
nents of the algebraic variety V (I).

Reason: Gröbner Basis.

Solution: R[x, y] is partially ordered by x ≺ y according to which
we define LT (f) as the leading term of the polynomial f ∈ R[x, y]
and LC(f) as the leading coefficient of f. A Gröbner basis of I is
a generating system G = (g1, . . . , gn) of polynomials, such that for all
f ∈ I − {0} there is a g ∈ G whose leading term divides the one of
f : LT (g) |LT (g). A Gröbner basis is called minimal, if for all g ∈ G

LT (g) /∈ 〈LT (G− {g})〉 ∧ LC(g) = 1.

and reduced if no monomial of its elements g ∈ G is an element of
〈LT (G − {g})〉 and LC(g) = 1. Reduced Gröbner basis are automati-
cally minimal. They are also unique whereas the minimal ones do not
need to be.

Gröbner bases can be found by the Buchberger algorithm. We define
for two polynomials p, q ∈ I − {0} the division

S(p, q) :=
lcm(LT (p), LT (q))

LT (p)
· p− lcm(LT (p), LT (q))

LT (q)
· q
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Then Buchberger’s algorithm can be written as

INPUT: {I} = {f1, . . . , fn}
OUTPUT: Gröbner basis G = (g1, . . . , gm)

INIT: G := {I}
1. DO

2. G′ := G

3. FOREACH p, q ∈ G′ , p 6= q

4. s = remainder(S(p, q), G)

5. IF s 6= 0 THEN G := G ∪ {s}
6. NEXT

7. UNTIL G = G′

We start with f1(x, y) = x2y + xy , f2(x, y) = xy2 + 1 and compute

S(f1, f2) =
lcm(x2y, xy2)

x2y
f1 −

lcm(x2y, xy2)

xy2
f2

= yf1 − xf2 = xy2 − x = 1 · f2 − x− 1

G′ = G ∪ {f3 := −x− 1} = {f1, f2, f3}

S(f1, f3) =
lcm(x2y, x)

x2y
f1 −

lcm(x2y, x)

−x
f3

= f1 + xyf3 = x2y + xy + xy(−x− 1) = 0

S(f2, f3) =
lcm(xy2, x)

xy2
f2 −

lcm(xy2, x)

−x
f3

= f2 + y2f3 = xy2 + 1 + y2(−x− 1) = −y2 + 1

G′ = G ∪ {f4 := −y2 + 1} = {f1, f2, f3, f4}

S(f1, f4) =
lcm(x2y, y2)

x2y
f1 −

lcm(x2y, y2)

−y2
f4 = yf1 + x2f4

= x2y2 + xy2 − x2y2 + x2 = xy2 + 1 + x2 − 1

= f2 − (x− 1)(−x− 1) = f2 − xf3 + f3 ≡ 0 mod G

S(f2, f4) =
lcm(xy2, y2)

xy2
f2 −

lcm(xy2, y2)

−y2
f4 = f2 + xf4

= xy2 + 1− xy2 + x = x+ 1 = −f3 ≡ 0 mod G

S(f3, f4) =
lcm(x, y2)

−x
f3 −

lcm(x, y2)

−y2
f4 = −y2f3 + xf4

= y2(x+ 1)− xy2 + x = y2 + x

= −f2 − y2f3 − f3 ≡ 0 mod G
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Hence we get a Gröbner basis {x2y+xy, xy2 + 1,−x− 1,−y2 + 1} of I.

LT (f1) = x2y = (−xy) · (−x) = (−xy) · LT (f3)

LT (f2) = xy2 = (−x) · (−y2) = (−x) · LT (f4)

means that {x+1, y2−1} is a minimal Gröbner basis, which is already
reduced, because we cannot omit another leading term and the leading
coefficients are normed to 1. The vanishing variety are thus the points
{(−1,−1), (−1, 1)} which are two separated points, i.e. two irreducible
components.

6. Define the complex function

Γ(z) := lim
n→∞

n!nz

z(z + 1) · . . . · (z + n)

and prove

(a) Γ(z) =

∫ ∞
0

e−t tz−1 dt ; R(z) > 0

(b) Γ(z)−1 = eγzz
∞∏
n=1

(
1 +

z

n

)
e−

z
n

where γ := lim
n→∞

(
1 +

1

2
+

1

3
+ . . .+

1

n
− log(n)

)
is the Euler-

Mascheroni constant.

Reason: Gamma Function.

Solution:

(a) From e−t = lim
n→∞

(
1− t

n

)n
we get∫ ∞

0

e−t tz−1 dt = lim
n→∞

∫ n

0

(
1− t

n

)n
tz−1 dt

t=ns
= lim

n→∞

∫ 1

0

(1− s)nnzsz−1 ds

= lim
n→∞

nz

([
sz

z
(1− s)n

]1

0

+
n

z

∫ 1

0

(1− s)n−1sz ds

)
...

= lim
n→∞

nz
(
n

z
· n− 1

z + 1
· . . . · 1

z + n− 1

∫ 1

0

sz+n−1 ds

)
= Γ(z)
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(b) Weierstraß expression.

z(z + 1) . . . (z + n)

n!nz
=

1

nz
· z ·

(
1 +

z

1

)
· . . . ·

(
1 +

z

n

)
=
e(1+ 1

2
+...+ 1

n)z

e(logn)z
· z ·

n∏
k=1

(
1 +

z

k

)
e−

z
k

= e(1+ 1
2

+...+ 1
n
−logn)·z · z ·

n∏
k=1

(
1 +

z

k

)
e−

z
k

n→∞−→ eγzz

n∏
k=1

(
1 +

z

k

)
e−

z
k

7. Let u : [0, 1] × [a, b] −→ C be a continuous function, such that the
partial derivative in the first coordinate exists everywhere and is con-
tinuous. Define

U(λ) :=

∫ b

a

u(λ, t) dt , V (λ) :=

∫ b

a

∂u

∂λ
(λ, t) dt.

Show that U is continuously differentiable and U ′(λ) = V (λ) for all
0 ≤ λ ≤ 1.

Reason: Complex Integration.

Solution: Let ε > 0. We have to show that there is a δ > 0 such that
for all λ, h ∈ R with 0 < |h| < δ, 0 ≤ λ ≤ 1, and 0 ≤ λ+ h ≤ 1

|V (λ+ h)− V (λ)| < ε ,

∣∣∣∣U(λ+ h)− U(λ)

h
− V (λ)

∣∣∣∣ < ε.

Every continuous function on a compact interval is uniformly continu-
ous, hence there is a δ > 0 such that for all (λ, t), (λ′, t′) ∈ [0, 1]× [a, b]

|λ′ − λ|+ |t′ − t| < δ =⇒
∣∣∣∣∂u∂λ(λ′, t′)− ∂u

∂λ
(λ, t)

∣∣∣∣ < ε

b− a
.

By definition of V we have

|V (λ+ h)− V (λ)| =
∣∣∣∣∫ b

a

(
∂u

∂λ
(λ+ h, t)− ∂u

∂λ
(λ, t)

)
dt

∣∣∣∣
≤
∫ b

a

∣∣∣∣∂u∂λ(λ+ h, t)− ∂u

∂λ
(λ, t)

∣∣∣∣ dt
< ε
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since the integrand is continuous and takes its maximum in [a, b].

Now assume 0 < h < δ such that 0 ≤ λ < λ + h ≤ 1. (The case h < 0
is proven accordingly.) Therefore∣∣∣∣u(λ+ h, t)− u(λ, t)

h
− ∂u

∂λ
(λ, t)

∣∣∣∣ =

∣∣∣∣1h
∫ λ+h

λ

(
∂u

∂λ
(λ′, t)− ∂u

∂λ
(λ, t)

)
dλ′
∣∣∣∣

≤ 1

h

∫ λ+h

λ

∣∣∣∣∂u∂λ(λ′, t)− ∂u

∂λ
(λ, t)

∣∣∣∣ dλ′
<

ε

b− a
and so∣∣∣∣U(λ+ h)− U(λ)

h
− V (λ)

∣∣∣∣ =

∣∣∣∣∫ b

a

(
u(λ+ h, t)− u(λ, t)

h
− ∂u

∂λ
(λ, t)

)
dt

∣∣∣∣
≤
∫ b

a

∣∣∣∣u(λ+ h, t)− u(λ, t)

h
− ∂u

∂λ
(λ, t)

∣∣∣∣ dt
<

∫ b

a

ε

b− a
dt = ε

8. A cardiod is defined as the trace of a point on a circle that rolls around
a fixed circle of the same size without slipping.

It can be described by (x2 + y2)2 + 4x(x2 + y2)− 4y2 = 0 or in polar
coordinates by r(ϕ) = 2(1− cosϕ). Show that:

(a) Given any line, there are exactly three tangents parallel to it. If
we connect the points of tangency to the cusp, the three segments
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meet at equal angles of 2π/3 .

(b) The length of a chord through the cusp is 4.

(c) The midpoints of chords through the cusp lie on the perimeter of
the fixed generator circle (black one in the first picture).

(d) Calculate length, area and curvature.

Reason: Cardioid.

Solution: The cartesian coordinates are given by[
x(ϕ)
y(ϕ)

]
= r(ϕ) ·

[
cos(ϕ)
sin(ϕ)

]
= 2 ·

[
cos(ϕ)− cos2(ϕ)

sin(ϕ)− cos(ϕ) sin(ϕ)

]
[
ẋ(ϕ)
ẏ(ϕ)

]
= 2 ·

[
sin(2ϕ)− sin(ϕ)
cos(ϕ)− cos(2ϕ)

]
,

∥∥∥∥[ẋ(ϕ)
ẏ(ϕ)

]∥∥∥∥2

= 8− 8 cos(ϕ)

(x+ 1)2 + y2 = 1 generating circle

This yields three vertical tangents (ẋ(ϕ) = 0) at ϕ = π/3, ϕ = π, ϕ =
5π/3 and three horizontal tangents (ẏ(ϕ) = 0) at ϕ = 0 (degenerated),
ϕ = 2π/3, ϕ = 4π/3 and proves the first statement for tangent slopes
{0,∞}. In general we have with α = 2π/3
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(a)

cos(ϕ+ α)− cos(2ϕ+ 2α)

sin(2ϕ+ 2α)− sin(ϕ+ α)
=
−
√

3 sin(ϕ)− cos(ϕ) + cos(2ϕ)−
√

3 sin(2ϕ)

−
√

3 cos(2ϕ)− sin(2ϕ)−
√

3 cos(ϕ) + sin(ϕ)

=

√
3(sin(2ϕ) + sin(ϕ)) + (cos(ϕ)− cos(2ϕ))√
3(cos(ϕ) + cos(2ϕ)) + (sin(2ϕ)− sin(ϕ))

(∗)
=

cos(ϕ)− cos(2ϕ)

sin(2ϕ)− sin(ϕ)

We want to prove (∗) which is equivalent to show

sin(2ϕ) + sin(ϕ)

cos(ϕ) + cos(2ϕ)
=

(sin(2ϕ) + sin(ϕ))(cos(ϕ)− cos(2ϕ))

cos2(ϕ)− cos2(2ϕ)

=
(sin(2ϕ) + sin(ϕ))(cos(ϕ)− cos(2ϕ))

sin2(2ϕ)− sin2(ϕ)

