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1. Let g be a Lie algebra. Define

A(g) = {α : g −→ g | ∀X, Y ∈ g : 0 = [α(X), Y ] + [X,α(Y )] }

Show that A(g) is a Lie algebra and X.α(Y ) = [X,α(Y )] − α([X, Y ])
defines a representation of g on A(g).

Reason: Representation theory.

Solution: Linearity is obvious for both cases, that A(g) is a vector
space as well as that X.α is a linear transformation.

(a) Let α, β ∈ A(g).

[[α, β]X, Y ] = [(αβ − βα)X, Y ]

= −[βX, αY ] + [αX, βY ]

= [X, βαY ]− [X,αβY ]

= −[X, [α, β]Y ]

(b) A representation of g on A(g) is a Lie algebra homomorphism ϕ :
g −→ gl(A(g)) and in our case ϕ(X)(α) := [adX,α]. Therefore
we have to show that ϕ(α) ∈ A(g) and ϕ([X, Y ]) = [ϕ(X), ϕ(Y )].

[(ϕ(X)(α))(Y ), Z] = [[X,α(Y )], Z]− [α([X, Y ]), Z]

= −[[αX, Y ], Z] + [[X, Y ], αZ]

= [[Y, Z], αX] + [[Z, αX], Y ]− [[Y, αZ], X]− [[αZ,X], Y ]

= [[Y, Z], αX]− [[αZ,X], Y ]− [[Y, αZ], X]− [Y, [X,αZ]]

= −[[Z.αX], Y ]− [[αX, Y ], Z]− [[αZ,X], Y ]− [[Y, αZ], X]− [Y, [X,αZ]]

= [[X,αY ], Z] + [[αY, Z], X]− [Y, [X,αZ]]

= −[[Z,X], αY ]− [Y, [X,αZ]]

= [Y, α([X,Z])]− [Y, [X,αZ]]

= −[Y, (ϕ(X)(α))(Z)]

ϕ([X, Y ])(α) = [ad([X, Y ]), α]

= [[ad(X), ad(Y )], α]

= −[[ad(Y ), α], ad(X)]− [[α, ad(X)], ad(Y )]

= [ad(X), [ad(Y ), α]]− [ad(Y ), [ad(X), α]]

= [ad(X), ϕ(Y )(α)]− [ad(Y ), ϕ(X)(α)]

= ϕ(X)(ϕ(Y )(α)− ϕ(Y )(ϕ(X)(α)

= ([ϕ(X), ϕ(Y )])(α)
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2. Let R be a commutative ring with 1 and I an ideal. Show that R/I is
an integral domain if and only if I is a prime ideal, and that R/I is a
field if and only if I is a maximal ideal.

Reason: Standard result in commutative algebra.

Solution: R/I is an integral domain, if āb̄ = 0̄ implies ā = 0̄ or b̄ = 0̄,
i.e. ab ∈ I implies a ∈ I or b ∈ I which is the definition of a prime
ideal I.

Now let I / R be a maximal ideal and r /∈ I. Then I + rR = R so we
have elements a ∈ I , s ∈ R with 1 = a+ rs and thus 1̄ = 0̄ + r̄s̄ = r̄s̄,
i.e. all elements of R/I different from zero are invertible.

If on the other hand R/I is a field, and I / R is not maximal, then
there is an ideal I ( M / R and an element m ∈ M − I such that
m̄ 6= 0̄ is invertible. This means there is a r ∈ R such that r̄m̄ = 1̄ or
rm− 1 ∈ I ⊂M . But this means 1 ∈M and so R = M , which makes
I a maximal ideal.

3. Solve x2y′′ + xy′ − y = x3 for positive x.

Reason: ODE.

Solution: Let x = eu so that u = log(x). Then

dy

dx
=
dy

du

du

dx
=
dy

du

1

x

d2y

dx2
=

d

dx

(
dy

du

1

x

)
=
dy

dx

dy

du

1

x
− dy

du

1

x2

=
dy

du

1

x

dy

du

1

x
− dy

du

1

x2

=

(
d2y

du2
− dy

du

)
1

x2

Therefore,

x2y′′ + xy′ − y =

(
d2y

du2
− dy

du

)
+
dy

du
− y =

d2y

du2
− y = e3u

Considering the homogeneous case, we have λ2 − 1 = 0 or λ = ±1.
Therefore, y1 = eu and y2 = e−u. Using undetermined coefficients, let
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yp = Ae3u. Then y′ = 3Ae3u and y′′ = 9Ae3u. Substitution gives

9Ae3u − Ae3u︸ ︷︷ ︸
8Ae3u

= e3u

so A = 1
8

and the general solution is

y = C1e
u + C2e

−u +
1

8
e3u

= C1x+
C2

x
+
x3

8

4. Show that the Schwarzian Derivative

(Sf)(z) :=

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

vanishes if and only if f(z) =
az + b

cz + d
is a Möbius transformation.

Reason: Funny derivative.

Solution: Let f(z) =
az + b

cz + d
=
U(z)

V (z)
=
U

V
. Then

f ′(z) =
aV − cU
V 2

f ′′(z) = −2c
aV − cU
V 3

and thus

(Sf)(z) =

(
−2c

V

)′
− 2c2

V 2
=

2c

V 2
c− 2c2

V 2
= 0

Let us now assume that (Sf)(z) = 0 and set U(z) :=
f ′′(z)

f ′(z)
, i.e.

2U ′ = U2 which means U(z) = − 2

c1 + z
, i.e. f ′′(z) = − 2

c1 + z
f ′(z) .

The solution to this differential equation is

f(z) =
c2

c1 + z
+ c3

=
(c2 + c1c3) + c3z

c1 + z

=
(c2c4 + c1c3c4) + c3c4z

c1c4 + c4z

=
az + b

cz + d

4
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5. Let x(t) be the height at time t, measured positively on the down-

ward direction. If we consider only gravity, then ẍ(t) =
d2x

dt2
= a

is a constant, denoted g, the acceleration due to gravity. Note that
F = ma = mg. Air resistance encountered depends on the shape of
the object and other things, but under most circumstances, the most
significant effect is a force opposing the motion which is proportional
to a power of the velocity v(t) = ẋ(t). So

ẍ(t) ·m = m · g − kẋ(t)n

which is a second order differential equation, but there is no x term.
So it is first order in ẋ. Therefore,

dv

dt
= g − k

m
vn

This is not easy to solve, so we will make the simplifying approximation
that n = 1 (if v is small, there is not much difference between v and
vn). Therefore, we have to solve

dv

dt
+
k

m
v = g

Reason: ODE.

Solution: The integration factor is

I = e
∫

k
m
dt = ekt/m

and thus (
dv

dt
+
k

m
v

)
ekt/m = gekt/m

ekt/mv =
gm

k
ekt/m + C

v =
mg

k
+ Ce−kt/m

with an arbitrary constant C. By v(0) = v0 we get C = v0 −
mg

k∫ x

x0

dx =

∫ t

0

v dt

=

∫ t

0

(mg
k

+
(
v0 −

mg

k

)
e−kt/m

)
=
mg

k
t− m

k

(
v0 −

mg

k

) (
e−kt/m − 1

)
5
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that is
x(t) = x0 +

mg

k
t+

m

k

(
v0 −

mg

k

) (
1− e−kt/m

)
6. Consider a land populated by foxes and rabbits, where the foxes prey

upon the rabbits. Let x(t) and y(t) be the number of rabbits and foxes,
respectively, at time t. In the absence of predators, at any time, the
number of rabbits would grow at a rate proportional to the number of
rabbits at that time. However, the presence of predators also causes the
number of rabbits to decline in proportion to the number of encoun-
ters between a fox and a rabbit, which is proportional to the product
x(t)y(t). Therefore, dx/dt = ax − bxy for some positive constants a
and b. For the foxes, the presence of other foxes represents competi-
tion for food, so the number declines proportionally to the number of
foxes but grows proportionally to the number of encounters. Therefore
dy/dt = −cy + dxy for some positive constants c and d. The system

ẋ(t) =
dx

dt
= ax(t)− bx(t)y(t) , ẏ(t) =

dy

dt
= −cy(t) + dx(t)y(t)

is our mathematical model. Eliminate the time parameter and find the
relation between the population of foxes and the number of rabbits for
parameters a = 10 , b = 2 , c = 7 , d = 1 .

Reason: Predator Prey Model.

Solution:

dy

dx
=
−7y + xy

10x− 2xy

=⇒ (10− 2y) dy

y
=

(−7 + x) dx

x

=⇒ 10 log y − 2y = −7 log x+ x+ C

=⇒ y10e−2y = k x−7ex

with a constant positive parameter k = eC .
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7. Five vessels contain 100 balls each. Some vessels contain only balls
of 10 g mass, while the other vessels contain only balls of 11 g mass.
How can we determine with a single weighing which results in a mass,
which vessels contain balls of 10 g and which contain balls of 11 g? (It
is allowed to remove balls from the vessels.)

Reason: Riddle about the binary representation of numbers.

Solution: We remove 2k balls from vessel k and weigh those 31 balls.
Let the result be a g. Thus we have an equation

x1 + 2x2 + 4x3 + 8x4 + 16x5 = a− 31 · 10 g (xk ∈ { 0, 1 })

which is a unique binary representation and xk = 0 are the vessels with
10 g balls, xk = 1 are the vessels with 11 g balls.

7
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8. Let f ∈ L1(R3) be rotation symmetric, i.e. f(Rx) = f(x) for all
R ∈ SO(3). Show that the Fourier transform Ff is rotation symmetric,
too, and calculate Ff of f : R3 −→ R defined by

f(x) =
1

|x|
χB1(0)(x)

with the Euclidean norm | . |, the unit ball B1(0) around the origin, and
the characteristic function χ.

Reason: Fourier transformation.

