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1. Let S := { (x, y, z) ∈ R3 |x2 + y2 = (2 − z)2, 0 ≤ z ≤ 2 } be the
surface of a cone C with a circular cross section and a peak at (0, 0, 2).
The orientation of S be such, that the normal vectors point outwards.
Calculate the flux through S of the vector field

F : R3 −→ R3 , F (x, y, z) =

 xy2

x2y
(x2 + y2)(1− z)

 .

Reason: Flux.

Solution: In order to apply Gauß’ theorem, we need to cover our cone
with a disk D := { (x, y, z) ∈ R3 |x2 + y2 ≤ 2 }. Then∫

S∪D
F · n dS =

∫
S

F · n dS +

∫
D

F · n dS =

∫
C

div(F ) dx dy dz

We have

div(F ) = ∂x(xy
2) + ∂y(x

2y) + ∂z((x
2 + y2)(1− z))

= y2 + x2 + (x2 + y2)(−1)

= 0

so our vector field is solenoidal and
∫
S
F ·n dS = −

∫
D
F ·n dS . We use

the parametrization ψ(r, ϕ) = (r cosϕ, r sinϕ, 0) with a normal vector
n(r, ϕ) = −(0, 0, r) which has to point in negative z-direction.∫
D

F · n dS =

∫ 2

0

dr

∫ 2π

0

dϕF (ψ(r, ϕ)) · n(r, ϕ)

=

∫ 2

0

dr

∫ 2π

0

dϕ

 r3 sin2 ϕ cosϕ
r3 sinϕ cos2 ϕ

(1− 0)(r2 cos2 ϕ+ r2 sin2 ϕ)

 ·
 0

0
−r


=

∫ 2

0

dr

∫ 2π

0

dϕ (−r3)

= −8π

and
∫
S
F · n dS = 8π.
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2. Calculate for |α| ≥ 1∫ π

0

log(1− 2α cos(x) + α2) dx

(a) without using series expansions.

Hint:

∫ π/2

0

log(sin(x)) dx = −π
2

log(2)

(b) by using serious expansions.

Reason: Feynman’s Integration Trick.

Solution:

(a) Set f(α) =
∫ π

0
log(1−2α cos(x)+α2) dx and assume |α| > 1. Now

we get by integration under the integral

∂f

∂α
=

∫ π

0

∂

∂α
log(1− 2α cos(x) + α2) dx

=

∫ π

0

2α− 2 cos(x)

1− 2α cos(x) + α2
dx

=
1

α

∫ π

0

(
2(α2 − α cos(x))

1− 2α cos(x) + α2
+ 1− 1

)
dx

=
1

α

∫ π

0

(
1− 1− α2

1− 2α cos(x) + α2

)
dx

=
π

α
− 1− α2

α

∫ π

0

dx

1− 2α cos(x) + α2

=
π

α
− 1

α

1− α2

1 + α2

∫ π

0

dx

1− 2α
1+α2 cos(x)

Now we use the Weierstraß substitution u := tan
x

2
, |x| < π with

sin(x) =
2u

1 + u2
, cos(x) =

1− u2

1 + u2
, dx =

2du

1 + u2

3
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and calculate∫ π

0

dx

1− 2α
1+α2 cos(x)

=

∫ ∞
0

2du

(1 + u2)(1− 2α
1+α2

1−u2
1+u2

)

=

∫ ∞
0

2du

(1 + u2)− (1− u2) 2α
1+α2

=

∫ ∞
0

2du

(1− 2α
1+α2 ) + u2(1 + 2α

1+α2 )

=

∫ ∞
0

2(1 + α2)du

(1 + α2 − 2α) + u2(1 + α2 + 2α)

=

∫ ∞
0

2(1 + α2)du

(1− α)2 + u2(1 + α)2

=
2(1 + α2)

(1− α)2

∫ ∞
0

du

1 +
(

1+α
1−α

)2
u2

The last substitution will be

y =
1 + α

1− α
u , dy =

1 + α

1− α
du

and we continue∫ π

0

dx

1− 2α
1+α2 cos(x)

=
2(1 + α2)

(1− α)2

∫ ∞
0

du

1 +
(

1+α
1−α

)2
u2

(∗)
=

2(1 + α2)

(1− α)2

(1− α)

(1 + α)

∫ −∞
0

dy

1 + y2

=
2(1 + α2)

1− α2
[arctan(y)]−∞0

= −π1 + α2

1− α2

(∗) Note that y and u have different signs due to our choice of
|α| > 1. Combined with what we omitted for simplification we
have now

∂f

∂α
=
π

α
− 1

α

1− α2

1 + α2
·
(
−π1 + α2

1− α2

)
=

2π

α
=⇒

f(α) = 2π log(|α|) + C

4
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In order to calculate the integration constant, and deal with the
case α = 1, we compute

f(1) =

∫ π

0

log(2− 2 cos(x)) dx

=

∫ π

0

log
(

4 sin2
(x

2

))
dx

= π log(4) + 4

∫ π/2

0

log(sin(y)) dy

Hint
= π log(4)− 4 ·

(π
2

log(2)
)

= 0

Thus we have 0 = f(1) = 2π log(|1|) + C = C and the value of
the integral is∫ π

0

log(1− 2α cos(x) + α2) dx = 2π log(|α|), (|α| ≥ 1).

Proof of the hint: Let I :=

∫ π/2

0

log(sin(x)) dx.

For symmetry reasons we have

I =

∫ π/2

0

log(sin(x)) dx = −
∫ 0

π/2

log(cos(x)) dx

(The same sine curve in reverse order, and since the area is orien-
tated, with a minus sign.)

Skipping the integration path yields

I =

∫ π/2

0

log(sin(x)) dx =

∫ π/2

0

log(cos(x)) dx

5
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Hence

2I =

∫ π/2

0

(log(sin(x)) + log(cos(x))) dx

=

∫ π/2

0

log(sin(x) cos(x)) dx

=

∫ π/2

0

log

(
sin(2x)

2

)
dx

=

∫ π/2

0

log(sin(2x)) dx− π

2
log(2)

= −π
2

log(2) +
1

2

∫ π

0

log(sin(u)) du

= −π
2

log(2) +
I

2
+

1

2

∫ π

π/2

log(sin(x)) dx

= −π
2

log(2) +
I

2
+

1

2

∫ π/2

0

log(cos(x)) dx

= −π
2

log(2) +
I

2
+
I

2

so I = −π
2

log(2).

(b) We start with a value |α| ≤ 1 and 0 < x < π. Then by Gradshteyn,
Ryzhik 1.514

log(1− 2α cos(x) + α2) = −2
∞∑
k=1

cos(kx)

k
αk

and we get

I(α) :=

∫ π

0

log(1−2α cos(x)+α2) dx = −2
∞∑
k=1

αk

k

∫ π

0

cos(kx) dx = 0

This means for |α| ≥ 1∫ π

0

log(1− 2α cos(x) + α2) dx =

∫ π

0

log

(
α2

(
1

α2
− 2

α
cos(x) + 1

))
dx

= 2π log(|α|) + I

(
1

α

)
= 2π log(|α|)

6
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3. (HS-1)

(a) Show that
√
ii ∈ R where i is the imaginary unit i =

√
−1.

(b) Which of the following equation signs is wrong and why?

−1
(1)
= i · i (2)

=
√
−1 ·
√
−1

(3)
=
√

(−1) · (−1)
(4)
=
√

1
(5)
= 1

(c) Calculate all solutions of z3 = 1 by three different methods.

Reason: Complex Numbers.

Solution:

(a) We write i = 0+1·i = cos(π/2)+i sin(π/2) = eiπ/2 by Euler’s iden-
tity. Now ii = (eiπ/2)i = e−π/2 and

√
ii = e−π/4 ≈ 0.45593813 ∈ R.

(b) Equation (1) is the definition of the imaginary unit and can’t
be wrong. Equation (2) is only another (bad) way to write the
imaginary unit i, so it’s misleading but not wrong. Equations (4)
and (5) are ordinary real arithmetic. Hence equation (3) must be
wrong:
√
−1 ·
√
−1

Gauß
= (cos(π/2) + i sin(π/2)) · (cos(π/2) + i sin(π/2))

Euler
= eiπ/2 · eiπ/2

= eiπ

= cos(π) + i · sin(π)

= −1 + i · 0
= −1

whereas√
(−1) · (−1) =

√
(cos(π) + i · sin(π)) · (cos(π) + i · sin(π))

=
√
eπ · eπ

=
√
e2π

=
√

cos(2π) + i · sin(2π)

=
√

1 + i · 0
= 1

(c) One can use Euler’s formula and calculate e2iπ = (eiϕ)3 = e3iϕ and
get 2πn = 3ϕ or ϕ ∈ { 0, 2π/3, 4π/3 } ⊆ [0, 2π) which corresponds
to

e0 = 1 , e2iπ/3 = −1

2
+ i

√
3

2
, e4iπ/3 = −1

2
− i
√

3

2
,

7
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or use the fact that z = 1 is a solution and perform a long division:

z3 : (z − 1) = z2 + z + 1 =⇒ z1,2 = −1

2
±
√
−3

4
.

For the third method we write z = r·(cosϕ+i sinϕ). and calculate

1 = z3 = r3 · (cosϕ+ i sinϕ)3

= r3 ·
(
cos3 ϕ+ 3i cos2 ϕ sinϕ− 3 cosϕ sin2 ϕ− i sin3 ϕ

)
= r3

(
cos3 ϕ− 3 cosϕ sin2 ϕ

)
+ i · r3

(
3 cos2 ϕ sinϕ− sin3 ϕ

)
We see immediately that ϕ = 0 , r = 1 is a solution, i.e. z = 1.
The solution ϕ = π , r = −1 is identical, i.e. z = 1. Hence we
may assume sinϕ 6= 0 now, and cosϕ 6= 0. By comparison of the
coefficients we get

0 = 3 cos2 ϕ− sin2 ϕ

1 = r3 · cosϕ ·
(
cos2 ϕ− 3 sin2 ϕ

)
We get by substituting the first into the second equation

−1

8
= r3 · cos3 ϕ =⇒ −1

2
= r cosϕ

As 1 = |z|3 = |r|3 the only real solutions for r are r = ±1, i.e.

cosϕ = ±1

2
and sinϕ = ±

√
3

2
. Checking all possibilities

ϕ π/3 2π/3 4π/3 5π/3

cosϕ 1/2 −1/2 −1/2 1/2
r −1 1 1 −1

sinϕ
√

3/2
√

3/2 −
√

3/2 −
√

3/2

z −1

2
+ i

√
3

2
−1

2
+ i

√
3

2
−1

2
− i
√

3

2
−1

2
− i
√

3

2

4. (HS-2) Which is the smallest natural number n ∈ N0 such that there
are no integers a, b ∈ Z with 3a3 + b3 = n?

Reason: Diophantine Equation.

Solution: We start with the observation

0 = 3 · 03 + 03 1 = 3 · 03 + 13 2 = 3 · 13 + (−1)3

3 = 3 · 13 + 03 4 = 3 · 13 + 13 5 = 3 · (−1)3 + 23

8
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and show that such an equation is impossible for n = 6. Assume we
had a solution, then b3 = 6− 3a3 ≡ 0 mod 3, i.e. 3 | b since 3 is prime.
Hence we can write b = 3c for some integer c, and get 6 = 3a3 +27c3 or
2 = a3 + 9c3. This means, that a3 ≡ 2 mod 3, which is only possible,
if a = 3d+ 2 for some integer d. Now we have

2 = (3d+ 2)3 + 9c3 = 27d3 + 54d2 + 36d+ 8 + 9c3 ≡ 8 mod 9

which is impossible.

5. (HS-3) Is it possible to cover an equilateral triangle with two smaller
equilateral triangles without a gap? It’s not required that they are of
equal area, nor that they won’t overlap, only that they are smaller and
together have a greater area than the original triangle.

Reason: Pigeonhole Principle.

Solution: It is impossible. Let us assume it could be done, and let
the side length of the original triangle 4A be a. Accordingly we set the
side lengths of the smaller triangles 4A′,4A′′ resp. to a′, a′′ < a.

Now the three corners of 4A have to be covered by two smaller tri-
angles. W.l.o.g. we may assume that 4A′ covers two corners by the
pigeonhole principle. But this means a′ ≥ a as maximal possible dis-
tance in 4A′. But a > a′, a contradiction.

6. (HS-4) Given n different integers { a1, . . . , an }, then there exists a sub-
set { aj1 , . . . , ajm } with 1 ≤ j1 < . . . < jm ≤ n such that n divides
aj1 + . . .+ ajm .

Reason: Pigeonhole Principle.

Solution: We consider the n sums sj := a1 + . . .+ aj. If si = sj then
n | 0 = si − sj = aj+1 + . . . + ai and we are done. So we may assume
that all sums are pairwise different. Each of them can be written as
sj = qj · n+ rj with 0 ≤ rj < n . If one rj = 0 then we are done again,
so we may assume 1 ≤ rj < n . But since we have n different sj two
remainders must be equal, say ri = rj . Thus n divides

aj+1 + . . .+ ai = si − sj = (qi − qj) · n+ (ri − rj) = (qi − qj) · n

9
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2 May 2020

1. Let 1 < p < 4 and f ∈ Lp((1,∞)) with the Lebesgue measure λ. We
define g : (1,∞) −→ R by

g(x) =
1

x

∫ 10x

x

f(t)

t1/4
dλ(t).

Show that there exists a constant C = C(p) which depends on p but
not on f such that ‖g‖2 ≤ C · ‖f‖p so g ∈ L2((1,∞)).

Reason: Lp-Norms.