=
cos(ϕ)− cos(2ϕ)

sin(2ϕ)− sin(ϕ)

(b) A chord through the cusp (origin) intersects the cardiod in P =
2(1− cosϕ) and Q = 2(1− cos(ϕ+ π)). Thus

|PQ| = r(ϕ) + r(ϕ+ π)

= 4− 2 (cos(ϕ) + cos(ϕ) cos(π)− sin(ϕ) sin(π))

= 4− 2(cos(ϕ)− cos(ϕ)− 0) = 4

(c)

(1/2)PQ = 1− cos(ϕ)− (1− cos(ϕ+ π))

= − cos(ϕ) + cos(ϕ) cos(π)− sin(ϕ) sin(π)

= −2 cos(ϕ)

(x+ 1)2 + y2 = (1− 2 cos(ϕ) cos(ϕ))2 + (−2 cos(ϕ) sin(ϕ))2

= 1− 4 cos2(ϕ) + 4 cos4(ϕ) + 4 cos2(ϕ) sin2(ϕ)

= 1− 4 cos2(ϕ)(1− cos2(ϕ)− sin2(ϕ) = 1

(d)

A = 2 · 1

2

∫ π

0

|r(ϕ)× ṙ(ϕ)| dϕ

= 4

∫ π

0

(1− cos(ϕ))2

∣∣∣∣[cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]∣∣∣∣ dϕ
= 4 · [ϕ− 2 sin(ϕ) + (ϕ/2) + (1/2) sin(ϕ) cos(ϕ)]π0
= 4(π + π/2) = 6π
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L = 2

∫ π

0

√
r(ϕ)2 + ṙ(ϕ)2 dϕ

= 4

∫ π

0

√
(1− cos(ϕ))2 + (sin(ϕ))2 dϕ

= 4

∫ π

0

√
2− 2 cos(ϕ) dϕ = 8

∫ π

0

sin(ϕ/2) dϕ

= −16 [cos(ϕ/2)]π0 = 16

κ(ϕ) =
|r(ϕ)2 + 2ṙ(ϕ)2 − r(ϕ)r̈(ϕ)|

(r(ϕ)2 + ṙ(ϕ)2)3/2

=
1

2
· |(1− cos(ϕ))2 + 2 sin2(ϕ)− (1− cos(ϕ)) cos(ϕ)|

((1− cos(ϕ))2 + (sin(ϕ))2)3/2

=
1

2
· 3− 3 cos(ϕ)

(2− 2 cos(ϕ))3/2
=

3

4
√

2
· 1√

(1− cos(ϕ))

=
3

4
√

2
· 1√

2
· 1

sin(ϕ/2)
=

3

8
· 1

sin
(ϕ

2

)
9. Let A be a complex Banach algebra with 1. Prove that the spectrum

σ(a) = {λ ∈ C |λ · 1− a is not invertible } ⊆ {λ ∈ C | |λ| ≤ ‖a‖}

for any a ∈ A is not empty, bounded and closed.

Reason: Theorem of Gelfand.

Solution: Let G(A) := {a ∈ A | a is invertible }. We first show that in
case ‖a‖ < 1 we have

1− a ∈ G(A) , (1− a)−1 =
∞∑
k=0

ak

which is referred to as the Neumann series for (1− a)−1.

The norm of A is submultiplicative so the series converges absolutely,
and by completeness of A it converges in A, say to s ∈ A. Then

(1− a)s = (1− a) lim
n→∞

n∑
k=0

ak = lim
n→∞

(1− ak+1) = 1

because ‖ak+1‖ ≤ ‖a‖k+1 k→∞−→ 0. By the same argument we get the left
inverse s(1− a) = 1, hence s = (1− a)−1.
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Next we show that G(A) ⊆ A is open and inversion f : G(A) −→
A , f(a) = a−1 is continuous.

Let a ∈ G(A) and b ∈ A such that ‖a− b‖ < ‖a−1‖−1. Then

‖1− ba−1‖ = ‖(a− b)a−1‖ ≤ ‖a− b‖ · ‖a−1‖ < 1

so 1 − (1 − ba−1) = ba−1 ∈ G(A) by the previous statement, and thus
b = (ba−1)a ∈ G(A) which means that G(A) ⊆ A is open, because
G(A) is closed under multiplication.

Let’s consider left- and right multiplications lb(a) = ba , rb(a) = ab by
b ∈ A. Now we can write inversion as

f(a) = (la−1 ◦ f ◦ ra−1)(a)

for all a ∈ G(A). Since ra−1(a) = 1, f(1) = 1, la−1(1) = a−1, and the
maps la−1 , ra−1 are continuous at 1 and a, respectively for all a ∈ G(A),
it is sufficient to show that f is continuous at 1.
Let ‖1 − b‖ < ε < 1/2 < 1. Then we get for a := 1 − b the Neumann
series

∑∞
k=0 a

k = (1− a)−1 = b−1 and thus

‖f(b)− f(1)‖ = ‖b−1 − 1‖ ≤ ‖1− b‖ · ‖b−1‖

≤ ‖a‖
∞∑
k=0

‖a‖k = ‖a‖(1− ‖a‖)−1 ≤ 2ε

which shows that f is continuous at 1.

If |λ| > ‖a‖, then ‖λ−1a‖ < 1 and 1 − λ−1a ∈ G(A). Hence λ − a =
λ(1 − λ−1a) ∈ G(A) and λ /∈ σ(a) which proves the inclusion in the
statement and that σ(a) is bounded. Now define g : C −→ A by setting
g(λ) := λ ·1−a. Then g is continuous, and thus g−1(G(A)) = C−σ(a)
is open as the preimage of the open set G(A) which means that σ(a) is
closed.

It remains to show that σ(a) 6= ∅. Let λ ∈ C− σ(a), i.e. λ− a ∈ G(A.)
Since G(A) is open, there is an r > 0 such that µ−a ∈ G(A) whenever
|µ− λ| < r.

(µ− a)−1 − (λ− a)−1 = (µ− a)−1((λ− a)(λ− a)−1)

− ((µ− a)−1(µ− a))(λ− a)−1

= (µ− a)−1((λ− a)− (µ− a))(λ− a)−1

= (λ− µ)(µ− a)−1(λ− a)−1
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Hence for φ ∈ A∗ we get by continuity of inversion and continuity of φ

φ((µ− a)−1)− φ((λ− a)−1)

µ− λ
=
φ((µ− a)−1 − (λ− a)−1)

µ− λ
= φ(−(µ− a)−1(λ− a)−1)

µ→λ−→ φ(−(λ− a)−2)

which means that λ 7−→ φ((λ − a)−1) is analytic on C − σ(a). Using
continuity of inversion again yields

φ((λ− a)−1) = λ−1φ((1− λ−1a)−1)
|λ|→∞−→ 0

Assume σ(A) = ∅. Then λ 7−→ φ((λ − a)−1) is analytic on the whole
plane C, and bounded as we have seen above. By the theorem of
Liouville the function is identically zero. Consequently φ(a−1) = 0 for
all φ ∈ A∗. By the theorem of Hahn-Banach this implies a−1 = 0, which
is a contradiction. Thus σ(a) 6= ∅.

10. (a) Determine all primes which occur as orders of an element from
G := SL3(Z).

(b) Let I E R be a two-sided ideal in a unitary ring with group of
unities U . Show by two different methods that

M := {u ∈ U |u− 1 ∈ I} E U

is a normal subgroup.

Reason: Group Theory.

Solution:

(a) There are eight vectors in Z3
2. For a basis we can choose among

7 = 8−1 of them as first basis vector, 6 = 8−2 for the second, and
4 = 8− 4 for the last one. Hence there are 7 · 6 · 4 = 168 = 23 · 3 · 7
possible ordered basis, which equals |GL(Z3

2)| = |GL3(Z2)|. Next
we consider the induced homomorphism

ϕ : G = SL3(Z)� GL3(Z)� GL3(Z2)

For all elements g ∈ G of order n holds 1 = ϕ(1) = ϕ(gn) =
ϕ(g)n ∈ GL3(Z2) and thus n|168 and possible prime orders are
{2, 3, 7}. With −1 0 0

0 −1 0
0 0 1

 ,

0 0 1
1 0 0
0 1 0


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we have elements of order 2 and 3 in G.

Assume there is an element a ∈ G of order 7. Then a is a zero of

Z[x] 3 p(x) := X7 − 1 =
7∏

k=1

(x− ζk) =
7∏

k=1

(
x− e

2kπi
7

)
The Jordan normal form of a states that a is a conjugate of a
complex upper triangular matrix with eigenvalues λ1, λ2, λ3 on its
diagonal. Those eigenvalues are all among the 7−th roots of unity,
the zeros of p(x), because the characteristic polynomial of a divides
p(x). We may assume that λ1 6= 1, since if λ1 = λ2 = λ3 = 1 then
a is a conjugate to a matrix of the Heisenberg group, and the
Heisenberg group is torsion free. Thus λ1 is a primitive 7−th root
of unity, and by choosing a suitable power of a we may assume
that

λ1 = ζ1 = e
2πi
7 = cos

(
2π

7

)
+ i · sin

(
2π

7

)
Moreover we have λ1 · λ2 · λ3 = det(a) = 1 and λ1 + λ2 + λ3 =
tr(a) ∈ Z. Thus λ3 = ζ−1

1 λ−1
2 and so ζ1 + λ2 + ζ−1

1 λ−1
2 ∈ Z. As λ2

is also a 7−th root of unity, we have only seven possible values for
ζ1 +λ2 + ζ−1

1 λ−1
2 . Those values are only real if λ2 = 1 or λ2 = ζ−1

1 .
In either case we have

ζ1 + 1 + ζ−1 ≈ 2.247 /∈ Z

which disproves our assumption that there is an element of order
7. The only possible (and occurring) prime orders are 2 and 3.

(b) Let n,m ∈ M. Obviously we have 0 ∈ I which means 1 ∈ M.
Moreover nm− 1 = (n− 1)m+ (m− 1) ∈ I so nm ∈M. Thirdly
n−1 − 1 = n−1(1 − n) ∈ I so n−1 ∈ M which shows that M ≤ U
is a subgroup. With u ∈ U we have unu−1 − 1 = u(n− 1)u−1 ∈ I
hence unu−1 ∈M.

Alternatively we can consider the projection π : R� R/I. Since
π is a ring homomorphism, we have 1 = π(1) = π(n ·n−1) = π(n) ·
π−1(n). Thus π induces a group homomorphism on the according
groups of units:

π : R∗ = U −→ (R/I)∗

i.e. kerπ E U is a normal subgroup. But ker π = {u ∈ U |π(u) =
u+ I = 1 + I} = {u ∈ U |u− 1 ∈ I} = M.
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11. (HS-1) If a, b, c are real numbers such that a+b+c = 2 and ab+ac+bc =

1, show that 0 ≤ a, b, c ≤ 4

3
.

Reason: Discriminant.