Solution: Since detRτ = 1 we get with y = Rτx

Ff(Rξ) = (2π)−3/2
∫
R3

f(x) exp(−ix ·Rξ) dλ3(x)

= (2π)−3/2
∫
R3

f(Rτx) exp(−iRτx · ξ) dλ3(x)

= (2π)−3/2
∫
R3

f(y) exp(−iy · ξ) dλ3(x)

= Ff(ξ)

We use spherical coordinates for the second part, i.e. the function

Φ : (0, 1)× (−π/2, π/2)× (0, 2π) −→ B1(0)

(r, ϕ, θ) 7−→ (r cosϕ cos θ, r cosϕ sin θ, r sinϕ)

where detDΦ = r2 cosϕ . Then we get with ξ = te3 , t ∈ R and Fubini

8
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the Fourier transform

Ff(te3) = (2π)−3/2
∫
B1(0)

|x|−1 exp(−itx3) dλ3(x)

= (2π)−3/2
∫ 1

0

∫ π/2

−π/2

∫ 2π

0

r2 cosϕ · r−1 exp(−itr sinϕ) dλθ dλϕ dλr

= (2π)−1/2
∫ 1

0

∫ π/2

−π/2
r cosϕ exp(−itr sinϕ) dλϕ dλr

u(ϕ)=r sinϕ
= (2π)−1/2

∫ 1

0

∫ r

−r
exp(−itu) dλu dλr

= (2π)−1/2
∫ 1

0

∫ r

−r
cos(tu) dλu dλr

= (2π)−1/2
∫ 1

0

2 · sin(tr)

t
dλr

=

√
2

π

1− cos t

t2

Since f is rotation symmetric we know

Ff(ξ) = Ff(|ξ|e3) =

√
2

π

1− cos |ξ|
|ξ|2

9. Solve (3x2y2 + x2) dx+ (2x3y + y2) dy = 0 .

Reason: Exact forms.

Solution:
ω := (3x2y2 + x2)︸ ︷︷ ︸

F

dx+ (2x3y + y2)︸ ︷︷ ︸
G

dy

and observe that
∂G

∂x
= 6x2y =

∂F

∂y
so there exist a g such that ω = dg

and
∂g

∂x
= 3x2y2 + x2 ,

∂g

∂y
= 2x3y + y2

Integrating the first yields g = x3y2 +
1

3
x3 + h(y) which differentiated

with respect to y gives

∂g

∂y
= 2x3y + y2 = 2x3y +

dh

dy

9
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which means h(y) =
y3

3
+C for some arbitrary constant C. Hence g =

x3y2 +
x3

3
+
y3

3
+C . With ω = dg = 0 we have x3y2 +

x3

3
+
y3

3
+C = C ′

for some arbitrary constant C ′ . With D = C ′ − C which is still an
arbitrary constant, the solution is

x3y2 +
x3

3
+
y3

3
= D

10. Calculate limx→0
cos2 x− 1

sinh2 x
and limx→0

ex + e−x − 2− x2

(cosx− 1)2

Reason: L’Hôpital.

Solution: For f(x) := cos2 x− 1 and g(x) := sinh2 x we have f ′(x) =
−2 cosx sinx = − sin(2x) and g′(x) = 2 sinhx coshx = sinh(2x). So
limx→0 f

′(x) = f ′(0) = 0 and limx→0 g
′(x) = g′(0) = 0 and we cannot

apply the rule of L’Hôpital. However, the functions F (x) := sin(2x)
and G(x) := sinh(2x) do fulfill the conditions in a neighborhood of
x = 0 such that

lim
x→0

F ′(x)

G′(x)
= lim

x→0

−2 cos(2x)

2 cosh(2x)
= −1

which means that
F (x)

G(x)
has a limit for x → 0 by L’Hôpital and we

have again with L’Hôpital

−1 = lim
x→0

F ′(x)

G′(x)
= lim

x→0

F (x)

G(x)
= lim

x→0

f ′(x)

g′(x)
= lim

x→0

f(x)

g(x)
= lim

x→0

cos2 x− 1

sinh2 x

By application of L’Hôpital four times we get

lim
x→0

ex + e−x − 2− x2

(cosx− 1)2
= lim

x→0

ex − e−x − 2x

−2(cosx− 1) sinx

= lim
x→0

ex − e−x − 2x

− sin(2x) + 2 sinx

= lim
x→0

ex + e−x − 2

−2 cos(2x) + 2 cosx

= lim
x→0

ex − e−x

4 sin(2x)− 2 sinx

= lim
x→0

ex + e−x

8 cos(2x)− 2 cosx

=
1

3

10
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11. (HS-1) There are two bands in front of you. The two bands are of
different lengths and made of different materials. But both take exactly
an hour to burn from one end to the other. The burning speed is not
constant, so the tape can burn fast at the beginning, then slower and
faster, or randomly. You only have a box of matches and you should
measure exactly 45 minutes with the help of the tapes. You must not
cut the tapes, use a watch, etc.!

Reason: Puzzle.

Solution: You know that each band takes an hour to burn down. So
you’re lighting one band at both ends, and the other band at one end.
When the first one has completely burned out, 30 minutes have passed,
and you also ignite the second end of the other band. It takes exactly 15
minutes now to burn it down so that a total of 45 minutes has passed!

12. (HS-2) At the end of a one round chess tournament in which all players
played once against each other we have the following result:

1.Alan 2.Bernie 3.Chuck 4.David 5.Ernest

The ranking is unambiguous, i.e. all have different scores, and as usual,
a victory gets 1 point, a draw 1/2. Bernie is the only one who didn’t
lose, Ernest the only one who didn’t win.

Who played whom with which result?

Reason: Puzzle.

Solution:
1. Alan has beaten Chuck, David and Ernest and lost against Bernie.
(3)
2. Bernie has beaten Alan and drew against the others. (2.5)
3. Chuck has beaten David and drew against Bernie and Ernest. (2)
4. David drew against Bernie and won against Ernest. (1.5)
5. Ernest drew against Bernie and Chuck. (1)

13. (HS-3) A unit e is an element for which there is a multiplicative inverse,
i.e. there is an e′ such that e · e′ = e′ · e = 1 . Units are divisors of 1 .
An irreducible element n 6= 0 is an element, which cannot be written
as n = a · b unless either a or b is a unit.
A prime p is an element, which is not a unit and if p | a · b then either
p | a or p | b .
Show that primes are irreducible, and irreducible elements are either
units or primes. Bonus: If we think about integers, which essential
property do we need?

11
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Reason: Primes and Proof Techniques.

Solution: Assume p is irreducible and p | a · b . Then p = q · a · b and
since p is irreducible, one of the factors has to be p and the others units.
If p = a or p = b we are done, because then p | a or p | b . If p = q, then
p · (a · b)−p = p · (a · b−1) = 0 and because we have an integral domain
(no zero divisors), a · b = 1 (p 6= 0). Hence p | 1 and p is a unit.

If p is prime then it is unequal 0 since we have an integral domain. Let
p = a · b then p | a or p | b, say a = q · p . Thus p = a · b = q · p · b and
again p · (1 − q · b) = 0 so that q · b = 1 are units. Hence p cannot be
written as p = a · b except one factor is a unit, in our case b .

14. (HS-4) The border collie Boy is at the end of a 1 km flock of sheep,
which moves forward at a constant speed. As a control he now walks
- with a greater constant speed than the herd - from the end to the
top of the herd and back to his place at the end of the flock. When
he arrives back, the flock of sheep has walked exactly one kilometer
further. Which distance did Boy run?

Reason: Puzzle.

Solution: Assume the flock is moving at a speed vf and Boy at vb .
Boy’s time to the top be t1 and on the way back t2, x the distance of
the last sheep during t1. Then we have for the first leg:

x = vf · t1 (1)

1 + x = vb · t1 (2)

and for the second leg

x = vb · t2 (3)

1− x = vf · t2 (4)

Thus we have (1−x) ·(1+x) = vfvbt1t2 = x2 and x =
1√
2

which means

that Boy ran 1 + 2x = 1 +
√

2 ≈ 2.414 km .

15. (HS-5) What is the smallest limit L >
π

6
such that

∫ L

π/6

dx

sin2 x
=

∫ L

π/6

dx

1− cosx
+

∫ L

π/6

6
cotx

sinx
dx

Reason: Trig Functions.

12
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Solution:

0 =

∫ L

π/6

(
1

sin2 x
− 1

1− cosx
− 6

cotx

sinx

)
dx

=

∫ L

π/6

(
1

1− cos2 x
(1− (1 + cos x)− 6 cos x)

)
dx

= −7

∫ L

π/6

cosx

sin2 x
dx

= 7

[
1

sinx

]L
π/6

⇐⇒

sinL = sin
(π

6

)
=

1

2

and L =
5π

6
is the smallest possible value L .

13
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2 May 2019

1. (a) Let (su(2,C), ϕ, V ) be a finite dimensional representation of the
Lie algebra g = su(2,C). Calculate H 0(g, ϕ) and H 1(g, ϕ) for the
Chevalley-Eilenberg complex in the cases

i. (ϕ, V ) = (ad, g)

ii. (ϕ, V ) = (0, g)

iii. (ϕ, V ) = (π,C2) is the natural representation on C2.

(b) Consider the Heisenberg algebra g = h =


0 a c

0 0 b
0 0 0

∣∣∣∣∣∣ a, b, c ∈ R


and calculate H 0(h, ad) and H 1(h, ad) .

Reason: Cohomology of Lie algebras.

Solution: The differentials of the cochains

C n = C n(g, V ) = Hom(∧ng, V ) , C −1 = { 0 } , C 0 = V

are given by

d n : C n −→ C n+1

d n(ω).(X1 ∧ . . . ∧Xn+1)

=
∑
i

(−1)i+1ϕ(Xi)
(
ω(X1 ∧ . . . ∧ X̂i ∧ . . . ∧Xn+1)

)
+
∑
i<j

(−1)i+jω([Xi, Xj] ∧X1 ∧ . . . ∧ X̂i ∧ . . . ∧ X̂j ∧ . . . ∧Xn+1)

As d n+1d n = 0 we have the cocycles Z n = Z n(g, g) = ker d n, the
coboundaries B n = B n(g, g) = im d n−1 and the cohomology groups
H n = H n(g, g) = H n(g, ad) = Z n/B n.

The relevant sequence is

{ 0 } d−1

−→ V
d 0

−→ Hom(g, V )
d 1

−→ Hom(g ∧ g, V )
d 2

−→ · · ·

We want to know H 0(g, ϕ) = ker d 0 , H 1(g, ϕ) = ker d 1/ im d 0.