Solution: Let us first assume p 6= 4/3. By Hölder’s inequality we get
for a fixed x ∈ R+ with 1

p
+ 1

q
= 1 and q 6= 4

∫ 10x

x

t−1/4|f(t)|dλ(t) ≤ ‖f‖p
(∫ 10x

x

t−q/4 dt

)1/q

= ‖f‖p

([
4

4− q
t−

q
4

+1

]10x

x

)1/q

= ‖f‖p
(

4

4− q

(
10−

q
4

+1 − 1
))1/q

· x−
1
4

+ 1
q

Now we have

‖g‖2
2 ≤

∫ ∞
1

(
1

x

∫ 10x

x

|f(t)|
t1/4

dλ(t)

)2

dλ(x)

≤ ‖f‖2
p

(
4

4− q

(
10−

q
4

+1 − 1
))2/q

︸ ︷︷ ︸
=:C1(p)

∫ ∞
1

1

x2
· x−

1
2

+ 2
q dλ(x)︸ ︷︷ ︸

=:I(p)

The integral I(p) =

∫ ∞
1

1

x2
· x−

1
2

+ 2
q dλ(x) =

∫ ∞
1

x−
5
2

+ 2
q dλ(x) only de-

pends on q and therewith on p. It is finite if and only if −5

2
+

2

q
< −1,

i.e. 1/q < 3/4 or p < 4 and thus

‖g‖2 ≤
√
C1(p) · I(p)︸ ︷︷ ︸

=:C

·‖f‖p .

10
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In case p = 3
4

or q = 4 we get

∫ 10x

x

t−1/4|f(t)|dλ(t) ≤ ‖f‖3/4 ·(log 10)1/4.

‖g‖2
2 ≤

∫ ∞
1

(
1

x

∫ 10x

x

|f(t)|
t1/4

dλ(t)

)2

dλ(x)

≤ ‖f‖2
3/4 · (log 10)1/2

∫ ∞
1

dx

x2

= ‖f‖2
3/4 · (log 10)1/2︸ ︷︷ ︸

=:C2

2. We define
R∞ = R(N) = { (x1, x2, . . .) |xi

a.a.
= 0 }

and equip R∞ with the Euclidean metric

d((x1, x2, . . .), (y1, y2, . . .)) =

√√√√ ∞∑
i=1

|xi − yi|2.

which defines a topology

S := {U ⊆ R∞ | ∀ p ∈ U ∃ ε > 0 : Bε(p) ⊆ U }

with the open ball Bε(p) = { q ∈ R∞ | d(p, q) < ε }.

(a) Show that the function

α : (R∞,S) −→ (R, E)

(x1, x2, . . .) 7−→
∞∑
i=1

2i · xi

is not continuous, where E is the usual Euclidean topology on R.
(b) Let B be the diagonal matrix where the diagonal entries are 2i for

i = 1, 2, . . . , i.e.

B =


2 0 0 . . .
0 4 0 . . .
0 0 8 . . .
...

...
...

. . .


Show that β : (R∞,S) −→ (R∞,S) defined by β(x) = Bx is not
continuous.

11
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(c) Define a topology T on R∞ such that the inclusion maps

ιn : (Rn, E) −→ (R∞, T )

(x1, . . . , xn) 7−→ (x1, . . . , xn, 0, . . .)

are continuous for any n ∈ N0.

Reason: Topologies on R∞.

Solution:

(a) We consider U = (−1, 1) ⊆ R so 0 ∈ α−1(U). Suppose there is
an ε > 0 such that Bε(0) ⊆ U. We pick i ∈ N with 2−i < ε and
the point q = (0, . . . , 0, 2−i, 0, . . .). Then d(0, q) = 2−i < ε and
q ∈ Bε(0). But α(q) = 1, so q /∈ α−1(U), i.e. Bε(0) 6⊆ U , a
contradiction.

(b) U = B1(0) ⊆ R∞ is an open set and 0 ∈ β−1(U). Suppose there
is an ε > 0 such that Bε(0) ⊆ U. We pick again i ∈ N such that
2−i < ε. For q = (0, . . . , 0, 2−i, 0, . . .) we have d(0, q) = 2−i < ε,
so q ∈ Bε(0) ⊆ U . But β(q) = (0, . . . , 0, 1, 0, . . .) so d(0, β(q)) = 1
which means that q /∈ U, a contradiction.

(c) We define the so called weak topology on R∞ as

T := {U ⊆ R∞ | ∀n ∈ N0 : U ∩ Rn ⊆ Rn is open }.

This means: A map f : (R∞, T ) −→ (X,X ) of topological spaces
is continuous with respect to T if and only if for each n ∈ N0 the
map

(Rn, E)
ιn
↪→ (R∞, T )

f−→ (X,X )

is continuous.

3. Calculate ∫ +∞

−∞

cos(αx)

1 + x2
dx (α ≥ 0).

Reason: Integral.

Solution: For α = 0 we have∫ +∞

−∞

dx

1 + x2
= [arctan(x)]+∞−∞ =

π

2
−
(
−π

2

)
= π

12
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so we may assume α > 0 now, substitute t = αx, β = α−1 and observe
using integration by parts twice∫ ∞

0

e−t sin(βt) dt = −e−t sin(βt)
∣∣∞
0

+ β

∫ ∞
0

e−t cos(βt) dt

= 0 + β

([
−e−t cos(βt)

]∞
0
− β

∫ ∞
0

(−e−t)(− sin(βt)) dt

)
= β − β2

∫ ∞
0

e−t sin(βt) dt

and thus ∫ ∞
0

e−t sin(βt) dt =
β

1 + β2

This means∫ +∞

−∞

cos(αx)

1 + x2
dx =

∫ +∞

−∞

cos(αx)

x
· x

1 + x2
dx

= 2

∫ ∞
0

(
cos(αx)

x

∫ ∞
0

e−t sin(xt) dt

)
dx

=

∫ ∞
0

∫ ∞
0

e−t · 2 sin(xt) cos(αx)

x
dt dx

=

∫ ∞
0

∫ ∞
0

e−t · sin(x(t+ α)) + sin(x(t− α))

x
dx dt

=

∫ ∞
0

e−t ·
(π

2
sgn(t+ α) +

π

2
sgn(t− α)

)
dt

= π

∫ ∞
α

e−t dt

= π · e−α

4. Calculate ∫ 1

0

sin(πx)xx (1− x)1−x dx.

Hint: You may use calculators to determine residues.

Reason: Ramanujan Integral.

Solution: We set S :=

∫ 1

0

eiπx xx
1− x

(1− x)x
dx and substitute t =

13
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log(x)− log(1− x), i.e. x =
et

et + 1
.

S =

∫ 1

0

eiπx e(log(x))x 1− x
elog(1−x)x

dx =

∫ 1

0

(1− x) e(iπ+log(x)−log(1−x))x dx

=

∫ ∞
−∞

1

et + 1
e

(iπ+t) et

et+1
et

(et + 1)2
dt

=

∫ ∞+iπ

−∞+iπ

1

−es + 1
es

−es

−es+1
−es

(−es + 1)2
ds

=

∫ ∞+iπ

−∞+iπ

et

(et − 1)3
e
t et

et−1 dt

With f(z) :=
ez

(ez − 1)3
ez

ez

ez−1 we have a meromorphic function on D :=

{ z ∈ C | − π ≤ =(z) ≤ π }.

The only singularity is at z = 0 and we have the residue res(f, 0) =

− e

24
, see e.g. WolframAlpha.com with the input

residue of (e^(z(e^z/(e^z-1)))(e^z/(e^z-1)^3))at z=0)

Consider the path κR = γR + δR + σR + τR around z = 0 as in the

graphic. Then
∮
κR
f(z) dz = −2πi · res(f(z), 0) = 2i

πe

24
.

(f(zn))n∈N converges to 0 for any sequence (zn)n∈N ⊆ D such that
|zn| −→ ∞, so

lim
R→∞

∫
δR

f dz = lim
R→∞

∫
τR

f dz = 0

14
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The function f(z) is odd, so
∫
σR
f(z) dz =

∫
γR
f(z) dz and 2S =

2 limR→∞
∫
γR
f(z) dz = limR→∞

∮
κR
f(z) dz = 2i

πe

24
and our integral

becomes: ∫ 1

0

sin(πx)xx (1− x)1−x dx = =(S) =
πe

24
.

5. The p-Prüfer group is defined as

G := Cp∞ = { exp(2nπi/pm) |n ∈ Z,m ∈ N } ∼= Z
[

1

p

]
/Z

Show that G is isomorphic to the factor group F/R of the free Abelian
group over an countably infinite basis { a1, a2, . . . , an, . . . } with the sub-
group of relations R generated by { pa1, a1 − pa2, . . . , an − pan+1, . . . },
so

G = 〈x1, x2, . . . |xp1 = 1, xp2 = x1, x
p
3 = x2, . . .〉

Reason: Prüfer Group.

Solution: Let F = 〈a1, a2, . . .〉 be the free Abelian group as defined.
Then we consider the function

f : S −→ G , am 7−→ exp(2πi/pm)

By the universal property of F there is a unique group homomorphism

ϕ : F −→ G , ϕ(am) = f(am) ∀m

Now exp(2nπi/pm) = exp(2πi/pm)n = ϕ(am)n = ϕ(n · am) shows that
ϕ is surjective. By

ϕ(p · a1) = ϕ(a1)p = exp(2πi/p)p = exp(2πi) = 1

ϕ(an − pan+1) = ϕ(an)ϕ(an+1)−p = exp(2πi/pn) exp(2πi/pn+1)−p

= exp(2πi/pn)/ exp(2pπi/pn+1) = 1

we see that R ⊆ kerϕ. Let x = n1ai1 + . . .+ nrair ∈ F be in the kernel
of ϕ, and assume 1 ≤ i1 ≤ i2 ≤ . . . ≤ ir =: s. Then

1 = ϕ(x) = ϕ(n1ai1 + . . .+ nrair) = ϕ(ai1)
n1 · · ·ϕ(air)

nr

=
r∏

k=1

exp(2πi/pik)nk =
s∏

k=1

exp(2δkiknkπi/p
k) = exp

(
s∑

k=1

2δkiknkπi

pk

)

15
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So 2mπi =
s∑

k=1

2δkiknkπi

pk
or 0 = −mps +

s∑
k=1

δkiknk · ps−k or

ns = mps −
s−1∑
k=1

δkiknk · ps−k

x =
s−1∑
k=1

(
δkiknkak − δkiknk · ps−kas

)
+mpsas

=
s−1∑
k=1

(δkiknk(ak − pak+1)) ∈ R

+
s−1∑
k=1

(
pδkiknkak+1 − δkiknk · ps−kas

)
+mpsas

mod R≡
s−1∑
k=1

(pδkiknk(ak+1 − pak+2)) ∈ R

+
s−1∑
k=1

(
p2δkiknkak+2 − δkiknk · ps−kas

)
+mps−1as−1

mod R≡
s−1∑
k=1

(
p2δkiknk(ak+2 − pak+3)

)
∈ R

+
s−1∑
k=1

(
p3δkiknkak+3 − δkiknk · ps−kas

)
+mps−2as−2

mod R≡
...

mod R≡
s−1∑
k=1

(
ps−1−kδkiknk(as−1 − pas)

)
∈ R

+
s−1∑
k=1

(
ps−kδkiknkas − δkiknk · ps−kas

)
+mpk+1ak+1

mod R≡ mpk+1ak+1
mod R≡ mpkak

mod R≡ mpk−1ak−1

mod R≡ . . .
mod R≡ mpa1

mod R≡ 0

and we have shown that R ⊇ kerϕ. Hence F/R = F/ kerϕ ∼= G.

6. Give an example of a quotient R−module M/N which is Artinian al-
though neither the ring R nor the modules M,N are.

16
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Reason: Artinian Modules.

Solution: An example is the p-Prüfer group considered as Z-module:

Cp∞ = { exp(2nπi/pm) |n ∈ Z,m ∈ N } ∼=Z Z
[

1

p

]
/Z

The Z-module homomorphismus ϕ : Z[1/p] −→ Cp∞ , q 7−→ exp(2qπi)
is surjective and has the kernel Z.

(a) Z is not Artinian.

. . . (qn) ( (qn−1) ( . . . ( (q) ( Z , q prime

So Z is neither an Artinian ring nor an Artinian Z-module.

(b) Z[1/p] is not Artinian.

The same descending series of Z-modules as above is also an in-
finitely long descending series of Z[1/p]-submodules, if we choose
q 6= p, so Z[1/p] isn’t an Artinian Z-module.

(c) Cp∞ is Artinian.

The chain of Z-submodules (1/pn−1) ( (1/pn) in Cp∞ is infinitely
long, so Cp∞ is not Noetherian. Now let us consider a chain

Cp∞ )M1 )M2 )M3 ) . . .

of descending Z-submodules. We show that this can be written as

Cp∞ ) (1/n1) ) (1/n2) ) (1/n3) ) . . .

of descending Z-submodules for some positive integers nj > 0.

Let 0 6= M ⊆ Z[1/p]/Z be a Z-submodule. Then every element
m ∈M can be written as

Z 63 m =
n∑
k=1

ak
prk

=
cm
prm

(ak, cm ∈ Z, rk, rm ∈ N)

Now we can cancel all factors p of cm. Since M 6= 0 = Z there is

an element m =
cm
prm

such that r := rm > 0. If (cm, p) = 1 then

(cm, p
r) = 1 and we can find α, β ∈ Z such that 1 = αc+ βpr, i.e.

1

pr
= α · c

pr
+ β ≡ α · c

pr
∈M mod Z .

17
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Hence every Z-submodule of Z[1/p]/Z has the form M = (1/n)
with a positive integer n > 0.