Solution: We get the quadratic equation

ab+(a+b)(2−(a+b)) = −(b2+(a−2)b+(a2−2a)) = 1 or 0 = b2+(a−2)b+(a−1)2

from the given conditions, which must have a non-negative discriminant

(2− a)2 − 4(a− 1)2 = −3a2 + 4a ≥ 0 =⇒ 4a ≥ 3a2 ≥ 0

=⇒ 4

3
≥ a ≥ 0

which holds for symmetry reasons for b, c, too.

12. (HS-2) Determine all pairs (m,n) of (positive) natural numbers such
that 2022m − 2021n is a square.

Reason: Modular Arithmetics.

Solution: (1, 1) is obviously a solution. If m = 1 then n = 1 for
otherwise the sum would be negative and cannot be a square. Hence
we may assume m ≥ 2. As a consequence 4 | 2022m and

x2 := 2022m − 2021n ≡ −1 ≡ 3 mod 4

If x is even, then x2 ≡ 0 mod 4, and if x = 2k + 1 is odd, then
x2 = 4k2 + 4k + 1 ≡ 1 mod 4. The only possible solution is thus
(n,m) = (1, 1).

13. (HS-3)

(a) Prove for any n ∈ N, n ≥ 4

Q(n) :=
42 − 9

42 − 4
· 52 − 9

52 − 4
· . . . · n

2 − 9

n2 − 4
>

1

6
.

(b) Is the above statement still true, if we replace 1/6 on the right
hand side by 0.1667 ?

Reason: Inequality.

Solution:
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(a)

42 − 9

42 − 4
· 52 − 9

52 − 4
· . . . · n

2 − 9

n2 − 4

=
(4− 3)(4 + 3)

(4− 2)(4 + 2)
· (5− 3)(5 + 3)

(5− 2)(5 + 2)
· . . . · (n− 3)(n+ 3)

(n− 2)(n+ 2)

=
1 · 2 · · · (n− 3)

2 · 3 · · · (n− 2)
· 7 · 8 · · · (n+ 3)

6 · 7 · · · (n+ 2)

=
1

n− 2
· n+ 3

6
>

1

n
· n

6
=

1

6

(b) For any n > 25, 002 we get

0.0002n > 5.00040 =⇒ 1.0002(n− 2) > n+ 3 =⇒ n+ 3

n− 2
< 1.0002

=⇒ 1

n− 2
· n+ 3

6
< 0.1667

=⇒ 0.1667 > Q(25, 002) >
1

6

Alternatively consider the sequence Q(n) :=
n+ 3

6(n− 2)
. This se-

quence converges limn→∞Q(n) =
1

6
. Hence for any ε > 0, espe-

cially for ε = 0.1667 − (1/6), there are only finitely many excep-
tions n to∣∣∣∣Q(n)− 1

6

∣∣∣∣ < ε⇐⇒ 1

6
− ε < Q(n) <

1

6
+ ε = 0.1667

The answer is therefore ’no’. The lower limit cannot be improved.

14. (HS-4) Determine all pairs (x, y) ∈ R2 such that

5 =
√

1 + x+ y +
√

2 + x− y
2− x+ y =

√
18 + x− y

Reason: Quadratic Equations.

Solution: Set u := x+ y, v := x− y. Then the equations become

5 =
√

1 + u+
√

2 + v

2− v =
√

18 + v
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From the second equation we get 2− v ≥ 0 and v2 − 5v − 14 = 0, i.e.

v1,2 =
5

2
± 1

2

√
25 + 56 ∈ {−2, 7}

hence v = −2 since 2 − 7 < 0. Thus
√

1 + u = 5 −
√

2 + (−2) = 5
and u = 24. This means x = 11, y = 13 which also satisfy the initial
equation system.

15. (HS-5) Given a real, continuous function f : R −→ R such that
f(f(f(x))) = x. Prove that f(x) = x for all x ∈ R.

Reason: Functions.

Solution: f(x) is injective (into, one-to-one), i.e.

f(r) = f(s) =⇒ r = f(f(f(r))) = f(f(f(s))) = s

and monotone. Assume that given r < sr < t we have either

f(r) < f(s) , f(s) > f(t) or

f(r) > f(s) , f(s) < f(t)

then there would be a real number y ∈ R with

f(r) < y < f(s) ∧ f(s) > y > f(t) or

f(r) > y > f(s) ∧ f(s) < y < f(t)

and therefore also real numbers x, x′ ∈ R such that

r < x < s < x′ < t ∧ f(x) = f(x′) = y

by the meanvalue theorem for continuous functions. By the previous
part, it follows x = x′, a contradiction. f(x) is therefore strictly mono-
tone. Assume f(x) is strictly monotone decreasing, i.e. f(x) 6= x for
an x ∈ R, as f(x) = x would be strictly monotone increasing. W.l.o.g.
let

x < f(x) =⇒ f(x) > f(f(x))

=⇒ f(f(x)) < f(f(f(x))) = x

=⇒ f(f(f(x))) = x > f(x)

which is impossible. Hence f(x) is strictly monotone increasing and
one-to-one. Finally assume that f(x) 6= x for an x ∈ R and x < f(x) or
x > f(x). Then we apply f again twice and get x < f(x) < f(f(x)) <
f(f(f(x))) = x or x > f(x) > f(f(x)) > f(f(f(x))) = x which is
impossible. Therefore f(x) = x for all x ∈ R.
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5 February 2021

1. Let f be a real, differentiable function such that there is no x ∈ R with
f(x) = 0 = f ′(x). Show that f has at most finitely many zeros in the
interval [0, 1].

Reason: Nice Proof.

Solution: Set S := {x ∈ R | f(x) = 0} = [0, 1] ∩ f−1({0}). Then S is
a compact set. If S is infinite, then it has a limit point

S 3 x = lim
n→∞

xn

with a sequence (xn) ⊆ S of distinct points. Therefore f(xn) = f(x) =
0 for all n ∈ N. Now

f ′(x) = lim
xn→x

f(x+ (xn − x))− f(x)

xn − x
= lim

n→∞

f(xn)− f(x)

xn − x
= 0

which contradicts our assumption.

2. Let (X,Ω, ω) be a measure space and f be a ω−integrable function.
Show that for every ε > 0 there is a set W ∈ Ω such that ω(W ) < ∞
and

∫
X−W |f | dω < ε.

Reason: Measure Theory.

Solution: We define An := {x ∈ X | 1/n ≤ |f(x)| < n} for n ∈ N
and A1 ⊆ A2 ⊆ . . . =: A = ∪∞n=1An . All An = v−1([1/n, n]) with the
continuous function v(x) = |f(x)| are measurable. If we addA0 := {x ∈
X | f(x) = 0} and A∞ := {x ∈ X | |f(x)| =∞} then X = A0 ∪A∪A∞
is a disjoint union and∫

X

|f | dω =

∫
A0

|f | dω +

∫
A

|f | dω +

∫
A∞

|f | dω =

∫
A

|f | dω

so it is sufficient to find W ⊆ A.

With fn := |f | ◦ χAn we get a sequence of non-negative measurable
functions, which converge pointwise to |f |◦χA . As An ⊆ An+1, we have
0 ≤ f1(x) ≤ f2(x) ≤ . . . and by the monotone convergence theorem

lim
n→∞

∫
X

fn dω = lim
n→∞

∫
An

|f | dω =

∫
A

|f | dω =

∫
X

|f | dω .

Hence there is some N > 0 for which∫
X−AN

|f | dω < ε
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and since 1/N ≤ |f | < N on W := AN

ω(W ) ≤ N

∫
W

|f | dω ≤ N

∫
X

|f | dω <∞ .

3. Prove or find a counterexample to:

(a) L2 convergence implies pointwise convergence.

(b) lim
n→∞

∫ ∞
0

sinxn

xn
dx = 1

(c) Let (fn) be a sequence of measurable functions which converge
uniformly to zero on [0,∞). Then

lim
n→∞

∫
[0,∞)

fn(x) dx =

∫
[0,∞)

lim
n→∞

fn(x) dx .

Reason: Convergence.

Solution: False - True - False.

(a) For each k ∈ N and 1 ≤ i ≤ k we define with the characteristic
function χ(.) the functions fk,i := χ

([
i−1
k
, i
k

))
and the sequence

(gn) defined as

g1 = f1,1 ,

g2 = f2,1 , g3 = f2,2 ,

g4 = f3,1 , g5 = f3,2 , g6 = f3,3

g7 = f4,1 , . . .

Then
∫
|fk,i|2 dµ = 1/k for each 1 ≤ i ≤ k, i.e.

lim
k→∞
‖fk,i‖2 = lim

k→∞

1

k
= 0 =⇒ lim

n→∞
‖gn‖2 = 0

But (gn) does not converge pointwise:

For every N ∈ N and every x ∈ [0, 1] there is a pair (k, i) such
that gn(x) = fk,i(x) = 1 for all n ≥ N, and we can find a pair
(k′, i′) such that gn′(x) = fk′,i′(x) = 0 for all n′ ≥ N.

(b) sinϕ = ϕ− ϕ3

3!
+
ϕ5

5!
∓ . . . so for 0 < x < 1 we get lim

n→∞

sinxn

xn
= 1,

and for ϕ ≥ 0

| sinϕ| ≤
∫ ϕ

0

| cosx| dx ≤
∫ ϕ

0

1 dx = ϕ .
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For ϕ < 0 we have | sinϕ| = | sin(−ϕ)| ≤ −ϕ = |ϕ|.

In particular we have

∣∣∣∣sinxnxn

∣∣∣∣ ≤ 1 on (0, 1) and by the dominant

convergence theorem

lim
n→∞

∫ 1

0

sinxn

xn
dx =

∫ 1

0

lim
n→∞

sinxn

xn
dx =

∫ 1

0

1 dx = 1

Substitute u = xn and du = nxn−1dx = nu1− 1
ndx for∫ N

1

sinxn

xn
dx =

∫ Nn

1

sinu

u

du

nu1− 1
n

=
1

n

∫ Nn

1

sinu

u2− 1
n

du

Now for n ≥ 2∣∣∣∣∫ ∞
1

sinxn

xn
dx

∣∣∣∣ = lim
N→∞

1

n

∣∣∣∣∫ Nn

1

sinu

u2− 1
n

du

∣∣∣∣ ≤ lim
N→∞

1

n
u

1
n
−2 du

= lim
N→∞

1

n

u
1
n
−1

1
n
− 1

∣∣∣∣∣
Nn

1

=
1

1− n
(
N1−n − 1

)
=

1

n− 1

which implies

lim
n→∞

∫ ∞
1

sinxn

xn
dx = 0

and thus

lim
n→∞

∫ ∞
0

sinxn

xn
dx = lim

n→∞

∫ 1

0

sinxn

xn
dx+ lim

n→∞

∫ ∞
1

sinxn

xn
dx = 1+0 = 1

(c) The sequence fn = 1
n
χ([0, n) converges uniformly to zero, i.e.∫

lim fn = 0 . But
∫
fn = 1 for all n ∈ N, i.e. lim

∫
fn = 1 6= 0.

4. Let (an) be a sequence of positive real numbers such that the series
∞∑
n=1

an =: C <∞ converges. Show that
∞∑
n=1

(
n∏
k=1

ak

)1/n

≤ e · C.

Reason: Carleman’s inequality.