14
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(a) H 0(g, ϕ) = {v ∈ V | ∀X ∈ g : ϕ(X)(v) = 0} =


Z(g) = {0 } if ϕ = ad

g = su(2,C) if ϕ = 0

{0 } if ϕ = π

B 1 = im d 0

= {ω ∈ C 1 |ω(X) = d 0(v)(X) = ϕ(X)(v) for a v ∈ V }

=


ad(g) ∼= su(2,C) if ϕ = ad

{0 } if ϕ = 0

C2 (∗) if ϕ = π

Z 1 = ker d 1

= {ω ∈ C 1 | d 1(ω)(X, Y ) = 0}
= {ω ∈ C 1 |ω([X, Y ]) = ϕ(X)ω(Y )− ϕ(Y )ω(X)}

=


Der(g) = ad(g) ∼= su(2,C) if ϕ = ad

{0 } if ϕ = 0

C2 (∗∗) if ϕ = π

(∗) According to the basis

iσ1 =

[
0 i
i 0

]
, iσ2 =

[
0 1
−1 0

]
, iσ3 =

[
i 0
0 −i

]

of su(2,C) we haveB 1(g, π) =

{[
iz2 z2 iz1
iz1 −z1 −iz2

] ∣∣∣∣ z1, z2 ∈ C
}
∼=

C2 .

(∗∗) With the same basis as above and ω =

[
A B C
U V W

]
we can

solve the three equations

ω([X, Y ]) = π(X)ω(Y )− π(Y )ω(X) = X · ω(Y )− Y · ω(X)

by using [su(2,C), su(2,C)] = su(2,C) and find

Z 1(g, π) =

{[
A −iA U
U iU −A

] ∣∣∣∣ A,U ∈ C
}
∼= C2

Therefore H 1(su(2,C), ϕ) = {0 } in all three cases of (ϕ, V ) .

15
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(b) Let Eij be a matrix with a 1 in i−th row and j−th column, and 0
elsewhere. Then we choose as basis (A = E12, B = E23, C = E13)
for h. As before we get

H 0(h, ad) = {Y ∈ h | ∀X ∈ h : [X, Y ] = 0 } = Z(h) = R · C

B 1(h, ad) = {ω ∈ C 1 |ω(X) = ad(X)(Y ) for a Y ∈ h }
= {ω ∈ C 1 |ω = − ad(Y ) for a Y ∈ h }
= ad(h)
∼= 〈adA, adB | [adA, adB] = ad[A,B] = adC = 0〉
= 〈E32 , −E31〉 ∼= R2

Z 1(h, ad) = {ω ∈ C 1 |ω([X, Y ]) = [X,ω(Y )]− [Y, ω(X)]}
= Der(h)

=

ω =

 α r12 0
r21 β 0
r31 r32 α + β

∣∣∣∣∣∣α, β, rij ∈ R


H 1(h, ad) = Z 1(h, ad)/B 1(h, ad)

=

ω =

 α r12 0
r21 β 0
0 0 α + β

∣∣∣∣∣∣α, β, rij ∈ R


∼= gl(R2)
∼= gl (h/[h, h])

This demonstrates, that there are significant differences between semisim-
ple and solvable Lie algebras (cp. Whitehead Lemmas).

2. Show that the dihedral group D12 of order twelve is the finite reflection
group of the root system of type G2.

Reason: Buildings.

Solution: The roots of G2 are ±{ r, s, r+s, 2r+s, 3r+s, 3r+2s } (cp.
https://www.physicsforums.com/insights/lie-algebras-a-walkthrough-the-
structures/) which can be visualized by the following figure:

16
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The covering transformations are generated by a rotation R of 30◦ and
a reflection S at the axis r ←→ −r which is the group

{R, S : S2 = R6 = 1 , SRS = R−1 } = D12.

3. Consider the set

Pn := { {2}, {4}, . . . , {2n} } ⊆ P(N)

and determine the σ−algebraAσ(Pn) ⊆ P(N), and show that
⋃
n∈NAσ(Pn)

isn’t a σ−algebra.

Reason: Measure Theory.

Solution:

Aσ(Pn) = { ∅,N } ∪ {B ⊆ N : B ⊆ {2, 4, , . . . , 2n} }
∪ {B ⊆ N : 2k ∈ B ∀ k > n ∧ 2k − 1 ∈ B ∀ k ∈ N }

Assume
⋃
n∈NAσ(Pn) is a σ−algebra. Since for all n ∈ N we have

Bn := { 2, 4, . . . , 2n } ∈ Aσ(Pn), the union
⋃
k∈NBk ∈

⋃
n∈NAσ(Pn)

17
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which contradicts
⋃
k∈NBk /∈ Aσ(Pn) for all n ∈ N .

4. Linear Operators. (Only solutions to both count!)

(a) Show that eigenvectors to different eigenvalues of a self-adjoint
linear operator are orthogonal and the eigenvalues real.

(b) Given a real valued, bounded, continuous function g ∈ C([0, 1])
with

m = inf
t∈[0,1]

g(t) , M = sup
t∈[0,1]

g(t)

and an operator Tg(f)(t) := g(t)f(t) on the Hilbert space H =
L2([0, 1]) . Calculate the spectrum of Tg .

Reason: Spectrum of Operators.

Solution:

λ〈x, y〉 = 〈T (x), y〉 = 〈x, Ty〉 = µ̄〈x, y〉 =⇒ 〈x, y〉 = 0

λ〈x, x〉 = 〈T (x), x〉 = 〈x, Tx〉 = λ̄〈x, x〉 =⇒ λ = λ̄

From the boundaries of g we get that m,M are a lower, resp. upper
bound of Tg . Hence σ(Tg) ⊆ [m,M ]. According to the mean value
theorem for continuous functions we know, that g takes every value in
[m,M ] at least once, i.e for every µ ∈ [m,M ] there is a real number
tµ ∈ [0, 1] such that g(tµ) = µ . Thus

Tg(f)(tµ) = g(tµ)f(tµ) = µ · f(tµ)

and T − µ isn’t bounded invertible, hence µ ∈ σ(Tg) and σ(Tg) =
[m,M ] .

TSF - operator.pdf; Beispiel V6 p.24

5. Let F be a field. Then for a polynomial f ∈ F[X1, . . . , Xn] we define
D(f) = { q ∈ An(F) | f(q) 6= 0 }. Show that these sets build a basis
of the Zariski topology on An(F) and decide whether finitely many of
them are sufficient.

Reason: Affine Variety.

Solution: Recall that F[V ] = F[X1, . . . , Xn]/I(V ) with I(V ) = { f ∈
F[X1, . . . , Xn] | f(p) = 0∀ p ∈ V } is the coordinate ring of the affine
variety V ⊆ An(F) and V = V (I(V )), i.e. V is the vanishing set of
polynomials in the ideal I(V ).

18
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(a) For a point p ∈ An(F) − V outside an affine variety there is a
polynomial f ∈ F[X1, . . . , Xn] such that f(p) = 1 and f(q) = 0
for all q ∈ V :
Since p /∈ V = V (I(V )) there is a polynomial g ∈ I(V ) with
g(p) 6= 0 . Then f := g(p)−1 · f has the required properties.

(b) For each open set U ⊆ An(F) and point p ∈ U there is a polyno-
mial f ∈ F[X1, . . . , Xn] such that p ∈ D(fp) ⊆ U :
Let V = An(F)−U . Then V 6= An(F) since p ∈ U and so U 6= ∅ .
By the previous statement (a) we have a polynomial fp ∈ I(V )
with fp(p) = 1 . Hence p ∈ D(fp) = An(F)−V (fp) ⊆ An(F)−V =
U .

(c) Now let ∅ 6= U ⊆ An(F) be an open set. By the previous statement
(b) there are polynomials fp ∈ F[X1, . . . , Xn] for every point p ∈ U
such that p ∈ D(fp) ⊆ U . Hence U =

⋃
p∈U D(fp) and⋃

p∈U

D(fp) = An(F)−
⋂
p∈U

V (fp) = An(F)− V ({ fp | p ∈ U })

Since F[X1, . . . , Xn] is Noetherian, there are finitely many f1, . . . , fm
with V ({ fp | p ∈ U }) = V (f1, . . . , fm) and U =

⋃m
i=1D(fi) and

finitely many are sufficient.

6. Let R := Q[x, y]/〈x2 + y2 − 1〉 and ϕ ∈ Der(R) a Q−linear derivation
such that ϕ(x) = y , ϕ(y) = −x . A derivation ϕ : R −→ R of an
algebra R is a linear function with ϕ(p · q) = ϕ(p) · q + p · ϕ(q) .

(a) Determine the kernel of ϕ .

(b) Solve ϕ2 + id = 0 .

(c) Since x2 + y2 = 1 we can apply Thales’ theorem and identify
(x, α), (y, α) with the sides of a right triangle with hypotenuse
(diameter) 1 according to an angle α . Show that

(x, α + β) = (x, α)(y, β) + (x, β)(y, α)
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Reason: Sine and Cosine.

Solution: ϕ(1) = ϕ(1 · 1) = ϕ(1) · 1 + 1 · ϕ(1) = 2ϕ(1) and thus
ϕ(1) = 0 . Since ϕ is Q−linear, we get ϕ(λ) = λ · ϕ(1) = 0 for all
λ ∈ Q , i.e. Q ⊆ kerϕ . It can be shown by induction that

ϕ(xnym) = nxn−1ym+1 −mxn+1ym−1

and especially

ϕ(xn) = nxn−1y

ϕ(ym) = −mxym−1

Every polynomial p(x, y) ∈ R can be written as p(x, y) = f(x)+y ·g(x)
with f(x), g(x) ∈ Q[x] . Now let

0 = ϕ(p)

= ϕ(f) + ϕ(y) · g + y · ϕ(g)

= y
n∑
i=1

fi(ix
i−1)− x · g(x) + y2 ·

m∑
j=1

gj · (jxj−1)

= y
n∑
i=1

fi(ix
i−1)− xg0 −

m∑
j=1

(
gjx

j+1 + (x2 − 1)jgjx
j−1)

= y
n∑
i=1

fi(ix
i−1)− xg0 +

m∑
j=1

jgjx
j−1 −

m∑
j=1

(j + 1) gjx
j+1

= y
n∑
i=1

fi(ix
i−1)− xg0 + g1 + 2g2x−mgm−1xm − (m+ 1)gmx

m+1

+
m−1∑
j=2

((j + 1)gj+1 − jgj−1)xj

This means fi = 0 for all i > 0 , g1 = gm−1 = gm = 0 and
(j+ 1)gj+1 = jgj−1 for j = 2, . . . ,m−1 . Backwards substitution yields
gj = 0 for all j ≥ 0 and p(x, y) = f(x) + y · g(x) = f0 , i.e. kerϕ ⊆ Q .