Now (1/nk) ) (1/nk+1) implies nk+1 |nk. Hence n1 > n2 > n3 >
. . . is a decreasing sequence of positive integers, which thus must
terminate, i.e. Cp∞ is an Artinian Z-module.

7. (a) Let u1, . . . , un be solutions of the one dimensional heat equation
du

dt
− d2u

dx2
= 0 (x ∈ R, t > 0). Show that

u(x1, . . . , xn, t) :=
n∏
k=1

uk(xk, t)

is a solution of the n dimensional heat equation
∂u

∂t
−∆u = 0.

(b) Calculate a solution for
∂u

∂t
(x, t)−∆u(x, t) = 0 for x ∈ R3, t > 0

u(x, 0) = x2
1x

2
2x3 for x = (x1, x2, x3) ∈ R3

Reason: Heat Equation.

Solution:

(a) We get by differentiating u = u(x1, . . . , xn, t)

∂u

∂t
(x, t) =

n∑
k=1

∂uk
∂t

(xk, t)
∏
j 6=k

uj(xj, t)

∂u

∂xk
(x, t) =

∂uk
∂xk

(xk, t)
∏
j 6=k

uj(xj, t)

∂2u

∂x2
k

(x, t) =
∂2uk
∂x2

k

(xk, t)
∏
j 6=k

uj(xj, t)

∆u(x, t) =
n∑
k=1

∂2u

∂x2
k

=
n∑
k=1

∂2uk
∂x2

k

(xk, t)
∏
j 6=k

uj(xj, t)

and so

∂u

∂t
−∆u =

n∑
k=1

(
∂uk
∂t

(xk, t)−
∂2uk
∂x2

k

(xk, t)

)
︸ ︷︷ ︸

=0 by assumption

∏
j 6=k

uj(xj, t) = 0

18
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(b) If uk(xk, t) with uk(xk, 0) = fk(xk) are solutions of the one di-
mensional heat equation, then u(x, t) = u1(x1, t)u2(x2, t)u3(x3, t)
solves the given problem with u(x, 0) = f1(x1)f2(x2)f3(x3). We
therefore want to find solutions to

duk
dt

(xk, t)−
d2

dx2
k

u(xk, t) = 0 for xk ∈ R, t > 0

uk(xk, 0) = x2
k for xk ∈ R

du3

dt
(x3, t)−

d2

dx2
3

u(x3, t) = 0 for x3 ∈ R, t > 0

u3(x3, 0) = x3 for x3 ∈ R

for k = 1, 2 . Let’s set uk(xk, t) = vk(xk) + wk(t) so

0 =
∂

∂t
uk(xk, t)−

∂2

∂x2
k

u(xk, t) = w′k(t)− v′′k(xk) for xk ∈ R, t > 0

i.e. w′k(t) = v′′k(xk) = ck ∈ R is constant. Thus

wk(t) = ckt and vk(xk) =
1

2
ckx

2
k + dkxk + ek

The initial value uk(xk, 0) = vk(xk) + wk(t) = x2
k means ck = 2

and dk = ek = hence uk(xk, t) = 2t + x2
k for k = 1, 2 . The third

equation leads in an analogue way to u3(x3, t) = x3 .

One (not necessarily all) solution to our initial value problem of
the three dimensional heat equation is given by

u(x1, x2, x3, t) = (2t+ x2
1)(2t+ x2

2)x3

8. Prove and give an example of a solvable group which is not supersolv-
able.

Reason: Solvable Groups.

Solution: A4.
The non Abelian, alternating group A4 ⊆ S4 has 4!

2
= 12 elements and

is solvable:

{ (1) } / { (1), (12)(34) } / V4 = { (1), (12)(34), (13)(24), (14)(23) } / A4

The first two factor groups (from the left) are isomorphic to Z2, i.e. of
index 2, hence Abelian and normal in each other. The Klein 4−group V4
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is also normal in A4 because it coincides with the commutator subgroup
of A4 : V4 = [A4, A4]. This means especially, that the factor group is
Abelian. It is also isomorphic to Z3 . We calculate the examples

[(123), (124)] = (123)(124)(132)(142) = (12)(34) ∈ V4

[(123), (12)(34)] = (123)(12)(34)(132)(12)(34) = (13)(24) ∈ V4

Assume we have a composition series 1 = G1 /G2 / . . . /Gn = A4 where
all Gk /A4 are normal in the main group, and have cyclic factor groups.
Since

n−1∏
k=1

|Gk+1/Gk| = |A4| = 12

we have maximal four factors, i.e. n ≤ 4 because we included {1}.
Subgroups of A4 with 2 or 3 elements are not normal:

((12)(34)) (132) ((12)(34)) = (132)(13)(24) = (124) /∈ { (1), (123), (132) }
(123) ((12)(34)) (132) = (13)(24)(34)(12) = (14)(23) /∈ { (1), (12)(34) }

A4 can be written A4
∼= V4 oϕ Z3 with

ϕ : Z3 −→ Aut(V4) , ϕ(z)(v) = (243)v(234)

A subgroup with 6 elements would necessarily be normal as of index
2. But the isomorphism shows, there is none, because S3 6 A4 . A4 is
herewith an example that the opposite of Lagrange’s theorem does not
hold: there is no normal subgroup of a finite group for any divider of
the group order. As a consequence we must have n = 4 and G3 = V4.
This leaves us with G2, G3 ∈ {Z2,Z3 } neither of which are normal in
A4 which therefore cannot be supersolvable.

9. (HS-1) For which natural numbers is 1! + . . . + n! a square number?
n! = 1 · 2 · . . . · n .

Reason: Modular Arithmetic.

Solution: 1! = 1 and 1! + 2! + 3! = 9 are square numbers, 1! + 2! = 3
and 1! + 2! + 3! + 4! = 33 are not. Now let n ≥ 5 . Then every number

x = 1! + 2! + 3! + 4! + 5! + 6! + . . .+ n! = 33 +m

where m is divisible by 10 as 2 and 5 are included factors in each
term from 5 onwards. So x divided by 10 has remainder 3. How-
ever, any square number divided by 10 must have a remainder from
{ 0, 1, 4, 5, 6, 9 }. Hence n ∈ { 1, 3 } are the only solutions.
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10. (HS-2) Determine { (x, y) ∈ N0 × N0 |x3 + 8x2 − 6x+ 8− y3 = 0 } .

Reason: Diophantic Equation.

Solution: Assume we have an integer solution for non negative num-
bers x, y to y3 = x3 + 8x2 − 6x + 8 . We start with the motto: Get
rid of what disturbs! These are apparently the cubes. As there are no
y−terms of minor degree, we can consider expressions ±(y3− (x+ g)3)
for small integers g and find:

y3 − (x+ 1)3 = x3 + 8x2 − 6x+ 8− x3 − 3x2 − 3x− 1

= 5x2 − 9x+ 7

= 5 ·

[(
x− 9

10

)2

+
59

100

]
> 0

(x+ 3)3 − y3 = x3 + 9x2 + 27x+ 27− x3 − 8x2 + 6x− 8

= x2 + 33x+ 19

> 0

Thus (x + 3)3 > y3 > (x + 1)3 or x + 1 < y < x + 3 which leaves
y = x+ 2 as only integer possibility. Thus we have

x3 + 8x2 − 6x+ 8 = (x+ 2)3 = x3 + 6x2 + 12x+ 8

2x2 − 18x = 2x(x− 9) = 0

The only possible pairs are (x, y) = (0, 2) and (x, y) = (9, 11) .
As 93 + 8 · 92 − 6 · 9 + 8 = 729 + 648 − 54 + 8 = 1331 = 113 and
03 + 8 · 02 − 6 · 0 + 8 = 8 = 23 both pairs are indeed a solution.

11. (HS-3) Given two different, coprime, positive natural numbers a, b ∈ N.
Then there are two natural numbers x, y ∈ N such that ax− by = 1 .

Reason: Pigeonhole Principle.

Solution: We may assume a, b > 1, since (x, y) = (b + 1, 1), (1, a− 1)
solve the equation in case a, b = 1 respectively, and we are done. Let
a > b and consider the multiples

m1 = a , m2 = 2a , m3 = 3a , . . . , mb−1 = (b− 1)a

We write j · a = mj = qj · b+ rj for 1 ≤ j < b with 0 ≤ rj < b , qj > 0 .

If rj = 0 for some j, then a | qj, i.e. qj = aq′j , since a and b are coprime.
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Thus ja = qjb = aq′jb and q′jb = j < b which implies q′j = 0 . But this
is impossible as otherwise we would have ja = aq′jb = 0, hence a = 0,
a contradiction.

Assume rj > 1 for all j. Then we have

r1, r2, . . . , rb−1 ∈ { 2, 3, . . . , b− 1 }

and two remainders have to be equal, say ri = rj . This means

(i− j)a = mi −mj = (qi − qj) · b+ (ri − rj) = (qi − qj) · b

and by the same argument as above, all factors of a must be in (qi−qj),
qi − qj = aq′, i.e. i − j = q′b < b and q′ = 0 . Then we get that either
i = j or a = 0 which is a contradiction in both cases.

We have shown that at least one remainder equals one, say rj = 1 .
Hence j · a− qj · b = rj = 1 which had to be proven.

12. (HS-4) How many moves do the towers of Hanoi require to solve by an
optimal strategy?

The towers of Hanoi are three places. At the beginning there is a tower
of disks on the left, the places on the right and in the middle are empty.
Each disk is a bit smaller than the one below it, such that it looks like
a round pyramid. The task is to move the complete tower from left to
right in its original order - biggest disk at the bottom, smallest on top
- where one move is the replacement of one disk at the top of a tower
to the middle, to the right or to the left.

Reason: Algorithmic Induction.

Solution: Let n be the number of disks, i.e. the height of the tower
at the beginning. We prove by induction that the solution is 2n − 1
moves.

The statement is obviously true for n = 1. Now let us assume that
the optimal strategy for n disks require 2n − 1 moves. What happens,
if we add another biggest disk at the bottom? Since we may only
move the top most disk, all towers during the game a sorted by radius,
possibly upside down. The tower without the new biggest disk has to
be moved twice: once to solve the problem for n disks onto the place
in the middle, then to move it again to the left. The additional disk
requires one additional move from left to right. Hence we get

(2n − 1) + (2n − 1) + 1 = 2 · 2n − 2 + 1 = 2n+1 − 1

moves total.
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13. (HS-5) Among six people are always three who know each other or
three who don’t. Why?

Reason: Pigeonhole Principle.

Solution: We draw a graph of six persons and connect every knot with
all others. Then we color the lines blue, if the two people representing
the vertices know each other, and red if they don’t. We have five edges
at each vertex, so we may assume that three of them are blue at the
first edge. Say we have the blue edges AB,AC,AD . If at least one
other vertex BC,BD,CD is blue, then we have found a blue triangle
and we are done. On the other hand, if all those vertices are red, then
4(BCD) is red and we are done again.
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3 April 2020

1. Let U ⊆ X be a dense subset of a normed vector space, Y a Banach
space and A ∈ L(U, Y ) a linear, bounded operator. Show that there is

a unique continuation Ã ∈ L(X, Y ) with Ã
∣∣∣
U

= A and ‖Ã‖ = ‖A‖ .

Reason: Operator Property.

Solution: For an x ∈ X we choose a sequence (yn)n∈N ⊆ U with
yn → x. Now

‖Ayn−Aym‖ ≤ ‖A‖ ·‖yn−ym‖ ≤ ‖A‖‖yn−x‖+‖A‖‖ym−x‖
n,m→∞−→ 0

so (Ayn)n∈N is a Cauchy sequence, which has a limit Ãx := limn→∞Ayn
as Y is complete. Ã is linear and bounded

‖Ãx‖ = ‖ lim
n→∞

Ayn‖
A continuous

= lim
n→∞

‖Ayn‖ ≤ ‖A‖ lim
n→∞

‖yn‖ = ‖A‖‖x‖

hence continuous and ‖Ã‖ ≤ ‖A‖ .

Now let Ā be a second solution with the required properties. We choose
again a sequence (un)n∈N ⊆ U which converges to a given point x ∈ X .
As Ā has to be continuous, we get

Āx = Ā( lim
n→∞

un) = lim
n→∞

Ā
∣∣
U
un = lim

n→∞
Aun = Ãx

Finally we have

‖A‖ = sup
x∈U,‖x‖≤1

‖Ax‖ = sup
x∈U,‖x‖≤1

‖Ãx‖ ≤ sup
x∈X,‖x‖≤1

‖Ãx‖ = ‖Ã‖

where the inequality arises from the fact that we build the supremum
over a larger set.

2. Let X ∼ N (µ, σ2) and Y ∼ N (λ, σ2) be normally distributed random
variables on R with expectation values µ, λ ∈ R and standard deviation
σ. We want to test the hypothesis that µ = λ with n independent
measurements X1, . . . , Xn and Y1, . . . , Yn . We choose the mean distance

Tn(X1, Y1;X2, Y2; . . . ;Xn, Yn) :=
1

n

n∑
k=1

(Xk − Yk)

as estimator for the difference ν = µ− λ .

(a) Does the estimator Tn have a bias and is it consistent?
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(b) Let n = 100 and σ2 = 0.5 . We use the hypotheses H0 : µ = λ
and H1 : µ 6= λ . Determine a reasonable deterministic test ϕ for
the error level α = 0.05 .

Reason: Normal Distribution.

Solution:

(a) Since the expectation value is linear we have

E(Tn) = E

(
1

n

n∑
k=1

(Xk − Yk)

)

=
1

n

n∑
k=1

(E(Xk)− E(Yk))

=
1

n

n∑
k=1

(µ− λ)

= µ− λ

i.e. Tn is unbiased. By the strong law of large numbers

1

n

n∑
k=1

(Xk − Yk)
a.s.−→ E(X − Y ) = µ− λ

and Tn is consistent.