Solution: We denote the geometric and arithmetic means by

GM(a1, . . . , an) =

(
n∏
k=1

ak

)1/n

< AM(a1, . . . , an) =
a1 + . . .+ an

n
.
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We first show e ≥ (n+ 1)(n!)−1/n. From Stirling’s formula we get
√

2πnn+1/2e−n ≤ n!

n
√

2π · n
e
· 2n
√
n ≤ n

√
n!

1
n
√
n!
≤ 1

n
√

2π · 2n
√
n
· e
n

and (
1 +

1

n

)2n

≤ e2 ≤ n · 4π2

1 +
1

n
≤ n
√

2π · 2n
√
n

1

n · n
√

2π · 2n
√
n
≤ 1

n+ 1

Hence combining both we get

1
n
√
n!
≤ e

n+ 1
.

With the notation above we have

GM(a1, . . . , an) = GM(a1, 2a2, . . . , nan)(n!)−1/n

≤ AM(a1, 2a2, . . . , nan)(n!)−1/n

≤ e

n(n+ 1)

n∑
k=1

kak

Thus
∞∑
n=1

GM(a1, . . . , an) ≤ e
∞∑
k=1

(
∞∑
n=k

k

n(n+ 1)

)
︸ ︷︷ ︸

(∗)
= 1

ak = e

∞∑
k=1

ak = e · C

If the inequality wasn’t a strict one, then

GM(a1, 2a2, . . . , nan) = AM(a1, 2a2, . . . , nan) =⇒ ak =
a1

k

but the harmonic series is divergent.

(∗)
m∑
n=k

k

n(n+ 1)
=

m∑
n=1

k

n(n+ 1)
−

k−1∑
n=1

k

n(n+ 1)

= k ·
(

m

m+ 1
− k − 1

k

)
= 1− k

m+ 1

m→∞−→ 1

69



https://www.physicsforums.com/ 01/21-06/21

5. Let (E, T ) be a normal Hausdorff space, and U1, . . . , Un a finite open
covering of E. Then there are continuous functions g1, . . . , gn : (E, T ) −→
[0, 1] such that g1 + . . . + gn = 1 on E and gj(E − Uj) = {0} for all
1 ≤ j ≤ n.

Reason: Important Topological Result: Partition of Unity.

Solution: We first show that there are n closed subsets F1, . . . , Fn ⊆
E, such that Fj ⊆ Uj for all 1 ≤ j ≤ n and F1 ∪ . . . ∪ Fn = E.

The set G1 := E − (U2 ∪ . . . ∪ Un) ⊆ U1 is closed, and we can find an
open set V1 such that G1 ⊆ V1 ⊆ V 1 ⊆ U1 where V1 ∪ U2 . . . ∪ Un = E
is still a finite open covering. Now we proceed by setting G2 :=
E − (V1 ∪ U3 . . . ∪ Un) ⊆ U2 which is closed, i.e. again we find an open
set V2 such that G2 ⊆ V2 ⊆ V 2 ⊆ U2 where V1 ∪ V2 ∪ U3 . . . ∪ Un = E
is still a finite open covering. Iteration up to n yields the closed sets
F1 := V 1, . . . , Fn := V n, such that E = V1 ∪ . . . ∪ Vn is still a finite
open covering with Fj ⊆ Uj for all 1 ≤ j ≤ n.

Since Fj and E − Uj are disjoint closed sets, we may apply Urysohn’s
lemma and find continuous functions fj : E −→ [0, 1] such that fj = 1
on Fj and fj = 0 on E − Uj for all 1 ≤ j ≤ n. We finally define
g1 := f1 , g2 := f2 · (1 − f1) , . . . , gn := fn · (1 − fn−1) · . . . · (1 − f1).
With these functions we get gj(E − Uj) = {0} for all 1 ≤ j ≤ n and
1− (g1 + . . .+ gj) = (1− f1) · . . . · (1− fj). The case j = n finishes the
proof, since the Aj are a (closed) covering of E.

6. Let (X,Ω, ω) be a measure space and 1 ≤ p <∞. Show that

(a) L̃p := Lp(X,Ω, ω) is a Banach space with respect to ‖ · ‖p .
(b) The sequence (‖fn‖p) ⊆ R is bounded for every Cauchy sequence

(fn) ⊆ Lp(X,Ω, ω).

Reason: Functional Analysis.

Solution:

(a) Let (fn)n∈N ⊆ L̃p be a Cauchy sequence, i.e. for every ε > 0 there
is a Nε such that ‖fn − fm‖p < ε for all n,m ≥ Nε. Thus we have
a subsequence (fnk)k∈N ⊆ (fn)n∈N such that ‖fnk−fm‖p < 2−k for
all m ≥ nk. If we define gk := fnk − fnk+1

, then∥∥∥∥∥
n∑
k=1

|gk|

∥∥∥∥∥
p

≤
n∑
k=1

‖gk‖p ≤
n∑
k=1

1

2k
< 1

70



https://www.physicsforums.com/ 01/21-06/21

for all 1 ≤ n < ∞, so the sequence of partial sums is convergent
if it is bounded by the theorem of monotone convergence:∥∥∥∥∥

∞∑
k=1

|gk|

∥∥∥∥∥
p

≤ lim
n→∞

n∑
k=1

‖gk‖p ≤
∞∑
k=1

1

2k
= 1.

Hence the sequence (
∑n

k=1 gk)n∈N converges ω−almost everywhere
(a.e.) absolutely, and fn1 − fnk =

∑nk−1

j=1 gj converges ω−a.e. for
k →∞. So fnk = fn1 +

∑nk−1

j=1 gj converges ω−a.e. for k →∞ to
a function f = fn1 +

∑∞
j=1 gj. We have thus found a convergent

subsequence and it remains to show that f ∈ L̃p, i.e. ‖f‖p < ∞,
and limn→∞ ‖fn − f‖p = 0.

For ε > 0 we choose Nε ∈ N such that ‖fnk − fm‖p < ε for all
nk,m ≥ Nε and apply Fatou’s Lemma on the sequence (|fnk −
fm|p)k∈N and get for all m ≥ Nε∫
|f−fm|pdω =

∫
lim inf
k→∞

|fnk−fm|pdω = lim inf
k→∞

∫
|fnk−fm|pdω ≤ εp

hence limm→∞ ‖fm−f‖p = 0 and ‖f‖p ≤ ‖f−fn1‖p+‖fn1‖p <∞,
i.e. f ∈ L̃p.

(b) This follows immediately from the previous part, since there is
a N0 ∈ N such that ‖fn − f‖p ≤ C < ∞ for all n ≥ N0 and
‖fn‖p ≤ ‖fn − f‖p + ‖f‖p ≤ C + ‖f‖p <∞.

7. We know that there are only two sets in (R, | · |), which are open and
closed, the empty set and the entire topological space. Prove it.

Reason: Open And Closed Sets.

Solution: Let ∅ 6= M ( R be open and closed, and x ∈ R−M, y ∈M.
W.l.o.g. we may assume that x > y. Then x is an upper bound of

N := {z ∈ R | [y, z] ⊆M}

and the real number s := supN exists. Then s − 1/n is no upper
bound for all n ∈ N and we can find numbers zn ∈ N such that
s − 1/n < zn ≤ s, i.e. limn→∞ zn = s. Since N ⊆ M we have zn ∈ M,
and since M is closed, s ∈ M. Now M is open as well, so there is a
r > 0 such that

[s− r, s+ r] ⊆M.

From zn ∈ N, i.e. [y, zn] ⊆M, and limn→∞ zn = s we get [y, s+r] ⊆M,
i.e. s+ r ∈ N. However, s is an upper bound of N and there cannot be

71



https://www.physicsforums.com/ 01/21-06/21

an element greater than s in N. This means that one of our assumptions
was wrong and either M = ∅ or R−M = ∅.

8. Let (V, α) and (W,β) be irreducible representations of an associative,
complex algebra A. Assume that V and W are complex and of count-
able dimension. Then

dim HomA(V,W ) =

{
1 if (V, α) ∼= (W,β)

0 otherwise

Reason: Schur’s Lemma.

Solution: Given a A−homomorphism ϕ : V −→ W kernel and range
are invariant subspaces of V,W, resp. If ϕ 6= 0 then kerϕ 6= V and
rangeϕ 6= {0}. By irreducibility we get kerϕ = {0} and rangeϕ = V,
which means that ϕ is a linear isomorphism. Hence HomA(V,W ) 6= {0}
if and only if (V, α) ∼= (W,β).

Next we have to show that HomA(V,W ) is one dimensional in case
the representations are equivalent, which means that the only possi-
ble homomorphism is a multiple of the identity operator. Let ϕ, ψ ∈
HomA(V,W ) − {0} and ρ := ψ−1ϕ ∈ EndA(V ). Assume further that
ρ /∈ C · IdV . This means that ρ−λI is non zero for any λ ∈ C and thus
invertible. We will show that the set

{(ρ− λkI)−1(v) | 1 ≤ k ≤ m}

is linear independent for any v ∈ V −{0} and pairwise distinct complex
numbers λ1, . . . , λm, which contradicts the countable dimensionality of
V.

Let
m∑
k=1

ck(ρ− λkI)−1(v) = 0 and f(x) :=
m∑
k=1

ck
∏
l 6=k

(x− λlI)

Then

f(ρ)(v) =
m∑
k=1

ck
∏
l 6=k

(ρ−λlI)(v) =
m∏
l=1

(ρ−λlI) ·
m∑
k=1

ck(ρ−λk)−1(v) = 0

Now f(λj) = cj
∏

l 6=j(λj−λl). If cj 6= 0, then f(x) is a nonzero polyno-
mial and has a factorization f(x) = c(x− z1) . . . (x− zm−1) with c 6= 0
and zi ∈ C. We know that all ρ − ziI are invertible and so is f(ρ),
in which case f(ρ)(v) cannot be zero for v 6= 0. Hence cj = 0 for all
1 ≤ j ≤ m.

72



https://www.physicsforums.com/ 01/21-06/21

9. Let U ⊆ C be an open connected neighborhood and f : U −→ C a
holomorphic function. If |f | has a local maximum in z0 ∈ U, i.e. there
is an open neighborhood z0 ∈ U0 ⊆ U with |f(z0)| ≥ |f(z)| for all
z ∈ U0, then f is constant.

Reason: Maximum Principle.