Suppose λxn + τyxm is the term of highest degree in a solution of
ϕ2(p(x, y)) +p(x, y) = ϕ2(λf(x) + τyg(x)) +λf(x) + τyg(x) = 0 . Then

ϕ2(λ · xn + τ · yxm) = xn ·
(
−λn2

)
+ xn−2 · (. . .)

+ yxm ·
(
−τ (m+ 1)2

)
+ yxm−2(. . .)

and ϕ2 cannot raise the degree. Thus we have modulo terms of lower
degree from ϕ2(p) = −p

λn2 = λ and τ(m+ 1)2 = τ
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and p(x, y) = λx+ τy are the only solutions:

ϕ(λx+ τy) = −τx+ λy , ϕ(−τx+ λy) = −λx− τy
Since (x, α) = sinα and (y, β) = cos β the formula

(x, α + β) = (x, α)(y, β) + (x, β)(y, α)

is simply the addition theorem of the sine function.

7. For all a, b, c ∈ R holds

a > 0, b > 0, c > 0⇐⇒ a+ b+ c > 0, ab+ ac+ bc > 0, abc > 0 .

Reason: Vieta.

Solution: Set p(x) = x3 − (a+ b+ c)x2 + (ab+ ac+ bc)x− abc . Then
p(x) < 0 if x ≤ 0 so the roots a, b, c of p(x) are all positive.

8. Let a, b ∈ L2
([
−π

2
,+π

2

])
given as

a(x) = 11 sin(x) + 8 cos(x) , b(x) = 4 sin(x) + 13 cos(x)

Calculate the angle ϕ = ^(a, b) between the two vectors.

Reason: Hilbert Space.

Solution: We define f(x) = sin(x)−6 cos(x) , g(x) = 6 sin(x)+cos(x)
and observe, that { f, g } is a orthogonal basis for a two dimensional

subspace of L2
([
−π

2
,+π

2

])
with γ := |f | = |g| =

√
37π

2
. As we are

interested in an angle, we won’t have to bother the length of our coor-
dinate vectors, i.e. we do not need to normalize them. Now we have
a = −f + 2g , b = −2f + g and

cosϕ = cos(^(a, b))

= cos(^(−f + 2g,−2f + g))

=
〈−f + 2g,−2f + g〉
| − f + 2g| · | − 2f + g|

= 2
〈f, f〉+ 〈g, g〉√

(|f |2 + 4|g|2) ·
√

(4|f |2 + |g|2)

= 2
γ2 + γ2√
5γ2 · 5γ2

=
4

5

and ϕ ≈ 80.8◦ ≈ 0.45π
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9. Let εk :=

{
1 , if the decimal representation of k has no digit 9

0 , otherwise

Show that
∑∞

k=1

εk
k

converges.

Reason: Series.

Solution: The numbers 10n ≤ k < 10n+1 have n + 1 digits. On the
first place are 8 distinct digits unequal 9 possible, 9 such digits for the
others. Thus we have 8 · 9n numbers within the interval without the
digit 9 and

10n+1−1∑
k=10n

εk
k
≤ 8 · 9n

10n

and the partial sums
∑10n−1

k=1

εk
k
≤
∑n−1

j=0 8 ·
(

9

10

)n
= 80 are bounded,

hence the series converges.

10. Let x0 ∈ [a, b] ⊆ R and f : [a, b] −→ R continuous and differentiable
on [a, b]−{x0}. Furthermore exists the limit c := limx→x0 f

′(x) . Then
f(x) is differentiable in x0 with f ′(x0) = c .

Proof: Let x ∈ [a, b]− {x0}. According to the mean value theorem for
differentiable functions there is a

ξ(x) ∈ (min{x, x0},max{x, x0})

with f ′(ξ(x)) =
f(x)− f(x0)

x− x0
. Because limx→x0 min{x, x0} = limx→x0 max{x, x0} =

x0 we must have limx→x0 ξ(x) = x0 and by assumption limx→x0 f
′(ξ(x)) =

c, hence limx→x0
f(x)− f(x0)

x− x0
= c.

What has to be regarded in this proof, and is there a way to avoid this
hidden assumption?

Reason: Axiom of choice.

Solution: Let

Λ(x) :=

{
ξ ∈ (min{x, x0},max{x, x0}) :

f(x)− f(x0)

x− x0
= f ′(ξ)

}
The mean value theorem guarantees us that all Λ(x) 6= ∅, but we need
more: namely a function

ξ : [a, b]− {x0} −→
⋃

x∈[a,b]−{x0}

Λ(x)
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i.e. we made use of the axiom of choice.

To avoid AC, let ε > 0 . Then there is a δ > 0 such that |f ′(x)− c| < ε
whenever x ∈ [a, b]−{x0} with |x−x0| < δ . By the mean value theorem,
Λ(x) 6= ∅ and we can choose (∗) an arbitrary element ξ ∈ Λ(x) and get
|ξ − x0| < |x− x0| < δ and thus∣∣∣∣ f(x)− f(x0)

x− x0
− c

∣∣∣∣ = | f ′(ξ)− c | < ε

(∗) In this version we only used Λ(x) 6= ∅ for a single value x given by
the mean value theorem. To select a single element from a nonempty
set does not require AC. This point is given via Rolle’s theorem, which
again uses the existence of an extremal point in the interior of a closed
interval, which again uses the theorem of Bolzano-Weierstrass, which
is proven constructively via induction and the completeness of R .

11. (HS-1) A house H and a rosary R are near a circular lake L. The
Gardener walks with two watering cans from the house to the lake, fills
the cans and goes to the rosary. We assume HR ∩ L = ∅. At which
point S of the shore does he have to get water, so that his path length
is minimal, and why?

Reason: Reflection.

Solution: You choose the point S on the circle, such that the tangent
t to the circle in S is a mirror which bisects the angle ^HSR of his
path. This is the shortest way from H to the circle and on to R.

(a) Huygens - Fresnel principle to prove the law of reflection.

(b) Let H = (0, h), S = (s, 0), R = (p, q). Then the path length is

L =
√
h2 + s2 +

√
(p− s)2 + q2 and

dL

ds
=

s√
h2 + s2

− p− s√
(p− s)2 + q2

= cosα− cos β

with the incident angle α and the reflected angle β. If they are
equal we get the minimum which corresponds to the bisection of
the normal to the tangent at S.

12. (HS-2) How long is the distance on a direct flight from London to Los
Angeles and where is its most northern point? How long will it last by
an assumed average speed of 494 knots over ground? We neglect the
influence of weather, esp. wind.
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We take the values 51◦ 28′ 39′′N, 0◦ 27′ 41′′W for LHR in London,
33◦ 56′ 33′′N, 118◦ 24′ 29′′W for LAX in Los Angeles, and a radius of
3, 958 miles for earth.

Reason: Spherical Trigonometry.

Solution: 9, 070.546 km, 5, 636.165 mi, 9 h 55 min, 61◦ 22′ 53′′N, 47◦ 11′ 36′′W

LHR: 51.4775◦N, 0.4614◦W = 0.898452 N, 0.008053 W
LAX: 33.9425◦N, 118.408◦W = 0.533168 N 2.066609 W
494 kn = 494 · 1.15078 mph ≈ 568.49 mph

The formula for the spherical distance is given by the spherical law of
cosine as

D = R·ζ = R·arccos (sin(φA) · sin(φB) + cos(φA) · cos(φB) · cos(λB − λA))

which in our case is

D = 3, 958 · arccos (sin(0.898452) · sin(0.533168)

+ cos(0.898452) · cos(0.533168) · cos(2.066609− 0.008053)) mi

≈ 5, 636.165 mi ≈ 9.9143 h ≈ 9 h 55 min

The most northern point is given with

αA = arccos

 cos(φA) · sin(φB)− cos(λA − λB) · cos(φB) · sin(φA)√
1− (cos(λA − λB) · cos(φA) · cos(φB) + sin(φA) · sin(φB))2


≈ 0, 8773446

by

PN = (φN , λN)

=

(
arccos (sin(|αA|) · cos(φA)) , λA + sgn(αA) ·

∣∣∣∣arccos

(
tan(φA)

tan(φN)

)∣∣∣∣)
≈ (1.071307 , 0.823681) ≈ (61◦ 22′ 53′′N , 47◦ 11′ 36′′W )

which is in SW-Greenland near Qassimiut, Ivigtut, and Kangilinnguit.

13. (HS-3) Trial before an American district court. The witness claims he
saw a blue cab drive off after a night accident. The judge decides to
test the reliability of the witness. Result: The witness recognizes the
color correctly in the dark in 80% of all cases. A survey also found that
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85% of taxis in the city are green and 15% are blue.
With what probability has the taxi actually been blue?

Reason: Bayes’ Theorem.

Solution: 15 out of 100 taxis are blue. The witness identifies 80%
as blue, which are 12 taxis (and 3 taxis falsely as green). 85 taxis
are green, and the witness actually identifies 80% as green, that’s 68
(and 17 as blue). In total, the witness identifies 29 taxis as blue. The
probability that a taxi identified as blue by the witness is actually blue
is thus 12/29 = 41.38% .

The probability that a taxi identified as blue by the witness is actually
blue is, according to Bayes: (0.8 ·0.15)/(0.8 ·0.15+0.2 ·0.85) = 41.38%.

14. (HS-4) A monk climbs a mountain. He starts at 8 a.m. on 1000 m above
sea level and reaches the peak at 8 p.m. at 3000 m. After a bivouac
on top of the mountain, he returns to the valley the next morning and
again starts at 8 a.m. and returns at 8 a.m.

(a) If he wants to avoid being at the same time of day at the same
place as the day before when he climbed upwards, which strategy
must he use downwards, and why?

(b) Assume he climbed at a rate of height u(t) proportional to the
square root of time, determine his path in dependence of hourly
noted time.

(c) Assume he follows the same path downwards and his height is

given by d1(t) =
125

9
(t− 20)2 + 1000 in the first three hours and

d2(t) = −125 t + 3500 for the rest of his way, when will he be at
the same point as the day before and at which height.

Reason: Homework.