(b) Let z := Tn(X1, Y1;X2, Y2; . . . ;Xn, Yn) ∈ R be the result of the
measurements. z is again distributed normally as the intersection
of two normally distributed random variables. The expectation
value is µ− λ and the variance

V (z) =
1

n2
V

(
n∑
k=1

V (Xk − Yk)

)

=
1

n2

n∑
k=1

V (Xk − Yk)

=
1

n
V (Xk − Yk)

=
1

n
· (V (Xk) + V (Yk))

=
1

100
·
(

1

2
+

1

2

)
= 0.01
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Under the null hypothesis we have H0 : µ = λ and thus z ∼
N (0, 0.01). A reasonable deterministic test rejects H0 as soon as
the measured value z differs too much from the expectation value
0. Hence we define as test function

ϕ : R −→ { 0, 1 }

ϕ(z) :=

{
0 , if |z| < ε

1 , otherwise

We must choose the critical level ε such that the first order error
is at most α, i.e. P (|z| > ε |H0) ≤ 0.05 . From z ∼ N (0, 0.01)
follows 10z ∼ N (0, 1) and thus

P (|z| > ε |H0) ≤ 0.05⇐⇒ P (|z| ≤ ε |H0) ≥ 0.95

⇐⇒ P (−ε ≤ z ≤ ε |H0) ≥ 0.95

⇐⇒ P (−10ε ≤ 10z ≤ 10ε |H0) ≥ 0.95

⇐⇒ F0,1(10ε)− F0,1(−10ε) ≥ 0.95

⇐⇒ 2F0,1(10ε)− 1 ≥ 0.95

⇐⇒ F0,1(10ε) ≥ 0.975

We find by looking up the table for standard normal distributions
N (0, 1) that 0.975 = F0,1(1.96), i.e. 10ε = 1.96 and our error level
is ε = 0.196.

If our measurement shows an average difference greater than 0.196,
then we falsely reject the null hypothesis by at most a 5% chance.

3. (a) Solve y′′x2 − 12y = 0, y(0) = 0, y(1) = 16 and calculate

∞∑
n=1

1

tn
, tn := y(n)− 1

2
y′(n) +

1

8
y′′(n)− 1

48
y′′′(n) +

1

384
y(4)(n).

(b) What do we get for the initial values y(1) = 1, y(−1) = −1 and
∞∑
n=1

(y′(n) + y′′′(n))?

Reason: Riemann Zeta-Function.

Solution:

(a) We have a Cauchy-Euler equation here, so we use the transforma-
tion theorem and set y(x) = u(log |x|).

y′′(x)x2 =

(
u′ · 1

x

)′
x2 =

(
u′′

1

x2
− u′ 1

x2

)
x2 = u′′−u′ = 12y(x) = 12u
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with the characteristic polynomial χ(λ) = λ2 − λ − 12 that has

zeros λ1,2 =
1

2
±
√

1

4
+ 12 ∈ {−3, 4}. The fundamental system is

thus {e−3u, e4u} for the transformed version, and {x−3, x4} for the
original equation. Hence we have

y(x) = αx−3 + βx4 = 16x4

if we apply y(0) = 0 and y(1) = 16. So

tn = y(n)− 1

2
y′(n) +

1

8
y′′(n)− 1

48
y′′′(n) +

1

384
y(4)(n)

= 16n4 − 32n3 + 24n2 − 8n+ 1

=⇒
∞∑
n=1

1

tn
=
∞∑
n=1

1

(2n− 1)4
=

1

2

(
∞∑
n=1

1

n4
+
∞∑
n=1

(−1)n−1

n4

)

=
1

2

(
ζ(4) + (1− 21−4) · ζ(4)

)
=

15

16
· π

4

90
=
π4

96
≈ 1.014678

(b) If we have the initial values y(1) = 1, y(−1) = −1 then y(x) =
αx−3 + βx4 implies α = 1, β = 0 and we get with y(x) = x−3

∞∑
n=1

(y′(n) + y′′′(n)) =
∞∑
n=1

(
−3x−4 − 60x−6

)
= −3 · ζ(4)− 60 · ζ(6)

= −3π4

90
− 60π6

945

= −π
4

30
− 4π6

63
≈ −64.2875534202

4. Solve the initial value problem y′(x) = y(x)2− (2x+1)y(x)+1+x+x2

for y(0) ∈ { 0, 1, 2 } .

Reason: Differential Equation.

Solution: We are only interested in solutions, where y(x) is finite and

27



https://www.physicsforums.com/ 01/20-06/20

y′(x) exists. We may thus use the template y(x) = x+
1

u(x)
and get

y′ = 1− u′

u2

=

(
x+

1

u

)2

− (2x+ 1)

(
x+

1

u

)
+ 1 + x+ x2

= x2 +
2x

u
+

1

u2
− 2x2 − 2x

u
− x− 1

u
+ 1 + x+ x2

=
1

u2
− u

u2
+ 1

⇔
u′ = u− 1

⇔
u′

u− 1
= 1

Integrating both sides gets log |u − 1| = x + C or u(x) = 1 + ex · eC .
Backward substitution gives us

y(x) = x+
1

1 +Dex

Let us consider y(0) = 0, i.e. y(x) = x . It is obvious that this is a
solution, too, C = D =∞ . For the case y(0) = 1 we get y(x) = x + 1

withD = 0 (or C = −∞), and for y(0) = 2 we have y(x) = x+
1

1− 1
2
ex
.

5. For coprime natural numbers n,m show that

mϕ(n) + nϕ(m) ≡ 1 modnm

Reason: Euler’s Theorem.

Solution: Since gcd(n,m) = 1 we get by Euler’s theorem mϕ(n) ≡
1 modn and nϕ(m) ≡ 1 modm. Trivially true are nϕ(m) ≡ 0 modn and
mϕ(n) ≡ 0 modm. Thus

mϕ(n) + nϕ(m) ≡ 1 modn and mϕ(n) + nϕ(m) ≡ 1 modm

Since n,m are coprime, the congruences still hold for lcm(n,m) = nm .

6. (HS-1) Let P (x) = xn + an−1x
n−1 + . . . + a1x + a0 a monic, real poly-

nomial of degree n, whose zeros are all negative.
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Show that

∫ ∞
1

dx

P (x)
converges absolutely if and only if n ≥ 2.

Reason: Integrals.

Solution: Let n ≥ 2. Now

P (x)

xn
= 1 + an−1

1

x
+ . . .+ a1

1

xn−1
+ a0

1

xn
−→ 1

converges for x→∞. Multiplication by
√
x yields

P (x)

xn−
1
2

=
√
x

(
1 + an−1

1

x
+ . . .+ a1

1

xn−1
+ a0

1

xn

)
−→∞

Thus there is a x0 > 1, such that the numerator exceeds the denomi-

nator P (x) > xn−
1
2 ≥ x

n− 1
2

0 > 1 for all x ≥ x0 and we have∫ ∞
1

∣∣∣∣ 1

P (x)

∣∣∣∣ dx =

∫ x0

1

dx

|P (x)|︸ ︷︷ ︸
=:C

+

∫ ∞
x0

dx

|P (x)|

= C +

∫ ∞
x0

dx

P (x)

≤ C +

∫ ∞
x0

x
1
2
−n dx

<∞

For n = 0 we have P (x) = 1 and∫ ∞
1

dx

P (x)
=

∫ ∞
1

dx = lim
ζ→∞

(ζ − 1) =∞

and for n = 1 with P (x) = x+ a0∫ ∞
1

dx

P (x)
=

∫ ∞
1

1

x+ a0

dx = lim
ζ→∞

(log |ζ + a0| − log |1 + a0|) =∞
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4 March 2020 - Part II

1. Let
∑∞

k=1 ak be a given convergent series with |ak+1| ≤ |ak| for all k.
Assume we use a computer to sum its value until the partial sum is
closer than ε to the actual value of the series. Does it make sense to
use |an| < ε as a stopping criterion for the loop? Please justify your
answer.

Reason: Understanding.

Solution: No. The smallness of the summands - even with a monotone
decreasing absolute value - says nothing about the size of the remainder
part, i.e. the error of the current partial sum.

Let’s consider

∞∑
k=1

ak =
∞∑
k=1

qk and Rn :=
∞∑

k=n+1

qk

For different values of q we list n for which a : n = qn < ε := 0.001

q 0.9 0.99 0.999 0.9999
n 66 688 6905 69075
Rn 0.0086 0.0993 0.998 9.998

This means for our remainder

Rn =
∞∑

k=n+1

qk =
∞∑
k=0

qk+n+1 = qn+1

∞∑
k=0

qk ≈ 0.001

1− q
q→1−0−→ +∞

Hence we can make Rn arbitrary large, although |ak| < 0.001 (k > n) ,
if we choose q < 1 close enough to 1 .

2. ”Every absolutely convergent series converges.” Now why is its proof so
complicated, couldn’t we just say: Given an absolute convergent series∑∞

k=1 |ak| then we have for the sequence Rn :=
∑∞

k=n+1 ak

|Rn| =

∣∣∣∣∣
∞∑

k=n+1

ak

∣∣∣∣∣ ≤
∞∑
k+1

|ak|

with the remainder of a convergent series on the right, hence a null
sequence. Thus Rn is a null sequence, too, and the series is convergent.

Reason: Proof Theory.
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Solution: In order to be able to estimate Rn in the described manner,
we must first be sure that it exists at all, i.e. that this series converges.
But that is exactly what should be shown! Thus we just noticed that
if the series converges, it converges.

3. Calculate the limit (i being the imaginary unit):

lim
n→∞

Arg

(
n∑
k=0

1

k + i

)

Reason: Calculus.

Solution:

n∑
k=0

1

k + i
=

n∑
k=0

k − i
k2 + 1

=
n∑
k=0

k

k2 + 1
+ i ·

n∑
k=0

1

k2 + 1

Both real and even positive sums can be estimated by known series.
The real part is unbounded, because

n∑
k=0

k

k2 + 1
>

n−1∑
k=1

1

k

whereas the imaginary part is bounded by

n∑
k=0

1

k2 + 1
< 1 +

n∑
k=1

1

k2
< 1 +

π2

6

Since the inverse tangent is continuous, we get

lim
n→∞

Arg

(
n∑
k=0

1

k + i

)
= lim

n→∞
arctan

n∑
k=0

1

k2 + 1

n∑
k=0

k

k2 + 1

= arctan lim
n→∞

n∑
k=0

1

k2 + 1

n∑
k=0

k

k2 + 1

= arctan 0

= 0
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4. Show that there is no odd dimensional real division algebra D.

Reason: Basic Algebra.

Solution: Assume dimD = n is odd. Consider the left multiplication
La : D −→ D , x 7−→ ax with an element a ∈ D−R. It’s characteristic
polynomial χ(La)(x) = det(xIn − La) in some basis is a monic, real
polynomial of odd degree and thus has a real zero z, i.e. there is an
element b ∈ D−{0} such that 0 = (zIn−La)(b) = zb− ab = (z− a)b .
Since z is real and a is not, we have z − a 6= 0 and b 6= 0 cannot be a
unit.

Alternative Solution: A division algebra structure on Rn makes
Rn \ {0} into a topological group, and induces a group structure on
Sn−1 via the map x 7→ x/|x|. But Sm can only have a group structure
for odd m by degree theory, so n must be even.

5. Let R := Z(5) =
{ a
b

∣∣∣ 5 - b
}

the ring of rational numbers which don’t

have a factor 5 in their denominator, M 6= {0} a finitely generated

R−module, and I :=
{ a
b
∈ R

∣∣∣ 25 | a
}

.

Prove that I is an ideal contained in the Jacobson radical of R and that
IM 6= M . The Jacobson radical J = J(R) is defined as the intersection
of all maximal ideals.

Reason: Nakayama’s Lemma.

Solution: We first show that x ∈ J if and only if 1− xy is a unit in R
for any y ∈ R.

If x ∈ J and 1− xy is no unit, then it belongs to some maximal ideal
K ( R (att.: this result uses the axiom of choice). Now 1 = k + xy ∈
K + JR = K + J ⊆ K which is absurd.
If x /∈ J then x /∈ K for some maximal ideal K ( R. Hence xR+K =
R by the maximality of K and we can write 1 = xy + k for some
y ∈ R, k ∈ K. Now 1− xy ∈ K and thus cannot be a unit.

R is a commutative, local ring with maximal ideal J =
{ a
b
∈ R

∣∣∣ 5 | a
}

which is also its Jacobson radical. It is obvious that I ( J is a proper
ideal. Suppose IM = M and {u1, . . . , un } is a minimal set of genera-
tors of M . Since M 6= {0} we have n ≥ 1 and un 6= 0. Since un ∈ IM
we have an expression

un =
n∑
k=1

akuk =⇒ (1− an)un =
n−1∑
k=1

akuk
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for some ak ∈ I ⊆ J. From an ∈ J we conclude that 1− 1 · an is a unit,
i.e. un can be expressed by the other u−k contradicting the minimality
if the chosen system of generators.

6. Calculate

lim
n→∞

√
nπ

22n
·
(

2n

n

)
(a) without using Stirling’s formula.

(b) by using Stirling’s formula, with accurate remainder terms, i.e.
not simply ∼.

Reason: Wallis Product.

Solution:

(a) Wallis Product.

n∏
k=1

4k2 − 1

4k2
=

n∏
k=1

(2k − 1) · (2k + 1)

2k · 2k
=

(2n)!

2n n!
· (2n)!