Solution: Since f is holomorphic, we can write

f(z) =
∞∑
n=0

an(z − z0)n

f as a power series in a neighborhood of z0 (Cauchy-Taylor). Assume
s is its radius of convergence and 0 < r < s. Note that for m,n ∈ N0∫ 2π

0

eit(n−m) dt =

{
0 if m 6= n

2π if m = n

so uniform convergence and f(z0 + reit) =
∑

n∈N0
anr

neitn yields∫ 2π

0

f(z0 + reit)e−itm dt =
∑
n∈N0

anr
n

∫ 2π

0

eit(n−m) dt = 2πamr
m

From

|f(z0 + reit)|2 = f(z0 + reit)f(z0 + reit) =
∑
n∈N0

anr
nf(z0 + reit)e−itn

we get (again with uniform convergence) the Gutzmersche formula∫ 2π

0

|f(z0 + reit)|2 dt =
∞∑
n=0

anr
n

∫ 2π

0

f(z0 + reit)e−itn dt

= 2π
∞∑
n=0

|an|2r2n

≤ 2π(max{|f(z)| : |z − z0| = r})2

From |f(z0)| ≥ |f(z)| we get for small r > 0

(max{|f(z)| : |z − z0| = r})2 +
∞∑
n=1

|an|2r2n ≤ |a0|2 +
∞∑
n=1

|an|2r2n

≤ (max{|f(z)| : |z − z0| = r})2

=⇒
an = 0 (n ≥ 1) ∧ f(z) = a0 (|z − z0| < r)
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This means that the set {z ∈ U : f(z) = g(z)} with g(z) := a0 has
a limit point in U. Since U is connected we can apply the identity
theorem (∗) and conclude

f(z) ≡ g(z) ≡ a0 (z ∈ U)

Proof of the identity theorem (∗):

Let z1 be a limit point of the coincidence set V := {z ∈ U : f(z) =
g(z)}. For the sake of simplicity in notation we choose z1 = 0. Now
assume that there is a natural number n ∈ N0 such that f (n)(0) 6=
g(n)(0) and that n is the smallest among them. Then we have in a
neighborhood of z = 0

f(z)− g(z) = zn
∞∑
k=0

f (n+k)(0)− g(n+k)(0)

(n+ k)!
zk︸ ︷︷ ︸

=:h(z)

and V = {z : h(z) = 0} since h is continuous. In particular we have

0 = h(0) =
f (n) − g(n)

n!
contradicting minimality and choice of n. This

means that f (n)(z1) = g(n)(z1) for all n ∈ N0 .

Because U is connected, it is sufficient to show that

A := {z ∈ U : f (n)(z) = g(n)(z)∀n ∈ N0 }

is nonempty, open and closed in U, in order to conclude f = g on U.
With z1 ∈ A we have A 6= ∅ and by

An := {z ∈ U : f (n)(z) = g(n)(z) } = (f (n) − g(n))−1({0})

we see that A = ∩n∈N0An is closed. If z ∈ A then the holomorphic
function f − g is identical to its Taylor series in a neighborhood of z
(Cauchy-Taylor), i.e. identical zero. However, this neighborhood is
part of A, hence A is also open.

10. Show that all groups G of order pqr with pairwise distinct primes
p < q < r are solvable.

Reason: Groups of Order pqr.

Solution: The number of r−Sylow-subgroups of G is congruent 1 mod-
ulo r and a divisor of pq according to the Sylow theorems, i.e. it equals
either 1 or pq. If there is only one r−Sylow-subgroup H of G, then H is
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a normal subgroup of prime order, thus cyclic and solvable. But G/H
is a group of order pq, which are solvable as well (see problem no. 10
from Dec. 2018). Thus G is solvable.

Now we assume that there are pq many r−Sylow-subgroups of G.
The number of elements in an intersection of two different r−Sylow-
subgroups is a proper divisor of the prime r, hence 1. Every nontrivial
element of a r−Sylow-subgroup is of order r, and all elements of order r
in G are contained in one r−Sylow-subgroup. Thus G contains exactly
pq(r− 1) elements of order r. The number m of q−Sylow-subgroups of
G is congruent 1 modulo q and a divisor of pr. The only possibilities
are 1, r, pr, since 1 < p < q < r. (1 < p = m · q + 1 < q =⇒ m = 0  )

If m = 1 then this q−Sylow-subgroup H is normal, of prime order q,
hence cyclic and thus solvable, and as |G/H| = pr, G/H is solvable
as well (see problem no. 10 from Dec. 2018), hence G is solvable. If
m ∈ {r, pr} then there are exactly r(q − 1), or pr(q − 1) resp. many
elements of order q according to the same argument as above. Now we
have pq(r− 1) elements of order r and at least r(q− 1) many elements
of order q, i.e.

|G| = pqr ≥ pq(r−1)+r(q−1) ≥ pq(r−1)+rp = pqr+p(r−q) > pqr

which is not possible. So the cases m ∈ {r, pr} do not exist and G is
solvable.

11. (HS-1) Let z be a natural number with 1995 decimal digits and 1 ≤
n ≤ 1994. Then we note the number, which we get by cutting off the
first n digits and append them in the same order at the end of z by
z[n]. Show that if z is divisible by 27, then all z[n] are divisible by 27,
too.

Reason: Puzzle with 1995.

Solution: It is sufficient to show the statement for n = 1, because if
it is true for n = 1 we can repeat the process as long as we need for
any 1 ≤ n ≤ 1994. Let a be the first digit of z, i.e. z = 101994 + b and
z[1] = 10b+ a for some b ∈ N.

10z − z[1] = a · (101995 − 1) = a · (1000665 − 1)

From 1000 = 37 · 27 + 1 we get 1000665 ≡ 1665 ≡ 1 mod 27. Hence
27 | (10z − z[1]) and if 27 | z then 27 | z[1] = 10z − (10z − z[1]).
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12. (HS-2) Let a, b, c, d be positive real numbers. Prove (in the logically
correct order)

1
1

a
+

1

b

+
1

1

c
+

1

d

≤ 1
1

a+ c
+

1

b+ d

Reason: Inequality.

Solution:

0 ≤ (ad− bc)2

2abcd ≤ a2d2 + b2c2
∥∥

+ab(c2+d2)+cd(a2+2ab+b2)

ab(c+ d)2 + cd(a+ b)2 ≤ (ad+ bc)(ac+ ad+ bc+ bd)‖+(ab+cd)(a+b)(c+d)

ab(c+ d)(a+ b+ c+ d) + cd(a+ b)(a+ b+ c+ d)

≤ (a+ c)(b+ d)(a+ b)(c+ d)‖:[(a+b)(c+d)(a+b+c+d)]

ab

a+ b
+

cd

c+ d
≤ (a+ c)(b+ d)

a+ b+ c+ d
1

1

a
+

1

b

+
1

1

c
+

1

d

≤ 1
1

a+ c
+

1

b+ d

13. (HS-3) Let m ≥ 2 be a given natural number. We define a sequence
(x0, x1, x2, . . .) of numbers by x0 = 0, x1 = 1, and for n ≥ 0 we set xn+2

to be the remainder of xn+1 + xn by division by m, chosen such that
0 ≤ xn+2 < m. Decide whether for every m ≥ 2 there exists a natural
number k ≥ 1, such that xk+2 = 1 , xk+1 = 1 , xk = 0.

Reason: Sequence.

Solution: There are at most m3 possible triplets (xj, xj+1, xj+2)j∈N ∈
{0, 1, . . . ,m − 1}3 so there have to be repetitions. Hence there are
j ≥ 0, k ≥ 1 with

xj = xk+j , xj+1 = xk+j+1 , xj+2 = xk+j+2

Assume j > 0. Per construction we know that xj+1 ≡ xj+xj−1 mod m
and xk+j+1 ≡ xk+j + xk+j−1 mod m, hence subtraction yields

xj+1−xk+j+1 = 0 = xj+xj−1−xk+j−xk+j−1 ≡ xj−1−xk+j−1 mod m =⇒ m | (xj−1−xk+j−1)

which is only possible if xj−1 = xk+j−1 for number between 0 and m−1.
We can repeat this argument until

0 = x0 = xk , 1 = x1 = xk+1 , 1 = x2 = xk+2
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14. (HS-4) We define real functions

fn(x) := x3 + (n+ 3) · x2 + 2n · x− n

n+ 1

for every non-negative integer n ≥ 0. Determine all values of n, such
that all zeros of fn(x) are contained in an interval of length 3.

Reason: Polynomial.

Solution: For n = 0 we have f0(x) = x3 + 3x2 = x2(x − (−3)) with
the zeros 0,−3 ∈ [−3, 0]. Now assume n > 0. Here we have

fn(−n− 3) = 2n(−n− 3)− n

n+ 1
= −2n2 − 6n− n

n+ 1
< 0

fn(−2) = −8 + 4(n+ 3)− 4n− n

+n+ 1
= 4− n

n+ 1
> 0

fn(0) = − n

n+ 1
< 0

fn(1) = 1 + (n+ 3) + 2n− n

n+ 1
= 3n+ 4− n

n+ 1
> 0

hence all fn have three pairwise distinct real zeros, say a < b < c.
Vieta’s formulas are thus

a+ b+ c = −(n+ 3) , ab+ ac+ bc = 2n , abc =
n

n+ 1

Now

(c− a)2 = (a+ b+ c)2 − 3(ab+ ac+ bc) + (c− b)(b− a)︸ ︷︷ ︸
>0

> (n+ 3)2 − 6n = n2 + 9 > 9 =⇒ c− a > 3

Thus we have only for n = 0 that all zeros of f0 are within a distance
of three, whereas they are further apart for all other fn (n ≥ 1).

15. (HS-5)

(a) Determine the number of all pairs of integers (x, y) ∈ N2
0 with√

x+
√
y = 1993.

(b) Determine for every n ∈ N the greatest power of 2 which divides
[(4 +

√
18)n].

Reason: Calculus.

Solution:

77



https://www.physicsforums.com/ 01/21-06/21

(a) From
√
x+
√
y = 1993 we get

y = (1993−
√
x)2 = 19932 − 3986

√
x+ x

√
x =

19932 + x− y
3986

∈ Q

x =
(u
v

)2

for some u, v ∈ N0

u2 = v2 · x

Because u2, v2 have an even number of primes, so does x, i.e.
x = a2 for some a ∈ N0 . For the same reason is y = b2 for some
b ∈ N0 , hence combined: a+ b = 1993.

On the other hand are any two integers a, b ≥ 0 for which a+ b =
1993 holds, a solution to

√
x+
√
y = 1993 with x = a2, y = b2.

Thus we have shown that there are as many integer solutions as
there are pairs (a, b), which are the following

(0, 1993) , (1, 1992) , . . . , (1993, 0)

1994 possible pairs.

(b) For the sequences (an)n∈N0 , (bn)n∈N0 , (cn)n∈N0 defined by

an := (4 +
√

18)n , bn := (4−
√

18)n , cn := an + bn ∈ Z

we have the following recursions

an+2 = an(4 +
√

18)2 = an(34 + 8
√

18)

= 2an(4(4 +
√

18) + 1) = 2 · (4an+1 + an)

bn+2 = bn(4−
√

18)2 = bn(34− 8
√

18)

= 2bn(4(4−
√

18) + 1) = 2 · (4bn+1 + bn)

cn+2 = 2 · (4cn+1 + cn) ∈ Z

with c0 = 2 , c1 = 8. Next we prove that for all integers cn holds:

S(k) :=

{
2k+1 | c2k ∧ 2k+2 - c2k

2k+3 | c2k+1 ∧ 2k+4 - c2k+1

We know already that S(0) is true. Now assume S(k) is also true.
Then there are odd integers s, t such that c2k = s · 2k+1 , c2k+1 =
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t · 2k+3. Thus

c2k+2 = 2 · (4c2k+1 + c2k) = 2 · (4(t · 2k+3) + (s · 2k+1))

= t · 2k+6 + s · 2k+2 ≡

{
0 mod 2(k+1)+1

1 mod 2(k+1)+2

c2k+3 = 2 · (4c2k+2 + c2k+1)

= 2 · (4(t · 2k+6 + s · 2k+2) + t · 2k+3)

= t · (2k+9 + 2k+5) + s · 2k+4

≡

{
0 mod 2(k+1)+3

1 mod 2(k+1)+4

which proves S(k+1) and the truth of the statement by induction.

