
7/31/2007 Page 1 of 4 hotvette

Cubic Spline Tutorial

Cubic splines are a popular choice for curve fitting for ease of data interpolation, integration, differentiation,
and they are normally very smooth. This tutorial will describe a computationally efficient method of
constructing joined cubic splines through known data points. Consider the problem of constructing 2 cubic

splines to fit 3 data points (x1,y1), (x2,y2), (x3,y3). This
is the simplest case of cubic spline interpolation that
will illustrate the methods used in more normal cases
where several points are present. The key
characteristics of cubic spline interpolation are:

1. The curves pass through all specified data points
2. 1st derivative continuity at interior points
3. 2nd derivative continuity at interior points
4. boundary conditions specified at the free ends

We begin with the equations of the two splines:

spline #1 spline #2
y = a1(x-x1)3 + b1(x-x1)2 + c1(x-x1) + d1 y = a2(x-x2)3 + b2(x-x2)2 + c2(x-x2) + d2
y' = 3a1(x-x1)2 + 2b1(x-x1) + c1 y' = 3a2(x-x2)2 + 2b2(x-x2) + c2
y" = 6a1(x-x1) + 2b1 y" = 6a2(x-x2) + 2b2

For now, we’ll focus on spline #1. We start with the 2nd derivative. Imposing the compatibility constraints that
y" = y1" at x = x1 and y" = y2" at x = x2, and calling x2-x1 = h1:

y1" = 6a1(x1-x1) + 2b1 = 0 + 2b1 = 2b1 b1 = y1"/2
y2" = 6a1(x2-x1) + 2b1 = 6a1h1 + y1" a1 = (y2"-y1")/6h1

This results in the following equation for the 2nd derivative:

y" = (x-x1)(y2"-y1")/(x2-x1) + y1"

which can be verified to be correct (i.e. y" = y1" at x = x1 and y" = y2" at x = x2). Next, apply the conditions that
the spline pass though the points, in other words y1 = f(x1) and y2 = f(x2):

y1 = 0 + 0 + 0 + d1 d1 = y1
y2 = (x2-x1)3(y2"-y1")/6h1 + y1"(x2-x1)2/2 + c1(x2-x1) + y1
y2 = h1

3(y2"-y1")/6h1 + y1"h1
2/2 + c1h1 + y1

y2 = h1
2(y2"-y1")/6 + y1"h1

2/2 + c1h1 + y1

y2-y1 = y2"h1
2/6 - y1"h1

2/6 + y1"h1
2/2 + c1h1

(y2-y1)/h1 = y2"h1/6 - y1"h1/6 + y1"h1/2 + c1
(y2-y1)/h1 = y2"h1/6 - y1"h1/6 + 3y1"h1/6 + c1
(y2-y1)/h1 = y2"h1/6 + y1"h1/3 + c1 c1 = (y2-y1)/h1 – y2"h1/6 - y1"h1/3

7/31/2007 Page 2 of 4 hotvette

Finally, impose the compatibility condition that y2' in spline 1 must equal y2' in spline 2:

3a1(x2-x1)2 + 2b1(x2-x1) + c1 = 3a2(x2-x2)2 + 2b2(x2-x2) + c2
3a1h1

2 + 2b1h1 + c1 = c2
h1(y2"-y1")/2 + y1"h1 + (y2-y1)/h1 - y2"h1/6 - y1"h1/3 = (y3-y2)/h2 – y3"h2/6 – y2"h2/3
h1(y2"-y1")/2 + y1"h1 - y2"h1/6 - y1"h1/3 + y3"h2/6 + y2"h2/3 = (y3-y2)/h2 - (y2-y1)/h1

3h1(y2"-y1") + 6y1"h1 - y2"h1 - 2y1"h1 + y3"h2 + 2y2"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1