2n n!
· (2n+ 1)

2n n! · 2n n!

= (2n+ 1)

[
(2n)!

22n n!2

]2

= (2n+ 1)

[
1

22n

(
2n

n

)]2

so limn→∞(2n+1)

[
1

22n

(
2n

n

)]2

=
∞∏
k=1

4k2 − 1

4k2
=

2

π
by Wallis prod-

uct. Hence lim
n→∞

√
2n+ 1

22n

(
2n

n

)
=

√
2

π
or lim

n→∞

√(
n+

1

2

)
π

22n

(
2n

n

)
=

1 .

Because of lim
n→∞

√
nπ√(

n+
1

2

)
π

= 1 we also have

lim
n→∞

√
nπ

22n
·
(

2n

n

)
= 1

(b) Stirling’s Formula.
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We use Robbins estimation for Stirling’s formula:

√
2πnn+ 1

2 e−ne
1

12n+1 < n! <
√

2πnn+ 1
2 e−ne

1
12n

=⇒ 12n+1
√
e <

n!
√

2πnn+ 1
2 e−n

< 12n
√
e

=⇒
24n+1
√
e

6n
√
e

<
(2n)!

√
2π(2n)2n+ 1

2 e−2n
· 2π n2n+1e−2n

(n!)2
<

24n
√
e

12n+1
√
e2

=⇒ e
− 18n+1

144n2+6n <
√

2π ·
√
n · 2−2n · 2−

1
2 ·
(

2n

n

)
< e

− 36n−1

288n2+24n

=⇒ 1 ≤ lim
n→∞

√
πn

22n
·
(

2n

n

)
≤ 1

7. (HS-1) Prove that if for x ∈ R − {0} the number x +
1

x
is an integer,

then xn +
1

xn
with n ∈ N are integers, too.

Reason: Induction.

Solution: We have the statement for n = 1 by assumption. For n = 2
and m := n+ 1

n
∈ Z we get(
x2 +

1

x2

)
=

(
x+

1

x

)2

− 2 = m2 − 2 ∈ Z

We may assume that the statement is true for every number up to n.
Hence(

xn+1 +
1

xn+1

)
=

(
xn +

1

xn

)
·
(
x+

1

x

)
−
(
xn−1 +

1

xn−1

)
∈ Z

by induction.

8. (HS-2) We define for positive integers a, b the following sequence

xn :=

{
1 if n = 1

axn−1 + b if n > 1

Show that the sequence contains infinitely many numbers. which are
not prime, for any choice of a, b.

Reason: Numbers.

Solution: The sequence (xn)n∈N is strictly monotone increasing, since

34



https://www.physicsforums.com/ 01/20-06/20

a, b ≥ 1. Hence it is sufficient to show, that there is a natural number
d > 1 with the following property: There are infinitely many indices n
such that d |xn .

If (a, b) > 1 then we are done, so we may assume (a, b) = 1 . Let
d = x2 = ax1 + b = a+ b > 1 and be xn = qn ·d+ rn , 0 ≤ rn < d . Then
we have at least two equal remainders rα = rα+β ∈ { r2, r3, . . . , rd+2 } .
Now any divisor of a and d = a+ b would also be a divisor of a and b,
which are coprime. So a and d are coprime, too. Thus

d |xα+β − xα = a · (xα+β−1 − xα−1) =⇒ d |xα+β−1 − xα−1

=⇒ d | (qα+β−1 − qα−1)d+ (rα+β−1 − rα−1)

=⇒ d | rα+β−1 − rα−1

=⇒ rα+β−1 = rα−1

...

=⇒ r2 = r2+β

d | a · (xα+β − xα) = xα+β+1 − xα+1

=⇒ d | rα+β+1 − rα+1

=⇒ rα+β+1 = rα+1

...

=⇒ rα+2β = rα+β = rα

Thus we have r2 = r2+k·β for all k ∈ N . But r2 = 0 per construction,
so for all indices 2 + kβ we have that d |x2+kβ .

9. (HS-3) Name a convergent series
∑∞

k=1 ak with positive ak, where ak+1/ak ≥
2 holds infinitely often.

Reason: Attention with Intuition.

Solution: We define

ak :=

{
2−k if k is even

2−k+2 if k is odd

Now a2k+1/a2k = 2−2k−1+2 2−(−2k) = 2 . The series with the first terms
written out is

∑∞
k=1 ak = 2 + 1

4
+ 1

2
+ 1

16
+ 1

8
+ 1

64
+ 1

32
+ 1

256
+ 1

128
+ . . .

which converges to 2 + 1 = 3 .

10. (HS-4) For natural numbers 1 ≤ k ≤ 2n show that(
2n+ 1

k − 1

)
+

(
2n+ 1

k + 1

)
≥ 2 · n+ 1

n+ 2
·
(

2n+ 1

k

)
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Reason: Polynomials.

Solution:(
2n+ 1

k + 1

)
=

(2n+ 1)!

(k + 1)!(2n− k)!
=

2n+ 1− k
k + 1

· (2n+ 1)!

k!(2n+ 1− k)!

=
2n+ 1− k
k + 1

·
(

2n+ 1

k

)
(

2n+ 1

k

)
=

(2n+ 1)!

k!(2n+ 1− k)!
=

2n+ 2− k
k

· (2n+ 1)!

(k − 1)!(2n+ 2− k)!

=
2n+ 2− k

k
·
(

2n+ 1

k − 1

)
(

2n+ 1

k − 1

)
+

(
2n+ 1

k + 1

)
=

k

2n+ 2− k
·
(

2n+ 1

k

)
+

2n+ 1− k
k + 1

·
(

2n+ 1

k

)
Hence we have to show that

k

2n+ 2− k
+

2n+ 1− k
k + 1

≥ 2 · n+ 1

n+ 2

or with m := n− k + 1
2

and −(n− 1
2
) ≤ m ≤ n− 1

2

f(n,m) :=
2n− 2m+ 1

2n+ 3 + 2m
+

2n+ 1 + 2m

2n− 2m+ 3
− 2 · n+ 1

n+ 2

(!)

≥ 0

f(n,m) = 2 · 4n2 + 4m2 + 8n+ 3

(2n+ 3)2 − 4m2
− 2 · n+ 1

n+ 2

= 2 · 8m2n− 2n+ 12m2 − 3

((2n+ 3)2 − 4m2) · (n+ 2)

= 2 · (4m2 − 1)(2n+ 3)

(2n+ 3− 2m)(2n+ 3 + 2m)(n+ 2)

= 2 · (2m+ 1)(2m− 1)(2n+ 3)

(2n+ 3− 2m)(2n+ 3 + 2m)(n+ 2)

Since we have −2n + 1 ≤ ± 2m ≤ 2n− 1 our denominator is positive.
But m 6= 0 as k, n are integers, so 4m2 − 1 > 2 and the numerator is
also positive, which had to be shown.

11. (HS-5) The year on the Earth-like planet Trappist-1e has 365 days
divided into months of 28, 30, 31 days. How many months does its year
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have and how many months with (i) 28, (ii) 30, (iii) 31 days?

Reason: Pigeonhole Principle.

Solution: We prove the following two statements:

(a) There are 12 months on Trappist-1e.

(b) The following combinations are possible:
(28, 30, 31) ∈ { (0, 7, 5), (1, 4, 7), (2, 1, 9) }.

We have to solve the equation 28a+ 30b+ 31c = 365 with a, b, c ∈ N0.
c ≥ 1, since 365 is odd.

(a) With c′ := c− 1 we have

28a+ 30b+ 31c′ = 334

=⇒ 28(a+ b+ c′) ≤ 334 ≤ 31(a+ b+ c′)

=⇒ 10 <
334

31
≤ a+ b+ c′ ≤ 334

28
< 12

=⇒ a+ b+ c′ = 11

=⇒ a+ b+ c = 12

since a, b, c, c′ ∈ N0.

(b) The sum of days can also be written as

365 = (30− 2)a+ 30b+ (30 + 1)c = 30(a+ b+ c)− 2a+ c = 360− 2a+ c

=⇒ 5 = c− 2a with 0 ≤ a, 1 ≤ c and a+ c ≤ 12

=⇒ a+ c = a+ (5 + 2a) = 3a+ 5 ≤ 12

=⇒ (a, c) ∈ { (0, 5), (1, 7), (2, 9) }
=⇒ (a, b, c) ∈ { (0, 7, 5), (1, 4, 7)︸ ︷︷ ︸

Earth

, (2, 1, 9) }

12. (HS-6) Decrypt the affine encrypted “Ara gtynd hdm hvcrsnd mthvtjph!”

Reason: Puzzle.

Solution: Non vitae sed scholae discimus! with x→ 17(x− 1) + 14 .
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5 March 2020

1. Let g = linR{ e1, e2, e3, e4 } on which we define the following multipli-
cation:

[e1, e4] = 2e1 , [e2, e4] = 3e2 − e3 , [e3, e4] = e2 + 3e3

and [ei, ej] = 0 otherwise, as well as [ei, ei] = 0.

Show that

(a) g is a Lie algebra.

(b) There exists an α0 ∈ A(g) where

A(g) := {α : g
linear−→ g | ∀X, Y ∈ g : [α(X), Y ] + [X,α(Y )] = 0 }

such that [adX,α0] ∈ R · α0 for all X ∈ g .

(c) The center Z(g) = { 0 } .
(d) g has a one dimensional ideal.

Reason: Solvable Lie Algebra.

Solution:

(a) g′ = [g, g] ⊆ linR{ e1, e2, e3 } which all commute. Thus we only
have to consider products [e4, [ea, eb]] with a, b ≤ 3 .

[e4, [ea, eb]] + [ea, [eb, e4]] + [eb, [e4, ea]] ∈ [e4, 0] + [ea, g
′] + [eb, g

′] = 0

(b) We have seen that [[g, g], [g, g]] = [g′, g′] = 0, i.e. g is solvable. The
setting X.α := [adX,α] = adX ◦ α− α ◦ adX makes A(g) into a
g−module. By Lie’s theorem there is an invariant one dimensional
submodule, spanned by α0 .

Explicitly we can choose α0(x1e1 + x2e2 + x3e3 + x4e4) := x4e1

which is easy to verify.

(c) Let Z = z1e1 + z2e2 + z3e3 + z4e4 ∈ Z(g) be a central element.
Then

[Z, e4] = 0 = 2z1e1 + z2(3e2 − e3) + z3(e2 + 3e3)

=⇒ z1 = 0 , 3z2 + z3 = 0 , −z2 + 3z3 = 0

=⇒ Z = z4ee

which cannot be central unless Z = 0 since 0 = [e1, Z] = 2z4e1 .
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(d) It is clear from the multiplication table, that e1 spans a one di-
mensional ideal.

2. Let A,B ∈M(m,R) and ‖A‖, ‖B‖ ≤ 1, then∥∥ eA+B − eA · eB
∥∥ ≤ 6e2 · ‖ [A,B] ‖

Reason: Trotter’s Estimation.

Solution: For a vector α ∈ { 0, 1 }n we define

S(α) :=
n∏
k=1

A1−αkBαk

Each of these vectors can be sorted in an ascending order in n2 steps,
e.g. with Bubble sort, until S(αSort) = An−|α|B|α| where every commu-
tation between A,B results in an additional term [A,B] = AB−BA :

S(BA)− S(AB) = BA− AB = −[A,B]

or with an example which needs more steps:[
α0 = (1, 0, 1, 0)
S(α0) = BABA

]
−→

[
α1 = (0, 1, 1, 0)
S(α1) = ABBA

]
S(α0)− S(α1) = (BA− AB)BA = −[A,B]BA[

α1 = (0, 1, 1, 0)
S(α1) = ABBA

]
−→

[
α2 = (0, 1, 0, 1)
S(α2) = ABAB

]
S(α1)− S(α2) = AB(BA− AB) = −AB[A,B][

α2 = (0, 1, 0, 1)
S(α2) = ABAB

]
−→

[
α3 = (0, 0, 1, 1)
S(α3) = AABB

]
S(α2)− S(α3) = A(BA− AB)B = −A[A,B]B

So every sorting step produces a factor [A,B], which combined with
the assumption ‖A‖, ‖B‖ ≤ 1 means ‖S(αk) − S(αk+1)‖ ≤ ‖ [A,B] ‖
and

‖S(α)− S(αSort)‖ ≤
n2−1∑
k=0

‖S(αk)− S(αk+1)‖ ≤ n2 · ‖ [A,B] ‖
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eA+B =
∞∑
n=0

1

n!
(A+B)n =

∞∑
n=0

1

n!

∑
α∈{0,1}n

S(α)

eA · eB =

(
∞∑
n=0

An

n!

)
·

(
∞∑
n=0

Bn

n!

)
=
∞∑
n=0

n∑
k=0

An−k

(n− k)!
· B

k

k!

=
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
An−kBk =

∞∑
n=0

1

n!

∑
α∈{0,1}n

An−|α|B|α|

=
∞∑
n=0

1

n!

∑
α∈{0,1}n

S(αSort)

With these equations we get

‖ eA+B − eA · eB ‖ ≤
∞∑
n=0

1

n!

∑
α∈{0,1}n

‖ S(α)− S(αSort) ‖

≤
∞∑
n=0

2n

n!
· n2 · ‖ [A,B] ‖

= 6e2 · ‖ [A,B] ‖

3. Show that for m×m matrices A,B

et (A+B) = lim
n→∞

(
et

A
n · et

B
n

)n
Reason: Trotters Formula.

Solution: We will use Trotter’s estimation from the previous problem.