4 <
√

18 < 5

=⇒ −1 < 4−
√

18 < 0

=⇒

{
0 < bn < 1 for n = 2k

−1 < bn < 0 for n = 2k + 1

=⇒

{
an < cn < an + 1 for n = 2k

an − 1 < cn < an for n = 2k + 1

=⇒

{
cn − 1 < an < cn for n = 2k

cn < an < cn + 1 for n = 2k + 1

=⇒

{
[an] = cn − 1 for n = 2k

[an] = cn for n = 2k + 1

The greatest power of 2 which divides [an] = [(4 +
√

18)n] is thus
for even n according to S(2k) the number 0, because an is odd,
and for odd n according to S(2k+ 1) the number 2k+3 = 2(n+5)/2.
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6 January 2021

1. Let A ∈ Mm,n(R) and b ∈ Rm. Then exactly one of the following two
statements is true:

• Ax = b , x ≥ 0 , is solvable for a x ∈ Rn.
• Aτy ≤ 0 , bτy > 0 , is solvable for some y ∈ Rm.

The ordering is meant componentwise.

Reason: Farkas Lemma.

Solution:

Both statements cannot be simultaneously true, as

0 < yτb = yτ (Ax) = (yτA)x = (Aτy)τx ≤ 0

The statement can be proven with the strict separation theorem:

Let K ⊆ Rn be convex, nonempty, closed, and x /∈ K. Then there is a
hyperplane H = {y ∈ Rn | aτy = γ} with a ∈ Rn − {0} , γ ∈ R, which
separates x and K, i.e. aτz ≤ γ < aτx for all z ∈ K. Moreover if K is
additionally a cone, then we may choose γ = 0.

or the strong duality theorem:

Let z = cτx −→ min ! with Ax = b , x ≥ 0 for c, x ∈ Rn. the primal
optimization problem, and z̃ := bτy −→ max ! with Aτy ≤ c for c ∈
Rn , y ∈ Rm its dual problem.

The primal problem has a finite optimal solution if and only if its dual
problem has a finite optimal solution, in which case zmin = z̃max .

(a) (strict separation theorem)

Assume that the first statement is false. Then b /∈ K := {Ax |x ∈
Rn, x ≥ 0}, which is a convex, polyhedral, closed cone. Thus we
can separate b and K, i.e. there is a vector y ∈ Rm − {0} such
that

yτAx ≤ 0 < yτb

If we choose subsequently all unit vectors x = (0, . . . , 0, 1, 0, . . . , 0)
then Aτy ≤ 0 which had to be shown.

(b) (strong duality theorem)

Set M := {x ∈ Rn |Ax = b, x ≥ 0}. The statement can thus be

80



https://www.physicsforums.com/ 01/21-06/21

rephrased by

M 6= ∅ ⇐⇒ ∀ y ∈ Rm (Aτy ≤ 0 =⇒ bτy ≤ 0)

”=⇒”:

If M 6= ∅ then there is a solution x∗ ∈M to the primal problem

cτx (x ∈M) −→ min ! (P )

with c = 0. This means by the strict duality theorem, that the
dual problem

bτy (y ∈ N := {y ∈ Rm |Aτy ≤ c = 0}) −→ max ! (D)

has a solution y∗ ∈ N, too, since 0 ∈ N, i.e. N 6= ∅. Moreover
min(P ) = max(D) and so for all y ∈ Rm with Aτy ≤ 0

bτy ≤ bτy∗ = max(D) = min(P ) = 0τx∗ = 0

”⇐=”:

We consider again the dual problem (D), which is feasible since
0 ∈ N and bτy ≤ 0 for all y ∈ N.Hence sup(D) <∞ .Assume that
M = ∅. By the strong duality theorem we then had sup(D) =∞ ,
a contradiction, so M cannot be empty.

2. Prove π = lim
n→∞

2n

√√√√
2−

√
2 +

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

n square roots

.

Reason: Viète’s formula.

Solution: We first prove that

sinx = 2n sin
x

2n

(
n∏
k=1

cos
x

2k

)

This is a simple induction on n. For n = 1 we have the known formula
for half angles

sinx = 2 sin
x

2
cos

x

2
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and the induction step is

2n+1 sin
x

2n+1

(
n+1∏
k=1

cos
x

2k

)

= 2 · 2n sin

(
1

2
· x

2n

)
cos

(
1

2
· x

2n

)( n∏
k=1

cos
x

2k

)

= 2n sin
x

2n

(
n∏
k=1

cos
x

2k

)
= sinx

From the Taylor expansion of the exponential formula and Euler’s for-
mula eix = cosx+i sinx we get the series expansion of the sine function

sinx = x− x3

3!
± . . . which shows that

sinx = lim
n→∞

sinx = lim
n→∞

(
2n sin

x

2n

)
· lim
n→∞

n∏
k=1

cos
x

2k
= x ·

∞∏
k=1

cos
x

2k

For x = π/2 we get the formula

2

π
=
∞∏
k=1

cos
π

2k+1

or

π = 2 ·
∞∏
k=1

(
cos

π

2k+1

)−1

The half angle formula for the cosine function is

cos(2x) = cos2 x− sin2 x = 1− 2 sin2 x = 2 cos2 x− 1

=⇒ cos
x

2
=

√
1

2
+

1

2
· cosx =⇒

(
cos

x

2

)−1

=

√
2

1 + cos x

Set a0 = 0 , an =

√
1

2
+

1

2
· an−1 , 2a2

n = 1 + an−1 (n ≥ 1). We show

n∏
k=1

1

ak
= 2n

√
1− a2

n
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which is true for n = 0, 1.

n+1∏
k=1

1

ak
= 2n

√
1− a2

n ·
1

an+1

= 2n
√

1− a2
n ·
√

2

1 + an

= 2n
√

2(1− an) = 2n+1

√
1−

(
1

2
+

1

2
an

)
= 2n+1

√
1− a2

n+1

Note that cos
π

2n+1
= an since

a0 = 0 = cos
π

2

a1 =

√
1

2
= cos

π

4

an+1 =

√
1

2
+

1

2
· an =

√
1

2
+

1

2
· cos

π

2n+1
= cos

π

2n+2

which combines to

π = 2 ·
∞∏
k=1

(
cos

π

2k+1

)−1

= 2 lim
n→∞

n∏
k=1

(
cos

π

2k+1

)−1

= lim
n→∞

2n+1
√

1− a2
n

= lim
n→∞

2n
√

4− (2 + 2an−1) = lim
n→∞

2n
√

2− 2an−1

= lim
n→∞

2n
√

2−
√

2 + 2an−2 = . . .

= lim
n→∞

2n

√
2−

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

n square roots

3. Let z(t) be a non-negative continuous real function on the interval [a, b]
and t0 ∈ [a, b]. Prove that if

z(t) ≤ C + L

∣∣∣∣∫ t

t0

z(s) ds

∣∣∣∣ (∗)

for all t ∈ [a, b] with any constants C,L ≥ 0, then

z(t) ≤ CeL|t−t0| (∗∗)
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for all t ∈ [a, b].

Reason: Grönwall-Lemma.

Solution: The Grönwall-Lemma is often stated for t0 = a in which
case all absolute values can be omitted as t ≥ t0 = a.

W.l.o.g. we assume C > 0. Indeed, if C = 0, then the condition (∗)
holds for any positive C > 0 as well. Now if this implies (∗∗), then

z(t) ≤ lim
C↘0

CeL|t−t0| = 0

We define the function F on [t0, b] by

F (t) := C + L

∫ t

t0

z(s) ds

which is strictly positive and differentiable with F ′ = L · z. Condition
(∗) means z ≤ F for t ∈ [t0, b] and so

F ′ = Lz ≤ LF =⇒ F ′

F
≤ L

=⇒ log
F (t)

F (t0)
=

∫ t

t0

F ′(s)

F (s)
ds ≤

∫ t

t0

Lds = L(t− t0)

=⇒ z(t) ≤ F (t) ≤ F (t0)eL(t−t0) = CeL(t−t0)

Since z ≤ F we get the inequality (∗∗) for all t ∈ [t0, b].

We consider the function

G(t) = C + L

∫ t0

t

z(s) ds

for the interval [a, t0]. which is also positive and differentiable with
G′ = −Lz and z ≤ G by (∗), so G′ ≥ −LG. Hence

log
G(t0)

G(t)
=

∫ t0

t

G′(s)

G(s)
ds ≥ −

∫ t0

t

Lds = −L(t0 − t) = −L|t− t0|

=⇒ z(t) ≤ G(t) ≤ G(t0)eL|t−t0| = CeL|t−t0|

4. Solve the partial differential equation

u : D −→ R , D ⊆ R3

xux + yuy + (x2 + y2)uz = 0

u(1, 0, 0) = 0 , ux(1, 0, 1) = 0

uy(−1, 1, (π + 2)/2) = 1 , uz(−1, 1, (π + 2)/2) = −1
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Reason: Differential Equation. PDE.

Solution: The characteristic system of this PDE is

ẋ = x , ẏ = y , ż = x2 + y2

with the general (characteristic) solutions

x(t) = αet , y(t) = βet , z(t) =
1

2

(
α2 + β2

)
e2t + γ

The solution of the equation is thus

u(x(t), y(t), z(t)) = u

(
αet, βet,

1

2

(
α2 + β2

)
e2t + γ

)
= constant.

For the characteristic flows we have the relations:

et =
x(t)

α
=
y(t)

β
=⇒ y(t)

x(t)
=
α

β
=: a ∈ R

z(t) =
1

2

(
x2 + y2

)
+ γ =⇒ z(t)− 1

2
/(x(t)2 + y(t)2) =: b ∈ R

i.e. the two constants a, b alone define the value of u along the charac-
teristic flows. The representation of the solution is thus

u(x, y, z) = Φ

(
y

x
, z − 1

2
(x2 + y2)

)
for any differentiable function Φ : R2 −→ R.

This means we have infinitely many possible solutions and the ini-
tial values are useless. Those initial values given here correspond to
Φ(a, b) = a2 sin(b), but this is not a unique solution.

5. Let A ∈M(n,R) be a real square matrix and x : R −→ Rn a parame-
terized path. Prove that there exists a unique solution of the differential
equation ẋ(t) = Ax(t) for any initial condition x(t0) = x0.

Reason: Differential Equation. Matrix.

Solution: We first show that x(t) := eA(t−t0)x0 is a solution which
proves the existence part.

x(t0) = e0x0 =
∞∑
k=0

0kx0
tk

k!
= 1 · x0 = x0

ẋ(t) =
d

dt
x(t) =

∞∑
k=0

d

dt
Akx0

(t− t0)k

k!
=
∞∑
k=1

Akx0 · k ·
(t− t0)k−1

k!