Solution:

(a) He has to use an alternative route downwards, because if he climbs
down the way he climbed up, then he will cross a certain height
at the same time as the day before; just imagine he would si-
multaneously climb up and down. He will have to meet himself
then.

(b) We know u(8) = 1, 000, u(20) = 3, 000, and u(t) ∼
√
t. So we can

25



https://www.physicsforums.com/ 01/19-06/19

write u(t) = α
√
t− β + 1, 000 and get

β = 8 , α =
2, 000√

12
=

1, 000√
3

and u(t) =
1, 000√

3

√
t− 8 + 1, 000

(c) After three hours he has reached the height u(11) = 2000m up-
wards, and the height d1(11) = 9 · 125m + 1, 000m = 2, 125m
downwards. He therefore reaches the same height and location on
his second leg downwards, i.e. we have to solve u(t) = d2(t) or

0 = t2 +

(
−64

3
− 40

)
t+

(
512

3
+ 400

)
t =

92

3
− 1

3

√
922 − 5136 =

1

3

(
92− 16

√
13
)

t ≈ 11.437 ≈ 11h 26m 13s

and

d2(t) ≈ 2, 070.37m

15. (HS-5) I’m annoyed by my two new alarm clocks. They both are pow-
ered by the grid. One leaps two minutes an hour and the other one
runs a minute an hour too fast. Yesterday I took the effort and set
them to the correct time. This morning, I assume there was a power
loss, one clock showed exactly 6 a.m while the other one showed 7 a.m.
When did I set the clocks and how long did they run?

Reason: Equation of uniform movement.

Solution: One clock runs by v1(t) =
29

30
t + t0 and the other one

by v2(t) =
61

60
t + t0 . We know that v1(t1) ≡ 6 mod 24 and v2(t1) ≡

7 mod 24 . From this we get, that the clocks ran t1 = 20 hours, and I

set them at t0 ≡ 7 − 61

60
· 20 ≡ 31 − 61

3
≡ 10h 40m (a.m.) the previous

day.
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3 April 2019

1. Find the area A enclosed by the asteroid (x, y) = (cos3 t, sin3 t) for
0 ≤ t ≤ 2π .

Solution: By symmetry we have with dx = 3 · cos2 t · sin t dt

A = 4

∫ 1

0

y dx

= 4

∫ π/2

0

(sin3 t)(3 · cos2 t · sin t) dt

= 12

∫ π/2

0

(
1− cos 2t

2

)2(
1 + cos 2t

2

)
dt

=
3

2

∫ π/2

0

(1− 2 cos 2t+ cos2 2t)(1 + cos 2t) dt

=
3

2

∫ π/2

0

(1− cos 2t− cos2 2t+ cos3 2t) dt

=
3

2

[(
t− 1

2
sin 2t

)
− 1

2

(
t+

1

4
sin 4t

)
+

1

2

(
sin 2t− 1

3
sin3 2t

)]π/2
0

=
3π

8
≈ 1.1781

2. Two surface ships on maneuvers are trying to determine a submarine’s
course and speed to prepare for an aircraft intercept. Ship A is located
at (4, 0, 0), whereas ship B is located at (0, 5, 0). All coordinates are
given in thousands of feet. Ship A locates the submarine in the direction
of the vector 2i + 3j− (1/3)k, and ship B locates it in the direction of
the vector 18i−6j−k. Four minutes ago, the submarine was located at
A = (2,−1,−1/3). The aircraft is due in 20 minutes. Assuming that
the submarine moves in a straight line at a constant speed, to what
position should the surface ships direct the aircraft?

Solution: Information from ship A indicates the submarine is now
on the line L1 : (x, y, z) = (4 + 2t, 3t,−1

3
t); information from ship B

indicates the submarine is now on the line L2 : (x, y, z) = (18s, 5 −
6s,−s). The current position of the sub is at the intersection of both
lines at C = (6, 3,−1/3) with t = 1, s = 1/3 . The straight line path
of the submarine contains both points A and C; the line representing
this path is L : (x, y, z) = (2 + 4t,−1 + 4t,−1/3).
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The submarine traveled the distance between A and C in 4 minutes,
i.e. at a speed of 1

4
|AC| = 1

4

√
32 =

√
2 thousand feet per minute. In

20 minutes the submarine will move 20
√

2 thousand feet from C along
the line L .

For the rendezvous point R ∈ L we thus have for t > 0

20
√

2 = |RC| =
√

(−4 + 4t)2 + (−4 + 4t)2 =⇒ 25 = (t− 1)2 =⇒ t = 6

and the submarine will be located at R = (26, 23,−1/3) in 20 minutes.

3. Calculate the following:

(a)

∫ √
(x2 − 1)3

x
dx

(b) The arc length L of y = −x
2

8
+ log x for 1 ≤ x ≤ 2

Solution:

(a) We substitute x = secϕ , dx = secϕ tanϕdϕ to get∫
(x2 − 1)3/2

x
dx =

∫
(sec2 ϕ− 1)3/2

secϕ
secϕ tanϕdϕ

=

∫
tan4 ϕdϕ

=

∫
tan2 ϕ (sec2 ϕ− 1) dϕ

=

∫
(tan2 ϕ sec2 ϕ− (sec2 ϕ− 1)) dϕ

=
1

3
tan3 ϕ− tanϕ+ ϕ+ C

=
1

3

√
(x2 − 1)3 −

√
x2 − 1 + arcsec x+ C
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(b)

L =

∫ 2

1

√
1 +

(
dy

dx

)2

dx

=

∫ 2

1

√
1 +

(
1

x
− 1

4
x

)2

dx

=

∫ 2

1

(
1

x
+
x

4

)
dx

=
3

8
+ log 2

≈ 1.068

4. Find the similarity transformations to diagonalize the following matri-
ces:

(a) A =

 1 −
√

2 1√
2 0 −

√
2

1
√

2 1


(b) B =

(
cosϕ − sinϕ
sinϕ cosϕ

)
Solution:

(a) The characteristic polynomial of A is

χ(A;λ) = −λ3 + 2λ2 − 4λ+ 8 = −(λ− 2)(λ+ 2i)(λ− 2i)

and 1
2
A ∈ SO(3,R) with det(A) = 8 and tr(A) = 2. The eigenvec-

tor for λ = 2 is (1, 0, 1)τ and since A is orthogonal, the eigenvectors
for ±2i are of the form (1, a,−1)τ which yields a = ∓i

√
2 . After

normalization we get

S−1AS =

2i 0 0
0 2 0
0 0 −2i

 , S =
1

2

 1
√

2 1

−i
√

2 0 i
√

2

−1
√

2 −1


(b) The characteristic polynomial of B is

χ(B;λ) = λ2−2λ cosϕ+1 = (λ−cosϕ−i sinϕ)(λ−cosϕ+i sinϕ)

that is eigenvalues λ ∈ { cosϕ± i sinϕ } = { e±iϕ } with eigenvec-
tors (1,∓i)τ . Normalization yields

S−1BS =

(
eiϕ 0
0 e−iϕ

)
, S =

1√
2

(
1 1
−i i

)
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5. Suppose that F is a finite field with say |F| = pm = q and that V is
a vector space of finite dimension n over F . Find the order of GL(V ) .
Solution: There are |V | = qn elements in V and for any fixed basis
{ v1, . . . , vn } there is a unique element ϕ ∈ GL(V ) that transforms it
into another basis { v1, . . . , vn } and vice versa. So how many possibil-
ities do we have to choose such a basis? For w1 we have qn − 1 possi-
bilities, as the zero vector cannot be chosen. For w2 we can choose any
vector, which isn’t one of the q multiples of w1. For w3 we may choose
all vectors, which are not in one of the q2 many linear combinations of
the former, etc. So all in all we have

|GL(V )| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

6. (HS-4) Can the numbers 1, 2, 3, . . . , 16 be arranged in a row so that
each two adjacent numbers add up to a square number?

Example: 2, 7, 9, 16, . . . would be a possibility for the first four numbers
(2 + 7 = 9, 7 + 9 = 16, 9 + 16 = 25); but then we get stuck.

Reason: Puzzle (66).

Solution: 16, 9, 7, 2, 14, 11, 5, 4, 12, 13, 3, 6, 10, 15, 1, 8

7. (HS-5) We are looking for a ten-digit number N , where the first digit
indicates how many zeros occur in N , the second digit, how many ones
appear in N , the third digit, how many doubles occur in N , ... and the
tenth digit, how many nines appear in N .

Reason: Puzzle (74).

Solution: N = 6, 210, 001, 000
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4 March 2019

1. The graphic of eye colors shows us the probability of baby’s eye color
in dependency of the parents’. This yields the following multiplication
table:

x · x = 3/4 x + 3/16 y + 1/16 z
x · y = 1/2 x + 3/8 y + 1/8 z
x · z = 1/2 x + 1/2 z
y · y = 3/4 y + 1/4 z
y · z = 1/2 y + 1/2 z
z · z = z
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which we extend to a real, commutative, distributive, three dimensional
algebra A.

(a) Is A an associative algebra?

(b) Prove, that A is a baric algebra, i.e. show that there is a non trivial
algebra homomorphismus ω : A −→ R, the weight function.

(c) Determine a basis for kerω and rewrite the multiplication table
according to this new basis.

(d) Prove that there is an ideal N of codimension one in A, such that
A2 * N .

(e) A algebra is called genetic, if there is a basis {ui } such that the
structure constants λijk defined by

ui · uj =
n∑
k=1

λijkuk

fulfill the following conditions:

• λ111 = 1

• λ1jk = 0 for all j > k

• λijk = 0 for all i, j > 1 and k ≤ max{i, j}
Prove that all genetic algebras are baric algebras.

(f) Show that A is no genetic algebra.

(g) Determine all idempotent elements of A. Is there a basis of A
with idempotent elements?

Reason: Algebras, from a biological point of view.

Solution:
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(a)

(x · x) · y =

(
3

4
x+

3

16
y +

1

16
z

)
y

=
3

8
x+

9

32
y +

3

32
z +

9

64
y +

3

64
z +

1

32
y +

1

32
z

=
3

8
x+

29

64
y +

11

64
z

x · (x · y) = x ·
(

1

2
x+

3

8
y +

1

8
z

)
=

3

8
x+

3

32
y +

1

32
z +

3

16
x+

9

64
y +

3

64
z +

1

16
x+

1

16
z

=
5

8
x+

15

64
y +

9

64
z

hence A is not associative.