Let S := exp

(
A

n
+
B

n

)
and T := exp

(
A

n

)
· exp

(
B

n

)
. Then

‖S‖ ≤ exp

(
‖A‖
n

+
‖B‖
n

)
‖T‖ ≤ exp

(
‖A‖
n

)
· exp

(
‖B‖
n

)
= exp

(
‖A‖
n

+
‖B‖
n

)
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Sn − T n =
n−1∑
k=0

Sn−kT k −
n∑
k=1

Sn−kT k

=
n−1∑
k=0

Sn−1−k · S · T k −
n−1∑
k=0

Sn−k−1 · T · T k

=
n−1∑
k=0

Sn−1−k · (S − T ) · T k

‖Sn − T n‖ ≤
n−1∑
k=0

‖S‖n−1−k · ‖T‖k · ‖S − T‖

≤ n · exp

(
‖A‖
n

+
‖B‖
n

)n−1

· ‖S − T‖

≤ n · e‖A‖+‖B‖ · ‖S − T‖

Now if we choose n large enough such that

∥∥∥∥An
∥∥∥∥ ,∥∥∥∥Bn

∥∥∥∥ ≤ 1 , we know

that

‖S − T‖ =

∥∥∥∥exp

(
A

n
+
B

n

)
− exp

(
A

n

)
· exp

(
B

n

)∥∥∥∥
≤ 6 e2 ·

∥∥∥∥ [An , Bn
] ∥∥∥∥ = 6 e2 1

n2
‖ [A,B] ‖

‖Sn − T n‖ ≤ n · e‖A‖+‖B‖ · ‖S − T‖ ≤ 6e2

n
· e‖A‖+‖B‖ · ‖ [A,B] ‖

With n→∞ we get Sn = exp

(
A

n
+
B

n

)n
= exp (A+B) −→ T n or

exp (tA+ tB) = lim
n→∞

(
exp

(
tA

n

)
· exp

(
tB

n

))n
4. (HS-1) Given two integers n,m with nm 6= 0. Show that there is a

integer expression 1 = sn+ tm if and only if n and m are coprime, i.e.
have no proper common divisor.

Reason: Bezout’s Lemma.

Solution: Consider all numbers {x = sn + tm > 0 | s, t ∈ Z }. If we
choose the smallest one, say d, then gcd(n,m) | d .

Division with remainder gives us n = qd+ r with 0 ≤ r < d . With the
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expression for d we get

n = q(sn+ tm) + r ⇐⇒ r = (1− qs)n+ (−qt)m

We had chosen d to be minimal under these conditions, so r = 0 is the
only possibility. But then n = qd+0 and d |n . With the same argument
we get d |m, so as d divides both given integers, d | gcd(n,m) .

With gcd(n,m) | d | gcd(n,m) we have d = gcd(n,m) and an expression
d = sn+ tm . Finally, n and m are coprime if and only if d = 1 .

5. (HS-2) Division of an integer by a prime number p leaves us with the
possible remainders C := { 0, 1, 2, . . . , p−1 } . We can define an addition
and a multiplication on C if we wrap it around p, i.e. we identify
0 = p = 2p = 3p = . . . , 1 = 1 + p = 1 + 2p = 1 + 3p = . . . , . . . This is
called modular arithmetic (modulo p).

Show that for any given numbers a, b ∈ C the equations a + x = b
and a · x = b have a unique solution. Is this still true if we drop the
requirement that p is prime?

Remark: This problem is about proof techniques, so be as accurate
as possible.

Reason: Proof Techniques.

Solution: We will make use of the laws of associativity, commutativity
and distributivity on C which are all easy to check.

If we set x := q · p− a+ b such that x ∈ C, then

a+ x = b =⇒ a+ qp− a+ b = qp+ b ≡ b

solves the equation for addition. This does not require p to be prime. If
we have a+x = b = a+y then x = qp−a+b = qp−a+a+y = qp+y ≡ y
up to multiples of p which we all identified.

According to Bezout’s Lemma, we can find integers s, t such that 1 =
sa+ tp because all numbers in C are coprime to p, if p is prime. Hence
from ax = b we get

s · b = s · (a · x) = (sa)x = (1− tp)x = x− (tp)x = x− (tx)p ≡ x

Now let q ∈ Z be such that s′ = s+ qp ∈ C . Then

s′b = sb+ qpb ≡ sb ≡ x ∈ C
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If we have a · x = b = a · y then

x = s′b = s′(ay) = (s′a)y = (sa)y + ((qp)a)y

= (1− tp)y + (qay)p = y + (qay − ty)p

≡ y

up to multiples of p which we all identified.

The existence of a solution for ax = b does not work in general, if p
isn’t prime. Let p = 4, then there is no solution for 2x = 1 .
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6 February 2020

1. The function ϕ : R2 −→ R2 with ϕ(t, r) = (t(r+ 2), t2− r) is injective
on U := (0, 1) × (−1, 1) . Show that ϕ : U −→ V := ϕ(U) is a
diffeomorphism.

Next let f : R2 −→ R be integrable over V . Write∫
V

f dλ =

∫ ...

...

∫ ...

...

. . . f(. . . , . . .) dr dt

and calculate the area of V .

Reason: Analysis.

Solution: We get

J(t,r)ϕ =

[
r + 2 t

2t −1

]
, det(D(t,r)ϕ) = det(J(t,r)ϕ) = −r − 2− 2t2

so for (t, r) ∈ U the determinate is det(D(t,r)ϕ) < −1 < 0 .

The function ϕ : U −→ V is obviously continuously differentiable and
surjective:

(t(r + 2), t2 − r) = (a, b) =⇒ t =
a

r + 2
, b = t2 − r

=⇒ 0 = b(r + 2)2 − a2 + r(r + 2)2 =: p(r)

If a = 0 we can choose t = 0 and r = −b hence we may assume a 6= 0 .
Since p(r) is a polynomial of degree 3 it has at least one real root r0

which gives us t0 =
a

r0 + 2
in case r0 6= −2. The case r0 = 2 means

p(−2) = 0 = −a2 which we dealt with before.

ϕ is injective, too: The differential of ϕ is everywhere in U an isomor-
phism, hence ϕ is a diffeomorphism by the inverse function theorem.∫

V

f dλ =

∫
U

| det(Dϕ)| · (f ◦ ϕ) dλ

=

∫ 1

0

∫ 1

−1

(2t2 + r + 2) · f(t(r + 2), t2 − r) dr dt

with the substitution theorem and Fubini’s theorem. Especially we get

vol(V ) =

∫
V

1 dλ =

∫ 1

0

∫ 1

−1

2t2+r+2 dr dt =

∫ 1

0

2(2t2+2) dt =
4

3
+4 =

16

3
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2. Calculate
∞∑
k=1

1(
2k
k

)
Reason: Application of the Differential Operator.

Solution: The Taylor series for arcsin2 z and −1 < z < 1 is given by

arcsin2 z =
1

2

∞∑
k=1

(2z)2k

k2
(

2k
k

)
and applying the differential operator z

d

dz
twice yields

2z arcsin z√
1− z2

=
1

2

∞∑
k=1

22k+1kz2k

k2
(

2k
k

)
2z arcsin z√

1− z2
+

2z2

1− z2
+

2z3 arcsin z
√

1− z2
3 =

1

2

∞∑
k=1

22k+2k2z2k

k2
(

2k
k

)
2z2

1− z2
+

2z arcsin z
√

1− z2
3 = 2

∞∑
k=1

(2z)2k(
2k
k

)
which is divided by 2 for z =

1

2

∞∑
k=1

1(
2k
k

) =
1

3
+

π

12
· 4

3
· 2√

3
=

9 + 2
√

3π

27
≈ 0.7364

3. Let a be an integer and p an odd prime which does not divide a. The
left multiplication

λa,p : Z×p −→ Z×p ; x 7−→ axmod p

is then a permutation on { 1, . . . , p− 1 } . Prove(
a

p

)
= sgn (λa,p)

Reason: Lemma of Zolotarev

Solution: Let k = ord a in Z×p . Then λa,p is a product of
p− 1

k
many

cycles of length k. Thus

sgn (λa,p) = (−1)(k−1)(p−1)/k
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If k is even, then

sgn (λa,p) = (−1)(p−1)/k ≡ (ak/2)(p−1)/k ≡ a(p−1)/2 mod p

If k is odd, then 2k | (p− 1) and

sgn (λa,p) = 1 ≡
(
ak
)(p−1)/2k ≡ a(p−1)/2 mod p

Hence we have in both cases with Euler’s criterion for the Legendre
symbol of odd primes

sgn (λa,p) ≡ a(p−1)/2 ≡
(
a

p

)
mod p

4. Let H be a real Hilbert space and β a continuous bilinear form, H∗ its
dual space of continuous functionals on H, and β(f, f) ≥ C‖f‖2 with
C > 0.
Prove that for any given continuous functional F ∈ H∗ there is a unique
vector f † ∈ H such that

F (g) = β(f †, g) ∀ g ∈ H

Reason: Lemma of Babuška-Lax-Milgram.

Solution: The statement is a generalization of Riesz’ representation
theorem (or theorem of Fréchet-Riesz). If we define a continuous func-
tion B(f)(g) := β(f, g) then Riesz’ representation theorem gives us an
isometric isomorphism T : H∗ −→ H such that for every B(f) ∈ H∗
there is a unique T (B(f)) such that ‖B(f)‖ = ‖T (B(f))‖ and

B(f)(g) = 〈T (B(f)), g〉H = β(f, g) ∀ g ∈ H (∗)

or generally f ∗(g) = 〈T (f ∗), g〉H ∀ g ∈ H (∗)

The functionals B(f) are bounded since β is continuous, i.e. ‖B‖ is a
finite real number. We get from our lower bound

C‖f‖2 ≤ |β(f, f)| = 〈T (B(f)), f〉H
≤ ‖T (B(f))‖ · ‖f‖ = ‖B(f)‖ · ‖f‖ ≤ ‖B‖ · ‖f‖2

hence 0 <
C

‖B‖
≤ 1. We now define the function

Q(f) := f − k · (T (B(f))− T (F ))
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on H with a real number k ∈ R−{0}. A vector f † ∈ H is a fixed point
of Q iff T (B(f †))− T (F ) = 0 . In general we have for all g ∈ H

T (B(f))− T (F )
(∗∗)
= 0⇐⇒ F (g)

(∗∗)
= B(f)(g) = β(f, g)

(∗)
= 〈T (B(f)), g〉H

⇐⇒ F (g)
(∗)
= 〈T (F ), g〉H

(∗∗)
= 〈T (B(f)), g〉H

⇐⇒ 〈T (B(f))− T (F ), g〉H
(∗∗)
= 0

again by Riesz’ representation theorem and the equations above. As
g ∈ H is arbitrary, we may set g := T (B(f †))− T (F ) for a fixed point
of Q and get ‖T (B(f †))− T (F )‖2 = 0 hence

B(f †) = β(f †,−) = F

which has to be shown. Thus all what’s left to show is, that such a
unique fixed point f † of Q exists, which we will prove with Banach’s
fixed point theorem.

‖Q(f)−Q(g)‖2 = ‖f − k(T (B(f))− T (F ))− g + k(T (B(g))− T (F ))‖2

= 〈(f − g)− kT (B(f − g)), (f − g)− kT (B(f − g))〉H
(∗)
= l, ‖f − g‖2 − 2k 〈T (B(f − g)), f − g〉H + k2 ‖T (B(f − g))‖2

(∗)
= ‖f − g‖2 − 2k β(f − g, f − g) + k2 ‖B(f − g)‖2

≤ ‖f − g‖2 − 2k C ‖f − g‖2 + k2 ‖B‖2 ‖f − g‖2

= ‖f − g‖2
(
1− 2k C + k2 ‖B‖2

)
set k:=C/‖B‖2

= ‖f − g‖2

(
1− C2

‖B‖2

)

We have seen that
C

‖B‖
∈ (0, 1] hence q := 1 − C2

‖B‖2
∈ [0, 1) and

‖Q(f)−Q(g)‖2 = q ‖f − g‖2 and the statement follows from Banach’s
fixed point theorem.

5. (HS-1)

(a) Let A = (−2, 0) , B = (0, 4) and M = (1, 3) . What is α =
^(AMB)?

(b) Let C = (−1, 2 +
√

5) , D = (−1, 2−
√

5) and M = (1, 3) . What
is β = ^(CMD)?
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Reason: Theorem of Thales.

Solution: We observe that A andB, as well as C andD are diametrical
points on the circle (x + 1)2 + (y − 2)2 = 5 and that M fulfills that
equation, too. Hence by Thales’ theorem, the angles at M have both
to be a right angle.

6. (HS-2) Determine (with justification, but without explicit calculation)
which of

(a) 10001001 and 10021000

(b) e0.000009 − e0.000007 + e0.000002 − e0.000001 and e0.000008 − e0.000005

is larger.

Reason: Numbers.

Solution:

(a) We show that 10001001 > 10021000:

3003 = 1001 · log10(1000) > 1000 · log 1002

log 10
= 1000 · log10(1002)

This is equivalent to

log10(1002) = log10

(
1000 · 1000 + 2

1000

)
= 3 + log10

(
1 +

1

500

)
< 3.003

⇐⇒

log10

(
1 +

1

500

)
<

3

1000

⇐⇒

1 +
1

500
<

10, 000

9, 961
=

1, 000
1

1
+ . . .+

1

1︸ ︷︷ ︸
=994

+
1

2
+

1

2
+

1

2
+

1

5
+

1

5
+

1

5

H.M.≤G.M.