= A

∞∑
m=0

Amx0
(t− t0)m

m!
= AeA(t−t0)x0 = Ax(t)
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We next show that (
eAt
)−1

= e−At

y(t) = e−Aty0 is a solution to ẏ(t) = −Ay(t) for y0 = y(0) and z(t) =
eAtz0 is a solution to ż(t) = −Az(t) for z0 = z(0) as we just saw.
Therefore

d

dt

(
e−AteAtx0

)
=

(
d

dt
e−At

)
eAtx0 + e−At

(
d

dt
eAt
)
x0

= −A · e−At · eAtx0 + e−At · A · eAtx0 = 0

by the Leibniz rule and because Aep(A) = ep(A)A for any polynomial
p(s) ∈ R[s]. Thus e−AteAtx0 is constant in t, i.e. we have for all t ∈
R, x0 ∈ Rn

e−AteAtx0 = e−A·0eA·0x0 = x0 and thus
(
eAt
)−1

= e−At

Let y(t) be another solution of the differential equation, i.e. ẏ(t) =
Ay(t) , y(t0) = x0. Then

d

dt

(
e−A(t−t0)y(t)

)
=

(
d

dt
e−A(t−t0)

)
y(t) + e−A(t−t0) d

dt
y(t)

= −Ae−A(t−t0)y(t) + e−A(t−t0)Ay(t) = 0

Hence e−A(t−t0)y(t) is constant in t and thus

e−A(t−t0)y(t) = e−A(t0−t0)y(t0) = 1x0 = x0 =⇒ y(t) = eA(t−t0)x0 = x(t)

An important consequence is the following Corollary:

The matrix exponential function tA 7−→ eAt is the unique solution of
the matrix differential equation

Ẋ(t) = AX(t) , X(0) = 1M(n,R) , X : R −→ Rn×n

6. Calculate

(a)

∫ ∞
−∞

x2

x4 + 2x2 + 1
dx

(b)

∫ π
2

0

1

1 + sin2 t
dt

Reason: Function Theory.

Solution:
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(a) Let R(z) =
P (z)

Q(z)
with P (z) = z2 and

Q(z) = z4 + 2z2 + 1 = (z2 + 1)2 = (z + i)2(z − i)2

There are no zeros on the real axis and the degree of the de-
nominator polynomial is larger than the degree of the numerator
polynomial, so the integral exists.

We want to apply the residue theorem and choose as closed curve
the interval I(r) = [−r, r] and the upper half circle C(r) around
0 with radius r > 1 in the complex number plane to surround the
zero at z = i. Hence we get from the residue theorem∫

I(r)

R(z) dz +

∫
C(r)

R(z) dz = 2πiResi(R(z))

Since |R(z)| ≤M · |z|−2 for large values of |z|, we have∣∣∣∣∫
C(r)

R(z) dz

∣∣∣∣ ≤ πr ·Mr−2 = Mπr−1 r→∞−→ 0

and with a singularity of order two at z = i∫ ∞
−∞

R(z) dz = lim
r→∞

∫
I(r)

R(z) dz

= 2πiResi(R(z))− lim
r→∞

∫
C(r)

R(z) dz

= 2πiResi(R(z))

= 2πi · 1

(2− 1)!
lim
z→i

d

dz

[
(z − i)2R(z)

]
= 2πi lim

z→i

d

dz

z2

(z + i)2

= 2πi lim
z→i

2z(z + i)2 − z2(2z + 2i)

(z + i)4

=
π

2

where we calculated the residue from the formula

Resa f =
1

(n− 1)!
lim
z→a

dn−1

dzn−1
[(z − a)nf(z)]

for a n-th order singularity of f at a.
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(b) With γ(t) = eit we have∫ π
2

0

1

1 + sin2 t
dt =

1

4

∫ 2π

0

1

1 + sin2 t
dt

=
1

4

∫ 2π

0

(
1− 1

4

(
eit − e−it

)2
)−1

dt

=
1

4

∫
γ

(
1− 1

4
(z2 − 2 + z−2)

)−1
1

iz
dz

=
1

4

∫
γ

4z

6iz2 − iz4 − i
dz

= i

∫
γ

z

z4 − 6z2 + 1︸ ︷︷ ︸
=:z/P (z)

dz

P (z) =

z −√3 + 2
√

2︸ ︷︷ ︸
/∈B0(1)


z −√3− 2

√
2︸ ︷︷ ︸

∈B0(1)


z +

√
3 + 2

√
2︸ ︷︷ ︸

/∈B0(1)


z +

√
3− 2

√
2︸ ︷︷ ︸

∈B0(1)


By the residue theorem we get∫ π

2

0

1

1 + sin2 t
dt = −2πRes√

3−2
√

2

(
z

P (z)

)
− 2πRes

−
√

3−2
√

2

(
z

P (z)

)
= −2π

( √
3− 2

√
2

P ′(
√

3− 2
√

2)
+
−
√

3− 2
√

2

P ′(−
√

3− 2
√

2)

)
=

−4π

4
√

3− 2
√

2
2
− 12

=
π

2
√

2

where we calculated the residue from the formula

Resa
g

f
=

g(a)

f ′(a)

for a first order zero f(a) = 0 and a holomorphic g in a.

7. Prove the following well known theorem by using topological and ana-
lytical tools only.

For every real symmetric matrix A there is a real orthogonal matrix Q
such that QτAQ is diagonal.
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Hint: ’Topological and analytical tools only’ forbids the words ’char-
acteristic’ and ’eigen’. You could start with Heine-Borel.

Reason: Linear Algebra by Calculus.

Solution: The groups of orthogonal real matrices O(n) ⊆ Rn2
are

compact subsets. They are bounded, because the columns of an or-
thogonal matrix Q = (qij) ∈ O(n) are unit vectors and so |qij| < 1
for all i, j, and they are closed, since they are solutions to the linear
equations xi1xj1 + . . . xinxjn = δij. We define the sum of the squares of
the off-diagonal entries Od(A) =

∑
i 6=j a

2
ij for any real square matrix.

Lemma: If A is a real symmetric n×n matrix that is not diagonal, i.e.
Od(A) > 0, then there exists U ∈ O(n) such that Od(U τAU) < Od(A).

The map ϕA : O(n) −→ Rn2
defined by ϕA(Q) := QτAQ is continuous.

Its image ϕA(O(n)) is thus a compact subset in Rn2
. The continuous

function Od : ϕA(O(n)) −→ R assumes therefore a minimum, say at
M = QτAQ ∈ ϕA(O(n)). This implies by the Lemma that Od(M) = 0,
hence M is diagonal which had to be proven. (If Od(M) > 0 we first
note that M τ = (QτAQ)τ = QτAτQ = QτAQ = M is symmetric and
not diagonal, so we can apply the Lemma on M , and find an U ∈ O(n)
such that Od(U τMU) < Od(M), which contradicts the minimality of
M as U τMU is a feasible point:

U τMU = U τQτAQU = (QU)τA(QU) = ϕA(QU) ∈ ϕA(O(n)) , U,Q ∈ O(n)

because O(n) is a group.)

Hence it remains to prove the Lemma.

Given a real symmetric matrix A = (aij). If A is diagonal, them we
choose U = 1 ∈ O(n) and we are done, so let’s assume ars 6= 0 for some
r 6= s. In this case we set U to be a rotation matrix in the (r, s)−plane

U = (uij) :=


uij = 0 if i, j /∈ {r, s} ∧ i 6= j

uii = 1 if i /∈ {r, s}
urr = uss = cosα

urs = −usr = sinα

which is clearly orthogonal. Let U τAU = (bkl) =
(∑

i,j uikaijujl

)
.
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Then bij = aij in all cases i, j /∈ {r, s}.

bkr =
∑
i

uik
∑
j

aijujr =
∑
i

uik(air cosα− ais sinα)

= akr cosα− aks sinα

bks = aks cosα + akr sinα

b2
kr + b2

ks = a2
kr + a2

ks

b2
rl + b2

sl = a2
rl + a2

sl

Now we have for the symmetric matrices A and U τAU

Od(A)−Od(U τAU) = a2
sr − b2

sr + a2
rs − b2

rs = 2(a2
rs − b2

rs) = 2a2
rs > 0

if we can choose α in a way such that brs = 0.

brs(α) =
∑
i,j

uiraijujs

= urrarsuss + urrarrurs + usrasrurs + usrassuss

= ars
(
cos2 α− sin2 α

)
+ (arr − ass) cosα sinα

Now brs(0) = ars and brs(90◦) = −ars. By the mean value theorem
there must be a choice of α such that brs(α) = 0, since brs depends
continuously on α and ars 6= 0.

8. We define e =
∞∑
k=0

1

k!
. Prove that e2 is irrational.

Reason: Irrationality.

Solution: Assume e2 =
a

b
∈ Q. Then be = ae−1 and with the series

e = 1 +
1

1
+

1

2
+

1

6
+

1

24
+

1

120
+ . . .

e−1 = 1− 1

1
+

1

2
− 1

6
+

1

24
− 1

120
± . . .

we have for sufficiently large even n

n!be = n!b

(
1 +

1

1
+

1

2
+ . . .+

1

n!

)
︸ ︷︷ ︸

:=β0∈Z

+n!b

(
1

(n+ 1)!
+

1

(n+ 2)!
+ . . .

)
︸ ︷︷ ︸

:=βn

n!ae−1 = n!a

(
1− 1

1
+

1

2
∓ . . .+ (−1)n

n!

)
︸ ︷︷ ︸

:=α0∈Z

+n!a

(
(−1)n+1

(n+ 1)!
+

(−1)n+2

(n+ 2)!
+ . . .

)
︸ ︷︷ ︸

:=αn
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and

0 <
b

n+ 1
< βn <

b

n+ 1
+

b

(n+ 1)2
+ . . . =

b

n+ 1
· 1

1− 1

n+ 1

=
b

n

−a
n

(n even)
< − a

n+ 1
+ ε = αn < −

a

n+ 1

(
1− 1

n+ 1
− 1

(n+ 1)2
− . . .

)
= − a

n+ 1

(
1− 1

n+ 1

∞∑
k=0

1

(n+ 1)k

)

= − a

n+ 1

1− 1

n+ 1
· 1

1− 1

n+ 1

 = − a

n+ 1
·
(

1− 1

n

)
< 0

This means for sufficiently large even n, that n!ae−1 is a bit smaller
than the integer α0 and n!be is a bit larger than the integer β0, hence
they cannot be equal.

9. Let p < q be two primes, b ∈ N, and G a group with p2qb elements.
Show that:

(a) If there is no normal q−Sylow subgroup in G, then (p, q) = (2, 3),
and there is a non trivial homomorphism from G to S4.

(b) G is always solvable.

Reason: Group Theory.

Solution:

(a) The number of q−Sylow subgroups in G is a divisor of p2 and
congruent 1 modulo q. If there is no normal q−Sylow subgroup,
then a single one is excluded and there are p or p2 many of them.
However, p many of them is also excluded, because otherwise we
had q | p − 1 which is not possible for q > p. There are thus p2

many q−Sylow subgroups in G and p2 ≡ 1 mod q. Hence p+ qZ
is a zero of x2 − 1 ∈ Fq[x]. This polynomial has two zeros: ±1.
However, p 6≡ 1 mod q since q - p − 1, and p ≡ −1 mod q, i.e.
0 < p + 1 = m · q ≤ q. This means k = 1 and p + 1 = q which is
only possible for the primes (p, q) = (2, 3).