(b) We define ω(x) = ω(y) = ω(z) = 1 and observe, that the sums
of coefficients on the right hand sides of our multiplication table
are all equal to one, i.e. ω is an algebra homomorphism. Per
definition it is not the zero homomorphism.

(c) We set a := x− z , b := y − z , c := z , such that kerω = Ra+ Rb
and ω(c) = 1 . The new multiplication table then is

a2 = −1

4
a+

3

16
b a · b = −1

8
b

b2 = −1

4
b a · c =

1

2
a

c2 = c b · c =
1

2
b

(d) N := kerω is a proper ideal of A with codimension 1. Since
A2 = A we have A2 * N .

(e) Let B be a genetic algebra with basis {uk } and structure con-
stants {λijk } and

ω

(
n∑
k=1

µkuk

)
= µ1
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Hence

ω(µi) · ω(νj) = µ1 · ν1

ω(µi · νj) = ω

(∑
i

µi
∑
j

νj
∑
k

λijk

)
=
∑
i

µi
∑
j

νj · λij1

=
∑
i

µi · ν1 · λi11

= µ1 · ν1 · λ111
= µ1 · ν1

(f) From

(αa+ βb+ γc)2 =

(
−1

4
α2 + αγ

)
a+

(
3

16
α2 − 1

4
β2 − 1

4
αβ + βγ

)
b+γ2c

we get for (αa+ βb+ γc)2 = 0 successively γ = 0, α = 0, β = 0,
i.e. 0 ∈ A is the only element whose square vanishes. On the
other hand, we have for the element un ∈ B − {0} that u2n = 0 in
any genetic algebra B, hence A can’t be one.

(g) With the same calculation as before, we get from (αa+ βb+ γc)2 =
αa+ βb+ γc the following cases:

i. γ2 = γ =⇒ γ ∈ { 0, 1 }
ii. α = 0 , β 6= 0 =⇒ −1

4
β + γ = 1 =⇒ γ = 0 , β = −4

iii. α 6= 0 =⇒ −1
4
α + γ = 1 =⇒ γ = 0 , α = −4 =⇒ β2 = 12

The set of all idempotent elements of A is therefore

{ 0 , c , −4b , −4a± 2
√

3b }

which spans the entire algebra. Note that this doesn’t mean, that
A is a Boolean algebra, since not every element is idempotent.

2. Prove that starting with 1
1

the following binary tree

a
b

↙ ↘
a
a+b

a+b
b

defines a counting of all positive rational numbers without repetition
and all quotients canceled out.
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Reason: Calkin - Wilf counting.

Solution: We define a norm of these elements by N(p/q) = p+q . The
parent quotient of p

q
6= 1

1
is either p

q−p or p−q
q

. The norm of the child
has strictly increased in both cases.
Assume we have uncanceled quotients of value p

q
. Then there is one

among them of minimal norm. If d > 1 is a common divisor of p, q,
then d divides the two possible parent knots, too, which contradicts
minimality.
Assume we had more than one knot of value p

q
. Then there is one among

them of minimal norm. However, its possible parent knots would occur
more than once as well; again with a smaller norm. (This also follows
from the previous step, as only canceled quotients can occur.)
Let p

q
be a quotient that doesn’t occur. Again by minimality this

quotient wouldn’t have a parent knot of smaller norm.

3. Who said what here:
Reason: Decryption.

Solution: ”Strange as it may sound, the power of mathematics is
based on avoiding any unnecessary assumption and its great saving of
thought.” (Ernst Mach, physicist)

4. Calculate I :=
∫∞
0

√
xe−2

xe + 1
dx

Reason: Interesting Integration Trick.

Solution: First we get rid of the inconvenient denominator, so for
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x ≥ 0 we have∫ ∞
0

e(−x
e−1)ydy =

[
−e

(−xe−1)y

xe + 1

]y=∞
y=0

=
1

xe + 1

and for our integral I =
∫∞
0

∫∞
0
x

e
2
−1e−x

eye−y dy dx . In the next step,
we clean up the powers of the exponential function, that is we substitute
z = xey and get

I =

∫ ∞
0

∫ ∞
0

e−ze−yx
e
2
−11

e
y−1x1−e dz dx

=
1

e

∫ ∞
0

∫ ∞
0

e−ze−yy−1x−
e
2 dz dx

=
1

e

∫ ∞
0

∫ ∞
0

e−ze−y
√
y

z
y−1 dz dx

=
1

e

∫ ∞
0

z−
1
2 e−z dz

∫ ∞
0

y−
1
2 e−y dy

=
1

e
Γ

(
1

2

)2

=
π

e

5. An algebra A is a vector space with a binary distributive multiplication.
An example are group algebras, i.e. the distributive extension of the
formal basis vectors g ∈ G such as

A := R[S3] = R · (1) +R · (12) +R · (13) +R · (23) +R · (123) +R · (132)

(a) Find the center Z(A) = { z ∈ A | zv = vz for all v ∈ A } of A,
and (b) determine the structure of A, i.e. its decomposition into direct
factors and the corresponding isomorphisms.

Reason: Group Algebras.

Solution: We can identify an element v =
∑

σ∈S3
vσ · σ ∈ A with the

function v : S3 −→ R given by v(σ) = vσ. Multiplication can then be
written as

(vw)(σ) =
∑
α·β=σ

vαwβ =
∑
α∈S3

vαwα−1σ =
∑
α∈S3

vσα−1wα
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and for the function A ⊃ S3 3 α←→ χα : σ 7−→ δασ

(χα · v)(σ) =
∑
β∈S3

χα(β)v(β−1σ) = v(α−1σ)

(v · χα)(σ) =
∑
β∈S3

v(σβ−1)χα(β) = v(σα−1)

If v ∈ Z(A), then v(α−1βα) = (χαv)(βα) = (vχα)(βα) = v(βαα−1) =
v(β) and vice versa if v(α−1βα) = v(β) then [χα, v] = 1 and v ∈
Z(A). Hence v is a central element if and only if it is constant on
the conjugacy classes βS3 = {α−1βα |α ∈ S3 } of S3. Since conjuga-
tion doesn’t change the cycle length, we have three conjugacy classes
{ (1) } , { (12), (13), (23) } , { (123), (132) } and |Z(A)| = 3 . Thus

Z(A) = Z(R[S3]) = R·(1)+R·((12) + (13) + (23))+R·((123) + (132))

Group algebras and all their modules are semisimple by Maschke’s theo-
rem, and the theorem of Wedderburn and Artin states, that semisimple
algebras are direct sums of full, simple matrix algebras M(n,D) over a
division ring D which in our case are the real numbers D = R . Since
we always have the trivial module A.m = m, we always have the trivial
component M(1,R) as direct factor of A. A comparison of dimensions
yields 6 = 1+n2

1+. . .+n2
s and so 6 = 1+1+1+1+1+1 or 6 = 1+1+22

as only possibilities. In the first case, we would have A ∼= R6 which
isn’t possible, as A is non Abelian, so that

A ∼= R× R×M(2,R)

is the only decomposition into simple factors possible. This also fits to
our previous result, that Z(A) ∼= R3 .

The corresponding representations of S3 on R3 are given by

π1(σ) := idR3

π2(σ) := (−1)sgn(σ) · idR3

π3((1)) :=

[
1 0
0 1

]
π3((12)) :=

[
0 1
1 0

]
π3((13)) :=

[
−1 0
−1 1

]
π3((23)) :=

[
1 −1
0 −1

]
π3((123)) :=

[
0 −1
1 −1

]
π3((132)) :=

[
−1 1
−1 0

]
where π3 is restricted to R2 = { (x1, x2, x3) |x1 + x2 + x3 = 0 } ⊆ R3 .

37



https://www.physicsforums.com/ 01/19-06/19

6. Let B ⊆ Rn be measurable and P = (a1, . . . , an, b) ∈ Rn+1 a point with
b > 0 and CB = {P + t(Q− P ) |Q ∈ B × {0}n+1 , t ∈ [0, 1] } the cone
above the basis B with the peak P . Prove the measure formula

λn+1(CB) =
b

n+ 1
· λn(B)

Reason: Integration Transformation Theorem.

Solution: Define

ϕ : Rn × [0, b] −→ Rn × [0, b]

(x1, . . . , xn, t) 7−→ (x1, . . . , xn, 0) +
t

b
(a1 − x1, . . . , an − xn, b)

and observe that ϕ is a bijection on Rn × [0, b) with

Dϕ =


1− t

b
0 · · · 0 a1

b

0 1− t
b
· · · 0 a2

b
...

. . . . . . . . .
...

0 0 · · · 1− t
b

an
b

0 0
... 0 1


with determinant |Dϕ| =

(
1− t

b

)n
=

1

bn
(b− t)n and ϕ is a diffeo-

morphism on Rn × (0, b) with

ϕ (B × (0, b)) = CB − {P,B }

which are both P,B of Lebesgue measure zero. Thus we can apply the
transformation theorem for integrals

λn(ϕ(S)) =

∫
S

|Dϕ | dλn

and get

λn+1(CB) =

∫
B×[0,b]

1

bn
|b− t|n dλn+1

=
1

bn
·
∫
B

1 dλn ·
∫ b

0

|b− t|n dt

=
1

bn
· λn(B) ·

∫ b

0

un du

=
1

bn
· λn(B) · 1

n+ 1
· bn+1

=
b

n+ 1
· λn(B)
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7. Show that

x · y =
2xy − x− y
xy − 1

defines a one dimensional, real, local Lie group G around 0 ∈ R and
compute the vector field of left multiplication by an element g ∈ R.

Reason: Lie Groups.

Solution: The neutral element of G is 0 and the inverse x−1 =
x

2x
− 1

which can be verified along with associativity by simple calculations.
The operations are also well-defined on the open sets U = {x ∈ R :
|x| < 1 } and U0 = {x ∈ R : |x| < 1

2
} for the inversion. The group op-

erations are also analytic on suited neighborhoods of 0, so G is actually
a Lie group. For the left multiplication Lg : x 7−→ g · x we get

DLg(x0) =
d

dx

∣∣∣∣
x=x0

Lg(x) =
(g − 1)2

(gx0 − 1)2

8. (HS-1) Two numbers a, b are called amicable, if the sum of all proper di-
visors of one is the other number (1 is included). The smallest example
is

(a, b) = (220, 284) = (1+2+4+71+142, 1+2+4+5+10+11+20+22+44+55+110)

Let n ∈ N and (x, y, z) = (3 · 2n − 1 , 3 · 2n−1 − 1 , 9 · 22n−1 − 1) . Prove
that if x, y, z are all odd primes, then (a, b) = (2n · x · y , 2n · z) are am-
icable numbers.