≤ 1000
√

1 · . . . · 1 · 23 · 53 =
1000
√

1000 ≈ 1.0069

(b) With a = e0.000001 we have x = a9 − a7 + a2 − a and y = a8 − a5

such that the difference is

x− y = a9 − a8 − a7 + a5 + a2 − a = a(a− 1)2(a+ 1)(a5 − a2 − 1)
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By monotony of the exponential function and 1 < e < 4 we get

1 < a < a2 < a5 = e0.000005 < 40.000005 < 40.5 = 2

a5 − a2 − 1 < 2− 1− 1 = 0

0 < a− 1 < a

0 < a+ 1 < 2a < 4

and so x − y = a︸︷︷︸
>0

· (a− 1)2︸ ︷︷ ︸
>0

· (a+ 1)︸ ︷︷ ︸
>0

· (a5 − a2 − 1)︸ ︷︷ ︸
<0

< 0 and

e0.000009 − e0.000007 + e0.000002 − e0.000001 < e0.000008 − e0.000005

7. (HS-3) Answer the following questions:

(a) How many knights can you place on a n×m chessboard such that
no two attack each other?

(b) In how many different ways can eight queens be placed on a chess-
board, such that no queen threatens another? Two solutions are
not different, if they can be achieved by a rotation or by mirroring
of the board.

Reason: Puzzle. Internet Research.

Solution:

(a) Knights change color if they move. So the maximal possible num-
ber of knights on an n×m chessboard is the maximal number of

squares of the same color dn ·m
2
e . Exceptions are boards where

n or m are small.

Case m = 1: In this case we can place n knights on the board.

Case m = 2: In this case we can place knights on blocks of four,
followed by empty blocks of four. This way we get more knights
on the board than we would get, if we placed all on, say black
squares. This can be seen for n = 6, where we have eight knights
by the block structure on the twelve squares, but only six black
squares. If we write n = 4k + r with k ≥ 0 , r ∈ {1, 2, 3, 4} then
the number N of possible knights is

N =

{
4k + 2 if r = 1

4k + 4 if r > 1

In all cases with m ≥ 3 we are in the general case, where the
squares of one color is optimal, because these are more than those
we can get by building blocks. And more than that isn’t possible.

49



https://www.physicsforums.com/ 01/20-06/20

(b) There are 92 solutions total, and 12 fundamental solutions, i.e. up
to reflection and rotation. For a list see

https://en.wikipedia.org/wiki/Eight_queens_puzzle#Solutions
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7 January 2020

1. Let f : R −→ R be a smooth, 2π−periodic function with square

integrable derivative, and

∫ 2π

0

f(x) dx = 0 . Prove∫ 2π

0

[f(x)]2 dx ≤
∫ 2π

0

[f ′(x)]
2
dx

For which functions does equality hold?

Reason: Wirtinger’s Inequality.

Solution: The function fulfills the Dirichlet conditions, so there is a
real Fourier series such that

f(x) =
a0

2
+
∞∑
n=1

(an cos(nx) + bn sin(nx))

See e.g. https://en.wikipedia.org/wiki/Fourier series. The condition
about the vanishing integral implies a0 = 0 . By Parseval’s equation
(see challenge from November 2019) for f(x) and f ′(x) we get

1

π

∫ 2π

0

f 2(x) dx =
∞∑
n=1

(
a2
n + b2

n

)
≤

∞∑
n=1

n2
(
a2
n + b2

n

)
=

1

π

∫ 2π

0

(f ′)2(x) dx

and equality holds, if an = bn = 0 for all n > 1 , i.e

f(x) = a1 cos(x) + b1 sin(x) .

2. Let M be the set of all nonnegative, convex functions f : [0, 1] −→ R
with f(0) = 0 . Prove∫ 1

0

n∏
k=1

fk(x) dx ≥ 2n

n+ 1

n∏
k=1

∫ 1

0

fk(x) dx ∀ f1, . . . , fn ∈M

Hint: Define and use f̂(x) = 2x

∫ 1

0

f(x) dx .

Reason: Anderson’s Inequality.

Solution:
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(a) Every f ∈M is monotone increasing.

Assume we have points 0 ≤ x1 < x2 ≤ 1 such that f(x1) > f(x2).
Then for some value λ ∈ [0, 1] and because f(0)

f((λ)x2) = f(x1) ≤ λf(x2) < f(x1)

which is not possible. Geometrically we would get a point (x1, f(x1))

above the secant s(x) =
f(x2)

x2

·x between the origin and (x2, f(x2))

when it should be below.

(b) M is multiplicatively closed: f, g ∈M =⇒ f · g ∈M .

We have to prove convexity. Choose α, β ≥ 0 with α + β = 1 .
Since f, g are both monotone (increasing), we have

(f(x)− f(y)) (g(x)− g(y)) ≥ 0

and so

f(x)g(x) + f(y)g(y) ≥ f(x)g(y) + f(y)g(x)

and thus

(fg)(αx+ βy) = f(αx+ βy) + g(αx+ βy)

≤ (αf(x) + βf(y)) (αg(x) + βg(y)) by convexity

= α2f(x)g(x) + αβ
(
f(x)g(y) + f(y)g(x) + β2f(y)g(y)

)
≤
(
α2 + αβ

)
f(x)g(x) +

(
αβ + β2

)
f(y)g(y)

= αf(x)g(x) + βf(y)g(y)

(c) f̂(x) := 2x

∫ 1

0

f(t) dt ∈M ∀ f ∈M

since f̂(0) = 0 and linearity in x proves convexity. Note that∫ 1

0
f̂(x) dx =

∫ 1

0
f(x) dx .

(d)

∫ 1

0

g(x)f(x) dx ≥
∫ 1

0

g(x)f̂(x) dx ∀ f, g ∈M

By the equality of the areas under the function graphs of f̂(x) and
f(x) there has to be a point 0 < s < 1 such that f(x) ≤ f̂(x) for
all x ≤ s and f(x) ≥ f̂(x) for all x ≥ s . Hence
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∫ s

0

f̂(x) dx+

∫ 1

s

f̂(x) dx =

∫ s

0

f(x) dx+

∫ 1

s

f(x) dx and

∫ s

0

(
f̂(x)− f(x)

)
dx =

∫ 1

s

(
f(x)− f̂(x)

)
dx

As g is monotone increasing we get∫ s

0

g(x)
(
f̂(x)− f(x)

)
dx ≤ g(s)

∫ 1

s

(
f̂(x)− f(x)

)
dx

= g(s)

∫ 1

s

(
f(x)− f̂(x)

)
dx

≤
∫ 1

s

g(x)
(
f(x)− f̂(x)

)
dx

= −
∫ 1

s

g(x)
(
f̂(x)− f(x)

)
dx

Thus

∫ 1

0

g(x)
(
f̂(x)− f(x)

)
dx ≤ 0 .

Finally we have for any f1, . . . , fn ∈M∫ 1

0

n∏
k=1

fk(x) dx ≥
∫ 1

0

n∏
k=1

f̂k(x) dx

= 2n
n∏
k=1

(∫ 1

0

fk(x) dx

)∫ 1

0

xn dx

=
2n

n+ 1

n∏
k=1

∫ 1

0

fk(x) dx

3. Consider the following differential operators on the space of smooth
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functions C∞(R)

A = 2x · d
dx

, B = x2 · d
dx

, C = − d

dx

Determine the eigenvectors and a (multiplicative) structure on lin spanR{A,B,C } .

Reason: Lie theory.

Solution: The eigenvectors are:

A.f = λf ⇐⇒ f = c
√
x
λ

B.g = λg ⇐⇒ g = ce−λ/x

C.h = λh⇐⇒ h = ce−λx

and the structure is: spanR{A,B.C } = sl(2,R)

A =

[
1 0
0 −1

]
, B =

[
0 1
0 0

]
, C =

[
0 0
1 0

]
4. Prove

n∑
k=0

1(
n
k

) =
n+ 1

2n+1

n+1∑
k=1

2k

k

Reason: Useful Series Identity.

Solution: We define an :=
2n+1

n+ 1

∑n
k=0

1(
n
k

) . So

an − an−1 =
2n+1

n+ 1

(
1 +

n−1∑
k=0

(
(n− k)!k!

n!
− (n+ 1)(n− 1− k)!k!

2n(n− 1)!

))

=
2n

n+ 1

(
2 +

n−1∑
k=0

(n− k)!k!

n!

(
2− n+ 1

n− k

))

=
2n

n+ 1

(
2 +

n−1∑
k=0

(n− k)!k!

n!
· n− 2k − 1

n− k

)

=
2n+1

n+ 1
+

2n

(n+ 1)!

n−1∑
k=0

((n− 1)− k)! k! ((n− 1)− 2k)︸ ︷︷ ︸
=:bk

Now we get

b(n−1)−k = k! ((n− 1)− k)! ((n− 1)− 2((n− 1)− k))

= k! ((n− 1)− k)! (−1) ((n− 1)− 2k) = −bk
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which implies, that
∑n−1

k=0 bk = 0 and

an−1 = an−1 − an−2 + an−2 − an−3 ± . . .+ a1 − a0 + a0 − a−1︸︷︷︸
=0

=
n−1∑
k=0

(ak − ak−1) =
n−1∑
k=0

2k+1

k + 1
+

2k

(k + 1)!

n−1∑
k=0

bk

=
n∑
k=1

2k

k
and

n∑
k=0

1(
n
k

) =
n+ 1

2n+1
· an =

n+ 1

2n+1

n+1∑
k=1

2k

k

5. Calculate
∞∑
k=1

1(
2k
2

)
Reason: Easy series.

Solution:
∞∑
k=1

1(
2k
2

) = 2
∞∑
k=1

1

2k(2k − 1)
= 2

∞∑
k=1

(
1

2k − 1
− 1

2k

)
= 2

∞∑
k=1

(−1)k+1

k

For the last equality, we use the Taylor series for natural logarithm and
plug x = 1 in it:

ln(1 + x) =
∞∑
k=1

(−1)k+1

k
xk

such that
∞∑
k=1

1(
2k
2

) = 2 log 2

6. Prove for b > 0 ∫ ∞
−∞

f

(
x− b

x

)
dx =

∫ ∞
−∞

f(x) dx

Reason: Integration Methods. Translation Invariance.

Solution:

I :=

∫ ∞
−∞

f

(
x− b

x

)
dx =

∫ 0

−∞
f

(
x− b

x

)
dx+

∫ ∞
0

f

(
x− b

x

)
dx

u=−b/x
=

∫ ∞
0

f

(
− b
u

+ u

)
b

u2
du+

∫ 0

−∞
f

(
− b
u

+ u

)
b

u2
du

=

∫ ∞
−∞

f

(
u− b

u

)
b

u2
du =

∫ ∞
−∞

f

(
x− b

x

)
b

x2
dx
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Therefore

2I =

∫ ∞
−∞

f

(
x− b

x

)(
1 +

b

x2

)
dx

=

∫ 0

−∞
f

(
x− b

x

)(
1 +

b

x2

)
dx+

∫ ∞
0

f

(
x− b

x

)(
1 +

b

x2

)
dx

v=x−(b/x)
=

∫ ∞
−∞

f(v) dv +

∫ ∞
−∞

f(v) dv

= 2

∫ ∞
−∞

f(v) dv

which is what has to be proven.

7. Let f : R −→ R be a π−periodic function. Prove that∫ ∞
−∞

f(x)
sinx

x
dx =

∫ π

0

f(x) dx and

∫ ∞
−∞

f(x)
tanx

x
dx =

∫ π

0

f(x) dx

so the integrals exist. See (***) at the end of the proof.

Reason: Integration Methods. Lobachevski’s Formulas.

Solution: We omit will the epsilontic around the poles, and start with
the series expansion of csc(x)

csc(x) =
1

x
+ 2x

∑
k∈N

(−1)k

x2 − k2π2

=
1

x
+
∑
k∈N

(−1)k
(x+ kπ) + (x− kπ)

(x− kπ)(x+ kπ)

=
1

x
+
∑
k∈N

(
(−1)k

x+ kπ
+

(−1)k

x− kπ

)
(∗)
=
∑
k∈Z

(−1)k

x+ kπ
=

1

sinx

and for the second part with the series expansion of cot(x)

cot(x) =
1

x
+
∑
k∈N

(
1

x+ kπ
+

1

x− kπ

)
(∗∗)
=
∑
k∈Z

1

x+ kπ
=

1

tanx
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∫ ∞
−∞

f(x)
sinx

x
dx =

∑
k∈Z

∫ (k+1)π

kπ

f(x)
sinx

x
dx

y=x−kπ
=

∑
k∈Z

∫ π

0

f(y)
sin(y + kπ)

y + kπ
dy

=
∑
k∈Z

∫ π

0

f(y)
(−1)k sin(y)

y + kπ
dy

=

∫ π

0

f(y)
∑
k∈Z

(−1)k

y + kπ︸ ︷︷ ︸
(∗)
= csc(y)

sin y dy

=

∫ π

0

f(y) dy =

∫ π

0

f(x) dx

Note that similar can be done with the weight function
sin2 x

x2
.

For the second part we get∫ ∞
−∞

f(x)
tanx

x
dx =

∑
k∈Z

∫ (k+1/2)π

(k−1/2)π

f(x)
tanx

x
dx

y=x−kπ
=

∑
k∈Z

∫ π/2

−π/2
f(y)

tan y

y + kπ
dy

=

∫ π/2

−π/2
f(y)

∑
k∈Z

1

y + kπ︸ ︷︷ ︸
(∗∗)
= cot y

tan y dy

z=y+π/2
=

∫ π

0

f(z) dz =

∫ π

0

f(x) dx

(***) The second equation is wrong in general, e.g. choose f(x) = 1 .
We used exchangeability of integral, series and implicitly limits (at the
poles). Hence this example shows that conditions such as in Fubini’s
theorem have to be carefully checked!