There are 4 = p2 3−Sylow subgroups in this case on which G
operates transitive via conjugation. If we number them, we get
a group homomorphism ϕ : G −→ S4 whose image operates
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transitive on {1, 2, 3, 4}. Now 4 divides the cardinality of the orbits
by the orbit-stabilizer theorem, so {1} ( im(ϕ) is a proper subset
and ϕ is non trivial.

(b) If G has a normal q−Sylow subgroup N , then it is a q−group of
index p2 and G/N is a p−group. Since p, q are both primes, N
and G/N are both solvable and G is solvable, too. If G has no
normal q−Sylow subgroup, we define N := ker(ϕ) / G with the
homomorphism from the previous part. Since 4 | |G/N | = | im(ϕ)|,
the kernel N has to be a 3−group, which is solvable. But im(ϕ) ∼=
G/N is a subgroup of the solvable group S4, hence itself solvable.
Thus N and G/N are again solvable and therewith G.

10. Let f(x) = 2x5 − 6x + 6 ∈ Z[x]. In which of the following rings is f
irreducible and why?

(a) Z[x]

(b) (S−1Z)[x] with S = {2n |n ∈ N0}

(c) Q[x]

(d) R[x]

(e) C[x]

Reason: Ring Theory.

Solution: (a) f(x) = 2 · (x5−3x−3). Both factors are non units, since
the units in Z[x] are {±1}, i.e. f is reducible.

(c) 2 is a unit in this case, so it’s sufficient to consider g(x) = x5−3x−3.
By Eisenstein’s criterion with the prime p = 3, we find that g is irre-
ducible over Q[x] and so is f.

(b) It’s again sufficient to consider g(x) = x5 − 3x− 3. Assume g = pq
over S−1Z. This factorization is also valid in Q[x] ⊇ (S−1Z)[x]. But g
is irreducible over Q, so one of the factors is of degree 0, say p. This
means p ∈ S−1Z and p divides each coefficient of g, especially the lead-
ing coefficient 1, which means p is a unit in S−1Z and f is irreducible.

(d) deg f > 1 and odd, i.e. limx→−∞ f(x) = −∞ and limx→+∞ f(x) =
+∞. Thus f has a zero by the mean value theorem and f is reducible.

(e) deg f > 1 so f is reducible by the fundamental theorem of algebra.

11. (HS-1) Given a set A of 32 pairwise distinct, positive integers less than
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112. Decide right or wrong:

(a) There is a number which occurs at least five times among the
differences between two numbers of A.

(b) There is a number which occurs at least six times among the
differences between two numbers of A.

Hint: A difference in this context is always positive, and only counted
once between any two numbers of A.

Reason: Combinatorics.

Solution: There are

(
|A|
2

)
=

32 · 31

2
= 496 differences to be consid-

ered. All of them are pairwise distinct, positive integers less than 112.
If there was at most four occurrences of a certain difference, then we
had with 4 · 111 < 496 a deficit of 52 possible differences. This proves
the first part to be true.

The same argument doesn’t work for six occurrences, so we need a
closer look. Let the elements of A be ordered as

1 ≤ a1 < a2 < . . . < a31 < a32 < 112 .

If the values among all differences would occur at most five times, then
this is particularly true for the values {1, 2, 3, 4, 5, 6} among the 31
differences dn = an+1 − an . So there is at least 31− 5 · 6 = 1 difference
with dn > 7. Thus

d1 + . . .+ d31 ≥ 5 · 1 + 5 · 2 + . . .+ 5 · 6 + 7 = 5 · 21 + 7 = 112

On the other hand we have

a32 = a1 + d1 + d2 + . . .+ d31 ≥ a1 + 112 > 112

which is a contradiction. This means that we must have at least 6 equal
differences among the numbers of A.

12. (HS-2) The harmonic numbers are

Hn :=
n∑
k=1

1

k
= 1 +

1

2
+

1

3
+ . . .+

1

n
, (n ∈ N)

We define

Tn :=
n∑
k=1

1

k ·H2
k

=
1

H2
1

+
1

2 ·H2
2

+
1

3 ·H2
3

+ . . .+
1

n ·H2
n

, (n ∈ N)
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Show that Tn < 2 for all n ∈ N.

Reason: No Induction necessary.

Solution: It is 0 < Hk−1 < Hk for any k > 1. Hence

1

k ·H2
k

<

1

k
Hk ·Hk−1

=
Hk −Hk−1

Hk ·Hk−1

=
1

Hk−1

− 1

Hk

and so

Tn = 1 +
n∑
k=2

1

k ·H2
k

< 1 +
n∑
k=2

(
1

Hk−1

− 1

Hk

)
= 1 +

1

H1

− 1

Hn

= 2− 1

Hn

< 2

13. (HS-3) We have a four sided pyramid with summit S and a quadratic
baseA,B,C,D. LetA′, B′, C ′, D′ be four points on the edgesAS,BS,CS,DS,
resp. with positive distances a, b, c, d from S, resp. Show thatA′, B′, C ′, D′

are coplanar if and only if

1

a
+

1

c
=

1

b
+

1

d
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Reason: Geometry.

Solution: Without loss of generality we assume that AS = BS =
CS = DS = 1. For the perpendiculars A′F ′, AF from A,A′ onto the
plane B,C, S resp., we know that A′F ′ ‖ AF and get from the intercept
theorem A′F ′ : AF = A′S : AS = a. For the volumes of the pyramids
A′BCS and ABCS we thus have

V (A′BCS) : V (ABCS) = a

and accordingly

V (A′B′CS) : V (A′BCS) = b

V (A′B′C ′S) : V (A′B′CS) = c.

Hence
V (A′B′C ′S) : V (ABCS) = abc

and similarly

V (A′D′C ′S) : V (ADCS) = adc

V (A′B′D′S) : V (ABDS) = abd

V (C ′B′D′S) : V (CBDS) = cbd

The four points A′, B′, C ′, D′ are coplanar if and only if V (A′B′C ′D′) =
0. This is equivalent to

V (A′B′C ′S) + V (A′D′C ′S) = V (A′B′D′S) + V (C ′B′D′S) (∗)

because the difference of both sides of the equation is exactly V (A′B′C ′D′).
All areas of the triangles ABC,ABD,ADC,CBD of the square ABCD
have the same value, so V (ABCS) = V (ABDS) = V (ADCS) =
V (CBDS) and equation (∗) is equivalent to

abc+ adc = abd+ cbd⇐⇒ 1

d
+

1

b
=

1

c
+

1

a

Another way to solve the problem is by coordinates. We can choose a
coordinate system such that A,B,C, S have the coordinates

A = (−t,−t, h) , B = (t,−t, h) , C = (t, t, h) , D = (−t, t, h) , S = (0, 0, 0)

for suitable t, h > 0. This means with the same assumption about the
normed edges of the pyramid

A′ = (−at,−at, ah) , B′ = (bt,−bt, bh) , C ′ = (ct, ct, ch) , D′ = (−dt, dt, dh)
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Being coplanar is equivalent to the fact that

det


1 −at −at ah
1 bt −bt bh
1 ct ct ch
1 −dt dt dh

 = 4t2h(bcd− acd+ abd− abc) = 0

14. (HS-4) Let f(n) = [ 2
√
n ]−

[√
n− 1 +

√
n+ 1

]
for n ∈ N. Determine

all values of n such that f(n) = 1 and all n such that f(n) = 0.

If r ∈ R with s ≤ r < s+ 1 then [r] = brc = s.

Reason: Cases.

Solution: We have f(1) = [2]− [0 +
√

2] = 2− 1 = 1 and for n ≥ 2

5 < 4n

4n2 − 4n+ 1 < 4n2 − 4 < 4n2

2n− 1 < 2
√
n2 − 1 < 2n

4n− 1 <
(√

n− 1 +
√
n+ 1

)2

< 4n

Assume there is an integer g such that
√

4n− 1 < g ≤
√
n− 1 +√

n+ 1, then 4n − 1 < g2 ≤
(√

n− 1 +
√
n+ 1

)2
< 4n which is not

possible. Therefore
[√

n− 1 +
√
n+ 1

]
= [
√

4n− 1 ] and

f(n) = [
√

4n ]− [
√

4n− 1 ] (∗)

If n = m2 is a square number, then
√

4n = 2m ∈ N and

2 ≤ 2
√

4n

4n− 2
√

4n+ 1 ≤ 4n− 1
√

4n− 1 ≤
√

4n− 1 <
√

4n

[
√

4n− 1 ] =
√

4n− 1 = [
√

4n ]− 1

hence f(n) = 1 by (∗).

If n is not a square number, then there is no integer g such that 4n−1 <
g2 ≤ 4n or

√
4n− 1 < g ≤

√
4n, which means [

√
4n ] = [

√
4n− 1 ]

and f(n) = 0.

We have shown that among all positive integers n

• exactly all positive square numbers fulfill f(n) = 1, and
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• all positive non square numbers fulfill f(n) = 0.

15. (HS-5) Determine all pairs of non-negative integers (m,n) such that
2m − 5n = 7.

Reason: Modular Arithmetic.

Solution: Among the numbers 2m for integers 0 ≤ m ≤ 5 are exactly
the numbers 23 and 25 of the required form 5n+7 with an integer n ≥ 0,
namely

23 − 50 = 25 − 52 = 7.

We will show that there are no other solutions than (3, 0), (5, 2).

Assume there were solutions (m,n) with n ≥ 0,m ≥ 6 such that
2m = 5n + 7. Then 26 = 64 | (5n + 7) and 5n ≡ 57 mod 64. Possi-
ble remainders are periodically

n 0 1 2 3 4 5 6 7 8 . . .

5n mod 64 1 5 25 61 49 53 9 45 33 . . .

n . . . 9 10 11 12 13 14 15 16 . . .

5n mod 64 . . . 37 57 29 17 21 41 13 1 . . .

so n = 16a+ 10 for some a ∈ N0 .

Let’s consider now the possible remainders modulo 17 which also have
a periodicity of 16. Here we find

n 0 1 2 3 4 5 6 7 8 . . .

5n mod 17 1 5 8 6 13 14 2 10 16 . . .

5n + 7 mod 17 8 12 15 13 3 4 9 0 6 . . .

n . . . 9 10 11 12 13 14 15 16 . . .

5n mod 17 . . . 12 9 11 4 3 15 7 1 . . .

5n + 7 mod 17 . . . 2 16 1 11 10 5 14 8 . . .

In order for 2m ≡ 5n + 7 mod 17 to hold, the remainders must be the
same. For the left hand side we get the remainders

m 0 1 2 3 4 5 6 7 8 . . .

2m mod 17 1 2 4 8 16 15 13 9 1 . . .

with periodicity 8, which all occurred as remainders of 5n + 7. We
already know that n = 16a+10, so only the entries for n = 10, 26, 42, . . .
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are relevant. Thus 2m ≡ 5n + 7 ≡ 16 mod 17 and m = 8b+ 4 for some
b ∈ N0 . This means particularly that m,n are even, say m = 2c, n = 2d.

2m ≡ 22c ≡ 4c ≡ 1c ≡ 1 mod 3

5n + 7 ≡ 52d + 7 ≡ 25d + 7 ≡ 1d + 1 ≡ 2 mod 3

which cannot be simultaneously the case.
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