Hint: First find a formula for the sum of all divisors σ(n) given the
prime decomposition of n.

Reason: Theorem of Thabit Ibn Qurra. (9th century, Mesopotamia)

Solution: For n = pk11 · · · pkrr then the sum of all divisors is

σ(n) =
r∏
i=1

pki+1
i − 1

pi − 1
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σ(a)− a = σ(2n · x · y)− 2n · x · y
=
(
2n+1 − 1

)
(x+ 1)(y + 1)− 2nxy

=
(
2n+1 − 1

)
(3 · 2n)(3 · 2n−1)− 2n(3 · 2n − 1)(3 · 2n−1 − 1)

=
(
2n+1 − 1

)
· 9 · 22n−1 − 2n

(
9 · 22n−1 − 9 · 2n−1 + 1

)
= 2n ·

(
9 · 22n − 9 · 2n−1 − 9 · 22n−1 + 9 · 2n−1 − 1

)
= 2n ·

(
9 · 22n−1 − 1

)
= 2n · z
= b

and by an analogue calculation σ(b)− b = a .

9. (HS-2) A number is called perfect, if it equals the sum of all its divisors
except itself, e.g. 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are perfect.
If 2k − 1 is a prime number, then 2k−1(2k − 1) is a perfect number and
every even perfect number has this form.

Reason: Mersenne Numbers.

Solution: Let n = 2k−1(2k − 1) and p = 2k − 1 prime. Then

σ(n) = (2k − 1) · p
2 − 1

p− 1

= (2k − 1) · 22k − 2k+1

2k − 2

= (2k − 1) · 2k · 1
= 2 · 2k−1 · (2k − 1)

= 2n

and n is perfect.
If on the other hand n = 2k−1m is an even perfect number, k > 1 and
m is odd, then

σ(n) =(2k − 1) · σ(m)

= 2n

= 2km
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and (2k − 1) |m, say (2k − 1)M = m. Hence

σ(m) =
2km

2k − 1

=
2k(2k − 1)M

2k − 1

= 2kM

≥ m+M

= (2k − 1)M +M

= 2kM

since both m,M divide m. Thus equality holds everywhere and m,M
are the only divisors of m, i.e. m = (2k − 1)M is prime. As k > 1 this
is only possible, if M = 1 and m = 2k − 1 is of the desired form.

Numbers 2k − 1 are called Mersenne numbers and primes 2k − 1
Mersenne primes, in which case k has to be prime, too. It is unclear
(but suspected), whether there are infinitely many Mersenne primes.
The highest known number is currently 282,589,933 − 1 with 24, 862, 048
digits. It is also unclear whether there are infinitely many perfect num-
bers.

10. (HS-3)

(a) What is the smallest five-digit number n such that n and 2n to-
gether contain all 10 digits from 0 to 9?

(b) On how many zeros does the number 1000 ! end?

(c) For which six-digit number ABCDEF do we have:
ABCDEF · 1 = ABCDEF
ABCDEF · 3 = BCDEFA
ABCDEF · 2 = CDEFAB
ABCDEF · 6 = DEFABC
ABCDEF · 4 = EFABCD
ABCDEF · 5 = FABCDE

Reason: Number Puzzle.

Solution:

(a) n = 13485 with 2n = 26970 . Other solutions are e.g. n =
13548, 13845 which are bigger.

41



https://www.physicsforums.com/ 01/19-06/19

(b) We have as many zeros at the end as there are factors 5, so
1000/5+1000/52 +1000/53 +b1000/54c = 200+40+8+1 = 249 .

(c) If σ notes the cyclic shift by one digit (σ(ABCDEF ) = BCDEFA)
we get with x = ABCDEF

x · 10k ≡ σk(x) mod 7

i.e. σ acts like the multiplication by 10 in Z7 , 10 : 7 = 1.42857 ,
and 142857 is the solution.
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5 February 2019

1. A little number theory.

• Compute the last three digits of 32405 .

• Show that there is an integer a ∈ Z such that 64959 | (a2 − 7) .

Reason: Practice for computer science.

Solution:

(a) We need the result of 32405 ≡ xmod 1000 to compute the last
three digits. Since 3 and 1000 are coprime, we have 3ϕ(1000) ≡
1 mod 1000 by Euler’s theorem. Now

ϕ(103) = ϕ(8)ϕ(125) = ϕ(23)ϕ(53) = 23

(
1− 1

2

)
53

(
1− 1

5

)
= 400

Thus we have 32405 = (3400)
6 · 35 ≡ 16 · 243 ≡ 243 mod 1000 as the

last three digits.

(b) It is 64959 = 59 · 1101 = 59 · 3 · 367.

•
(

7

3

)
=

(
1

3

)
= 1

•
(

7

59

)
= −

(
59

7

)
= −

(
3

7

)
=

(
7

3

)
=

(
1

3

)
= 1

•
(

7

367

)
= −

(
367

7

)
= −

(
3

7

)
=

(
7

3

)
=

(
1

3

)
= 1

Hence there are integers a1, a2, a3 with a21 ≡ 7 mod 3 , a22 ≡
7 mod 59 , a23 ≡ 7 mod 367 and by the Chinese remainder theo-
rem an integer a such that a ≡ a1 mod 3 , a ≡ a2 mod 59 , a ≡
a3 mod 367 . This is still true for the squared equations a2 ≡
a21 mod 3 , a2 ≡ a22 mod 59 , a2 ≡ a23 mod 367 so again by the
Chinese remainder theorem a2 ≡ 7 mod 64959 .

2. Let f(x) =
(cosϕ−

√
3 sinϕ+ 1)x+ 2

√
3 sinϕ

x2

and g(x) =
(cosϕ−

√
3 sinϕ− 1)x+ 2

√
3 sinϕ

x2
.

For which values of ϕ are f ⊥ g in L2([1,∞)) ?

Reason: Thales.

Solution: The norm in L2([1,∞)) is defined by the inner product
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||h(x)||2 = 〈h(x), h(x)〉 =
∫∞
1
h(x)2dx . We define p(x) = x−1 and

q(x) =
√

3(2 − x)x−2. Then { p, q } define a orthonormal basis of the
subspace V they span in L2([1,∞)). As f, g can be written as

f(x) = p(x)+p(x) cosϕ+q(x) sinϕ , g(x) = −p(x)+p(x) cosϕ+q(x) sinϕ

which means they point to the same point on the unit circle of V from
the left and from the right intersection with the diameter, the statement
follows by the theorem of Thales, i.e. all values of ϕ fulfill the condition.

3. (HS-1) A man wants to figure out the length of an escalator, i.e. the
number of steps [N] if it was out of order. Since it wasn’t out of order,
he counted 60 steps if he walks with the stairs and 90 steps if he walks
in the opposite direction. What is [N]?

Solution: Let’s measure velocity in steps per second and distance in
steps. Let vM be the man’s velocity and vT the escalator’s. We have
two equations for the distance:

x(t) = (vM + vT ) · 60N

vM
= (vM − vT ) · 90N

vM

which is vM = 5vT and x(t) = 360N · vT
vM

= 72N .

4. (HS-2) We are looking for a number with eight digits: two of each
1,2,3,4. The ones are separated by one other number, the twos by two,
the threes by three, and the fours by four other numbers.

Solution: 23421314 or backwards 41312432.

5. (HS-3) Which of you four threw the ball in my window? A says: It
was E. E says: It was G. F says: It was not me. G says: E lied a.) If
only one of the four lied, who threw the ball? b.) If only one person
has told the truth, who was the culprit?

Solution: If only one lied, then E was the culprit If only one told the
truth, then F was the culprit.

6. (HS-4) Choose any two but different natural numbers and form their
sum, their difference and product. Prove that among these three num-
bers at least one is divisible by 3.

Solution: If one of the two numbers is divisible by 3, so is the prod-
uct. If the two numbers divided by 3 have the same remainder, then
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their difference is divisible by 3. If a number divided by 3 leaves the
remainder 1, the other the remainder 2, then their sum is a multiple of
3.

7. (HS-5) Prove that the remainder in dividing any prime by 30 is either
1 or prime again. Is this also true when dividing a prime number by
60?

Solution: Every prime number p can be written as p = 30q + r,
q and r are natural numbers with 1 ≤ r ≤ 29. For all numbers r
divisible by 2, 3, or 5 then p = 30q + r is not prime. Therefore only
1, 7, 11, 13, 17, 19, 23, 29 are possible remainders.
Now let p = 60q + r with 1 ≤ r ≤ 59. Since the prime 109 is in the
form 109 = 60 ·1 + 49 and 49 is not prime, the statement does not hold
for 60.

6 January 2019

1. Given the surface

f(t, ϕ) = ((1 + t2) cosϕ , (1 + t2) sinϕ , t) (t ∈ R , 0 ≤ ϕ ≤ 2π)

(a) Compute the first fundamental form of this surface.

(b) Compute the second fundamental form and the Gauss curvature
of this surface.

(c) Compute the geodesic curvature κg and the normal curvature κn
of the circular latitude at t = 1.

Only solutions to all three parts will be accepted.

Reason: Curvatures.