8. (a) If ϕ : G −→ H is a homomorphism of finite groups, then ord(ϕ(g)) | ord(g)
for all elements g ∈ G .

(b) Determine all group homomorphisms ϕ : Z4 −→ Sym(3) and
ψ : Sym(3) −→ Z4 .

Reason: Basic Group Theory.

Solution:
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(a) Let n := ord(g) and k := ord(g). Since ϕ(g)n = ϕ(gn) = ϕ(e) = e
so k ≤ n . We can write n = s · k + r with non negative integers
s, 0 ≤ r < k by division with remainder. Now

ϕ(g)r = ϕ(g)n−sk = ϕ(g)n ·
(
ϕ(g)k

)−s
= e · e−s = s

By minimality of k > r this is only possible, if r = 0, i.e. n = s · k
and k |n .

(b) Every homomorphism ϕ : Z4 −→ Sym(3) is uniquely deter-
mined by its image ϕ([1]), since [1] = 1 + 4Z generates Z4 . As
ϕ([1]) | ord([1]) = 4 the only possible elements of Sym(3) are
X = { (1), (12), (13), (23) } . For every element x ∈ X we de-
fine ϕx([0]) = (1) and ϕx([1]) = x . Given that ϕx needs to be
a homomorphism, we get

ϕx([2]) = ϕx([1]) + ϕx([1]) = x2 = (1)

ϕx([3]) = ϕx([1]) + ϕx([1]) + ϕx([1]) = x3 = x

so every element of X defines a group homomorphism ϕx .

Let on the other hand be ψ : Sym(3) −→ Z4 be a group homo-
morphism. Then ord(123) = 3 and Z4 doesn’t have an element of
order 3. So ψ(123) = ψ(132) = [0] .
All transpositions are conjugates of each other:

(12)(23)(12) = (13) , (13)(12)(13) = (23) , (23)(13)(23) = (12)

and Z4 is Abelian, hence ψ(12) = ψ(13) = ψ(23) . Furthermore
ord(ψ(τ)) | ord(τ) = 2 so ψ(τ) ∈ { [0], [2] } for all transpositions
τ . There are therefore two possibilities for ψ, the homomorphism
which transforms every element onto [0], or ψ given by ψ(1) =
ψ(123) = ψ(132) = [0] , ψ(12) = ψ(13) = ψ(23) = [2] which is
induced by the signum-function, the sign of a permutation.

9. Let a = (a1, . . . , an) ∈ R≥0 be nonnegative real numbers. The elemen-
tary symmetric polynomials are

σk(a) =
∑

1≤j1<...<jk≤n

aj1aj2 . . . ajk

and

Sk(a) =
1(
n
k

) · σk(a)

the corresponding elementary symmetric mean value. Prove
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(a) S1(a) ≥
√
S2(a) ≥ 3

√
S3(a) ≥ . . . ≥ n

√
Sn(a)

(b) Sm(a)2 ≥ Sm+1(a) · Sm−1(a) for m = 1, . . . , n− 1

Reason: MacLaurin’s and Newton’s Inequality.

Solution:

F (x) := (x+ a1) · . . . · (x+ an) =
n∑
k=0

σk(a)xn−k =
n∑
k=0

(
n

k

)
Sk(a)xn−k

F ′(x) =
n∑
k=0

(n− k)

(
n

k

)
Sk(a)xn−k−1 = n

n−1∑
k=0

(
n− 1

k

)
Sk(a)xn−k−1

Say ak < ak+1. Since F (−ak) = 0 = F (−ak+1) we have by Rolle’s
theorem a −bk ∈]−ak+1,−ak[ such that F ′(−bk) = 0. The same is true
in case ak = ak+1. Hence we can write

F ′(x) = n(x− (−b1)) · . . . · (x− (bn)) = (x+ b1) · . . . · (x+ bn−1)

with also nonnegative numbers b = (b1, . . . , bn−1) and thus

F ′(x) = n
n−1∑
k=0

σk(b)xn−1−k = n
n−1∑
k=0

(
n− 1

k

)
Sk(b)xn−1−k

By comparison of the two polynomials F ′(x) we get Sk(a) = Sk(b) for
all k ≤ n − 1 . Every further derivative has also all nonpositive zeros
by induction and

F (n−m)(x) =
n!

m!
(X + r

(m1)
1 ) · . . . · (X + r(mm)

m )

=
n!

m!

m∑
k=0

(
m

k

)
Sk(r

(m))xm−k

=

(
d

dx

)n−m n∑
k=0

(
n

k

)
Sk(a)xn−k

=
n∑
k=0

n!

k!(n− k)!
Sk(a)

(n− k)!

(m− k)!
xm−k

=
n!

m!

m∑
k=0

(
m

k

)
Sk(a)xm−k

which again shows by comparison that Sk(a) = Sk(r
(m)) for all k ≤ m.

Especially we get

Sm(r(m)) = Sm(a) = r
(m)
1 · . . . · r(m)

m
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and (â here means ”without a”)

r̂
(m)
1 r

(m)
2 · · · r(m)

m + r
(m)
1 r̂

(m)
2 · · · r(m)

m + . . .+ r
(m)
1 r

(m)
2 · · · r̂(m)

m

= r
(m)
1 r

(m)
2 · · · r(m)

m ·

(
1

r
(m)
1

+ . . .+
1

r
(m)
m

)
= m · Sm−1(r(m))

= m · Sm−1(a)

r
(m)
1 · · · r(m)

m

∑
1≤i<j≤m

1

r
(m)
i r

(m)
j

=
m(m− 1)

2
· Sm−2(a)

(a) McLaurin’s inequality. Since the arithmetic mean is greater than
the geometric mean, we have

r̂
(m)
1 r

(m)
2 · · · r(m)

m + r
(m)
1 r̂

(m)
2 · · · r(m)

m + . . .+ r
(m)
1 r

(m)
2 · · · r̂(m)

m

m

≥ m

√(
r

(m)
1 · . . . · r(m)

m

)m−1

hence for all m ≤ n

Sm−1(a) ≥ m
√
Sm(a)m−1 =⇒ m−1

√
Sm−1(a) ≥ m

√
Sm(a)
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(b) Newton’s inequality.

Sm−1(a)2 ≥ Sm(a) · Sm−2(a)

⇐⇒(
r

(m)
1 · · · r(m)

m

)2

· 1

m2
·

(
m∑
k=1

1

r
(m)
k

)2

≥(
r

(m)
1 · · · r(m)

m

)2

· 2

m(m− 1)
·
∑

1≤i<j≤m

1

r
(m)
i r

(m)
j

⇐⇒

(m− 1)

(
m∑
k=1

1

r
(m)
k

)2

≥ 2m
∑

1≤i<j≤m

1

r
(m)
i r

(m)
j

⇐⇒

(m− 1)

(
m∑
k=1

1

r
(m)
k

)2

≥ m ·

(
m∑
k=1

1

r
(m)
k

)2

−m ·
m∑
k=1

1

(r
(m)
k )2

⇐⇒

m ·
m∑
k=1

1

(r
(m)
k )2

≥

(
m∑
k=1

1

r
(m)
k

)2

⇐⇒

1

m

m∑
k=1

1

(r
(m)
k )2

≥

(
1

m

m∑
k=1

1

r
(m)
k

)2

⇐⇒√√√√ 1

m

m∑
k=1

1

(r
(m)
k )2

≥ 1

m

m∑
k=1

1

r
(m)
k

⇐⇒
M1

1/m ≤M2
1/m

since the arithmetic mean is less or equal than the quadratic mean
by the generalized or weighted Hölder mean inequality (see prob-
lem 1 above).

10. Let (an)n∈N be a sequence of nonnegative real numbers, not all zero.
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Prove (∑
n∈N

an

)4

< π2
∑
n∈N

a2
n ·
∑
n∈N

n2a2
n

Reason: Carlson’s Inequality.

Solution: We quote two different proofs by Hardy.

(a) Consider the Fourier series f(x) =
∑∞

k=1 ak cos kx and its deriva-
tive f ′(x) = −

∑∞
k=1 ak sin kx . By Parseval’s equation (see no. 1.

in the November challenge) we get

1

π

∫ π

−π
|f(x)|2 dx =

2

π

∫ π

0

|f(x)|2 dx =
∞∑
k=1

a2
k =: S

and

1

π

∫ π

−π
|f ′(x)|2 dx =

2

π

∫ π

0

|f ′(x)|2 dx =
∞∑
k=1

k2a2
k =: T

Now
∫ π

0
f(x) dx =

∑∞
k=1 ak

[
sin kx

k

]π
0

= 0 so there is a 0 < ξ < π

with f(ξ) = 0 and(
∞∑
k=1

ak

)2

= f 2(0)− f 2(ξ) = 2

∫ 0

ξ

f(x)f ′(x) dx

Cauchy-Schwarz
< 2

√∫ π

0

f 2(x) dx ·

√∫ π

0

f ′2(x) dx

= 2 ·
√
π

2
S ·
√
π

2
T = π

√
ST

and squaring completes the proof.

(b) Let α, β > 0 and S =
∑∞

k=1 a
2
k , T =

∑∞
k=1 k

2a2
k . By the Cauchy-
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Schwarz inequality we get(
∞∑
k=1

ak

)2

=

(
∞∑
k=1

ak ·
√
α + βk2 · 1√

α + βk2

)2

≤
∞∑
k=1

a2
k · (α + βk2) ·

∞∑
k=1

1

α + βk2

= (αS + βT )
∞∑
k=1

1

α + βk2
< (αS + βT )

∫ ∞
0

dx

α + βx2

= (αS + βT ) · π
2
· 1√

αβ
=
π

2

(√
α

β
· S +

√
β

α
· T

)
With α := T , β := S we have(

∞∑
k=1

ak

)2

<
π

2
(
√
ST +

√
ST ) = π

√
ST

and squaring completes the proof.

11. (HS-1) On how many ways can 2020 be written as a sum of consecutive
natural numbers (greater than zero)?

Reason: Prime numbers.

Solution:

2020 = 23 · 5 · 101

= n+ (n+ 1) + . . .+ (n+ k)

= n(k + 1) +
k

2
(k + 1)

4040 = (k + 1)(2n+ k)

If 101 | (k + 1) then k ≥ 100 and 2n + k ≥ 102 but 4040 doesn’t have
two such great divisors. Hence (k + 1, 2n + k) can only be one of the
pairs

{ (2, 2020), (4, 1010), (8, 505), (5, 808), (10, 404), (20, 202), (40, 101) }

But if both components were even, then n wouldn’t be a natural num-
ber, so we are left with 3 possibilities:

2020 = 249 + 250 + . . .+ 256

2020 = 402 + 403 + . . .+ 406

2020 = 31 + 32 + . . .+ 70
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12. (HS-2) A binary operation on a set S is a mapping, which maps a pair
from S ×S to S. E.g. addition is a binary operation on integers. Find
two different binary operations for S = {A,B,C,D } which have a neu-
tral element, A ◦X = X, and can be inverted: for all X ∈ S there is a
Y ∈ S with X ◦Y = A, and are associative: X ◦ (Y ◦Z) = (X ◦Y )◦Z .

Reason: Group Theory.

Solution: There are two groups of order 4: Z4 and V4 = Z2
2 . Their

Abelian multiplications are given by

◦ A B C D ◦ A B C D

A A B C D A A B C D
B B C D A B B A D C
C C D A B C C D A B
D D A B C D D C B A

13. (HS-3) Find all six digit numbers with the following property: If we
move the first (highest) digit at the end, we will get three times the
original number.

Reason: Puzzle.

Solution: Set n = 100, 000 a+ b. Then 3n = 10 b+ a and so

300, 000 a+ 3 b = 10 b+ a⇐⇒ 299, 999 a = 7 b⇐⇒ b = 42, 857 a

Therefore n = 142, 857 a and 3n = 428, 571 a which means a ∈ { 1, 2 }
and the only six digit numbers are 142, 857 and 285, 714 .

14. (HS-4) The Pell sequence named after the English mathematician John
Pell is defined by

P (n) =


0 , n = 0

1 , n = 1

P (n− 2) + 2P (n− 1) , n > 1

Calculate the limit δs := limn→∞
P (n)

P (n− 1)
.

Reason: Silver Ratio.
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Solution:

δs = lim
n→∞

P (n− 2) + 2P (n− 1)

P (n− 1)

= lim
n→∞

P (n− 2)

P (n− 1)
+ 2

= 2 + δ−1
s

and thus 0 = δ2
s − 2δs − 1 which has the solutions 1 ±

√
2 . Since

P (n) > P (n− 1) only δs = 1 +
√

2 is a possible solution.

Two quantities are in the silver ratio if the ratio of the sum of the
smaller and twice the larger of those quantities, to the larger quantity,
is the same as the ratio of the larger one to the smaller one. This leads
to

2a+ b

a
=
a

b
= δs = [2; 2, 2, 2, . . .]

where the last representation is the continued fraction of the silver
ratio.

15. (HS-5) Consider the graph of f(x) = 1/x with x ≥ 1 and let it rotate
around the x−axis. This solid of revolution looks like an infinitely long
trumpet. Calculate its volume V and its surface A.
If we fill it with paint, pour it out again, then we have painted it
from inside. Explain this apparent contradiction to the surface you
computed.

Reason: Gabriel’s Horn (Wikipedia).

Solution:

V = π

∫ ∞
1

1

x2
dx = π

A = 2π

∫ ∞
1

1

x

√
1 +

1

x4
dx > 2π

∫ ∞
1

1

x
dx =∞

We filled in paint, poured it out again, and thus have painted an in-
finitely large inner surface with a finite amount of paint!
The solution is, that in reality paint has a certain thickness, so we
didn’t need to ”fill” the entire horn, only a finite part of it.
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