Solution:

(a) ft = (2t cosϕ, 2t sinϕ, 1) , fϕ = (−(1 + t2) sinϕ, (1 + t2) cosϕ, 0)

I(aft + bfϕ, cft + dfϕ) = 〈(a, b)τ , (c, d)τ 〉

= (a, b)

[
A B
B C

]
(c, d)τ

= ac〈ft, ft〉+ (ad+ bc)〈ft, fϕ〉+ bd〈fϕ, fϕ〉
= ac · A+ (ad+ bc) ·B + bd · C
= ac(1 + 4t2) + (ad+ bc)(0) + bd((1 + t2)2)
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and g(t, ϕ) = I =

[
1 + 4t2 0

0 (1 + t2)2

]
(b) ~n =

ft × fϕ
||ft × fϕ||

=
1√

1 + 4t2
· (− cosϕ,− sinϕ, 2t)τ

ftt = (2 cosϕ, 2 sinϕ, 0)τ

ftϕ = (−2t sinϕ, 2t cosϕ, 0)τ

fϕϕ = (−(1 + t2) cosϕ,−(1 + t2) sinϕ, 0)τ

h(t, ϕ) = II =

[
ftt · ~n ftϕ · ~n
fϕt · ~n fϕϕ · ~n

]
=

1√
1 + 4t2

[
−2 0
0 1 + t2

]

and κG(t, ϕ) =
deth

det g
=

−2

(1 + 4t2)2(1 + t2)

(c) The circular latitude at t = 1 is c(ϕ) = f(1, ϕ) = (2 cosϕ, 2 sinϕ, 1)τ

which is a circle with radius R = 2 and so its curvature κR is

κ(ϕ) =
||c′(ϕ)× c′′(ϕ)||
||c′(ϕ)||3

=
4

8
=

1

2
=

1

R

For the normal curvature we get

κn =
h(c′(ϕ), c′(ϕ))

g(c′(ϕ), c′(ϕ))
=

(0, 1) IIt=1(0, 1)τ

(0, 1) It=1(0, 1)τ
=

2√
5
· 1

4
=

1

2
√

5

and the geodesic curvature is

κg =
√
κ2R − κ2n =

√
1

4
− 1

20
=

1√
5

2. Three pirates are stranded on an island and find that there are only
a few monkeys besides drinking water and coconuts. After collecting
coconuts for a whole day, they want share them the next morning. At
night, one of the pirates awakes and hides his third of the coconuts.
But since an odd number of nuts is left, he gives one to a monkey.
The second pirate awakens shortly afterwards and hides his third of
the remaining coconuts. Again an odd number of coconuts remains,
so he gives one to a monkey. The third does the same thing a short
time later and gives a leftover nut to a monkey. The next morning
they divided the few remaining coconuts among each other. Now the
question: How many coconuts did the three pirates at least collect the
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day before and how are they distributed on each?

Reason: Riddle.

Solution: We have to solve Nk+1 = 2
3
Nk−1 for k = 1, 2, 3 and N3 = 3R

where N0 is the number of coconuts collected and R the remaining share
for each in the morning. Solving this recursion results in

3R =
23

33

(
N0 −

2∑
k=0

(
2

3
)k

)
⇐⇒ N0 =

1

8
(81 ·R + 57) ∈ Z

The smallest solution to 81R + 57 ≡ R + 1 ≡ 0 mod 8 is R = 7 which
yields N0 = 78. The first pirate receives 33, the second 24, the third
18, and the monkeys 3 coconuts.

3. A cyclist drives along a railway track. Every 30 minutes, he is overtaken
by a train and every 20 minutes he is met by a train. At which frequency
do the trains travel on this connection?

Reason: Riddle.

Solution: Imagine she rides one hour in one direction and one hour
in the other. Then she meets three trains in the first hour and is
overtaken by two in the second hour. So the frequency is thus 5 trains
per direction in 120 minutes, i.e. every 24 minutes a train.

4. The Heisenberg group H =


1 a c

0 1 b
0 0 1

 : a, b, c ∈ Z3

 operates dis-

continuously on R3 by

h(p) = h(x, y, z) =

1 a c
0 1 b
0 0 1

 ·
xy
z

 =

 x+ a
y + b

z + ay + c


Show that the Heisenberg manifold R3/H is orientable.

Reason: Manifolds.

Solution: A manifold is orientable, if and only if there is an atlas,
such that for all charts (U,ϕ), (V, ψ) with a nonempty intersection and
all points p in the domain of ϕ ◦ ψ−1

det(Dp(ϕ ◦ ψ−1)) > 0
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Therefore we get with the trivial atlas ψ = idR3 on R3:

det(Dp(ϕ◦ψ−1)) = det(Dp(ψ◦h◦ψ−1(ψ(p))) = detDp(h) =

1 0 0
0 1 0
0 a 1

 = 1

5. Solve x′(t) =
2t+ 2x(t)

3t+ x(t)
, x(2) = 0 .

Reason: Initial Value Problem.

Solution: With y(t) =
x(t)

t
we get x′ =

2 + 2y

3 + y
and ty′ = x′ − y .

Hence

ty′ =
2 + 2y

3 + y
− y =

−y2 − y + 2

3 + y
= t · dy

dt
dt

t
=
−3− y

y2 + y − 2
· dy = −4

3
· 1

y − 1
dy +

1

3
· 1

y + 2
dy

and log |t| = 1
3

log |y + 2| − 4
3

log |y − 1|+ C or

t3 = C · y + 2

(y − 1)4
⇐⇒ (x− t)4 = C · (x+ 2t) and C = 4

6. Show that T : C([1, 2]) −→ C([1, 2]) defined by

T (y)(t) := 1 +

∫ t

1

y(s)

2s
ds

has at least one fixed point and determine them.

Reason: Fixed points.

Solution:

|T (y)(t)− T (z)(t)| ≤
∫ t

1

2s

|y(s)− z(s)|
ds ≤

∫ t

1

||y − z||∞
2

≤ t− 1

2
||y − z||∞ ≤

1

2
||y − z||∞

Differentiation of Ty = y yields y′(t) =
y(t)

2t
or y(t) = C ·

√
t. Hence

C ·
√
t = y = Ty = 1 +

C

2

∫ t

1

1√
s
ds = 1 +C · (

√
t− 1) and thus C = 1 .

The only fixed point of T is y(t) =
√
t .
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7. Compute exp(tA) where A =

 1 0 1
0 1 0
−1 0 1

 and determine the behavior

of det(exp(tA)) for t→ ±∞ .

Reason: Matrix Exponentiation.

Solution: With B =

 0 0 1
0 0 0
−1 0 0

 = E13 − E31 we have A = 1 + B.

Since [1, B] = 0 we get

exp(tA) = exp(t · 1) exp(tB) = et · exp(tE13 − tE31)

(tE13 − tE31)
0 = t0(E11 + E22 + E33)

(tE13 − tE31)
1 = t1(E13 − tE31)

(tE13 − tE31)
2 = t2(−E11 − E33)

(tE13 − tE31)
3 = t3(−E13 + E31)

(tE13 − tE31)
4 = t4(E11 + E33)

(tE13 − tE31)
5 = t5(E13 − E31)

. . .

which is cyclic of order four in the matrix component and n 7−→ tn for
the factor. If we now add the separate positions divided by n!

(1, 1) : 1− t2

2!
+
t4

4!
∓ . . . =

∞∑
k=0

(−1)kt2k

(2k)!
= cos t

(1, 3) : t− t3

3!
+
t5

5!
∓ . . . =

∞∑
k=0

(−1)kt2k+1

(2k + 1)!
= sin t

(2, 2) : 1

(3, 1) : −t+
t3

3!
− t5

5!
± . . . = −

∞∑
k=0

(−1)kt2k+1

(2k + 1)!
= − sin t

(3, 3) : 1− t2

2!
+
t4

4!
∓ . . . =

∞∑
k=0

(−1)kt2k

(2k)!
= cos t

then exp(tB) =

 cos t 0 sin t
0 1 0

− sin t 0 cos t

 and exp(tA) =

 et cos t 0 et sin t
0 et 0

−et sin t 0 et cos t


Thus det(exp(tA)) = etr(tA) = e3t from which the behavior towards ±∞
is obvious.
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8. Let G be a group generated by σ, ε, δ with σ7 = ε11 = δ13 = 1.

(a) Show that there is no transitive operation of G on a set with 8
elements.

(b) Is there are group G with the above properties, that operates
transitively on a set with 12 elements?

Reason: Groups.

Solution:

(a) Assume G operates transitively on M = { 1, 2, . . . , 8 } via ϕ :
G −→ S8 . As the order of ϕ(ε) is a common divisor of 11 and
|S8| = 8!, both numbers are coprime and thus ϕ = 1 . The same
argument applies to ϕ(δ) hence ϕ(σ) generates ϕ(G), which is a
cyclic group of order 1 or 7. By the orbit-stabilizer theorem and
a transitive operation we would have 8 | |ϕ(σ)| = |ϕ(G)| ∈ { 1, 7 }
which is impossible.

(b) Let σ = (1 2 3 4 5 6 7) and ε = (2 3 4 5 6 7 8 9 10 11 12) . Both cycles
generate a subgroup H ≤ S12 which operates transitively on M =
{ 1, 2, . . . 12 } . Now (h, z).m := h.m is a transitive operation of

G := H × Z/13Z

on M , too, and G is generated by (σ, 0) , (ε, 0) , (1, 1 + 13Z) .

9. Let R, S be rings and ϕ : R −→ S a ring epimorphism. Further let
J ⊆ S be an ideal.

(a) Define an ideal I ⊆ R such that R/I ∼= S/J .

(b) Is the preimage of the center of S equal to the center of R ?

Reason: Rings.

Solution:

(a) Let π : S � S/J be the canonical projection. Then π◦ϕ : R −→
S/J is also surjective and I := ϕ−1(J) = ker π ◦ϕ . The statement
follows by the homomorphism theorem.

(b) No. Let S = { 0 }. Then kerϕ = R which is the center of R if
and only if R is commutative. So every non commutative ring
provides a counterexample, e.g. a matrix ring.

50



https://www.physicsforums.com/ 01/19-06/19

10. A lie algebra g is called reductive, if g = Z(g)⊕ [g, g] is the direct sum
of its center and its derived algebra. (This is an important class of Lie
algebras, as they are exactly those whose representations split into a
direct sum of irreducible representations. Semisimple and in particular
the simple, classical matrix Lie algebras are reductive.)

Show that the Lie algebra gl(V ) of all endomorphisms of a finite di-
mensional complex vector space is reductive.

Reason: Lie algebras.

Solution: Z(g) = C · 1 by Schur’s Lemma and we can write every
matrix X ∈ gl(V ) as X = c · 1 + SX where SX ∈ sl(V ), the simple Lie
algebra of all endomorphisms of V with zero trace. For dimensional
reasons, we get

gl(V ) = C · 1⊕ sl(V ) = Z(g)⊕ sl(V )

Since sl(V ) is a simple Lie algebra, we have

[gl(V ), gl(V )] = [sl(V ), sl(V )] = sl(V )

and thus
gl(V ) = Z(g)⊕ [gl(V ), gl(V )]
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