3h1y2" – 3h1y1" + 6y1"h1 - y2"h1 - 2y1"h1 + y3"h2 + 2y2"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1

y1"(6h1 – 3h1 – 2h1) + y2"(2h1 + 2h2) + y3"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1

h1y1" + 2(h1 + h2)y2" + h2y3" = 6[(y3-y2)/h2 - (y2-y1)/h1] (1) governing equation for cubic splines

Generalizing, this equation results in a tri-diagonal set of linear equations (Ax = b), where x represents the
unknowns (2nd derivatives of the points), and b is the right hand side. Tri-diagonal sets of linear equations are
efficiently solved with specialized algorithms.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′
′′

′′
′′

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

−−−−−−−−−−

−

?
/)(/)(

/)(/)(
?

6

?
)(2

)(2
)(2

?

22111

112223

1

2

1

1122

2

3322

2211

nnnnnn

n

nnnnn

n

hyyhyy

hyyhyy

y
y

y
y

hhhh
h

hhhh
hhhh

M

M

M

M

M

M

O

O

O

If equal point spacing is used (i.e. h1 = h2 = …hn-1 = h), even more simplification can be made:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

+−
+−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′
′′

′′
′′

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

?
2

2
2

?

)*/(6

?
141

1

141
141

?

21

234

123

1

2

1

nnn

n

n yyy

yyy
yyy

hh

y
y

y
y

M

M

M

M

M

O

O

O

The first and last equations represent the boundary conditions of the free ends of the spline that must be chosen.
Often, so called ‘natural’ boundary conditions are used, where the 2nd derivative is set to zero. Natural
boundary conditions result in total minimum curvature. Other boundary conditions can be used. For example:

1. Natural boundary conditions y1" = 0 yn" = 0
2. Parabolic runout y1" = y2" yn-1" = yn"
3. Zero slope
4. Specified 1st derivative
5. Specified 2nd derivative s1 = y1" sn = yn"

7/31/2007 Page 3 of 4 hotvette

Example Problem #1:

Let’s illustrate with a specific problem: fit 2 cubic splines to the function y = x3 in the range of x = 0 to 1. Thus,
x1 = 0, y1 = 0, x3 = 1, y3 = 1. We’ll pick x2 = 0.5 (thus y2 = 0.125) and use natural boundary conditions. Because
the only unknowns are the 2nd derivative at each point, we have a 3 x 3 matrix to solve. Also, since (x2-x1) = h1
= (x3-x2) = h2 = 0.5, we can used the simplified version (Note: . means zero):

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′
′′
′′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
18
0

0
75.0
0

24
0

0)125.0(21
0

24
0

2
0

)25.0/(6
1..
141
..1

123

3

2

1

yyy
y
y
y

The solution is [y1", y2", y3"]T = [0, 4.5, 0]T. Note: in this case the solution is trivial, y2" = 18/4. From this we
can calculate the coefficients of the cubic spline segments:

a1 = (y2"-y1")/6h1 b1 = y1"/2 c1 = (y2-y1)/h1 – y2"h1/6 – y1"h1/3 d1 = y1
a2 = (y3"-y2")/6h2 b2 = y2"/2 c2 = (y3-y2)/h2 – y3"h2/6 – y2"h2/3 d2 = y2
a1 = 1.5 b1 = 0 c1 = -0.125 d1 = 0
a2 = -1.5 b2 = 2.25 c2 = 0 d2 = 0.125

As can be seen in the plot, the cubic spline
interpolation doesn’t fit the function very
well. Wait a minute. How can 2 cubic
splines not fit a cubic polynomial very well?
It should be a perfect fit, especially since it
only takes 1 cubic spline to represent the
cubic polynomial function y = x3. The
answer is that we forced the 2nd derivative
of the spline to be zero at each free end.
This works fine at x = 0 for the function y =
x3 because the 2nd derivative of this function
is indeed 0 at x = 0. However, it isn’t a
good choice at x = 1 because the 2nd
derivative of y = x3 at x = 1 is 6x = 6. If the
boundary condition of x3 is changed to
reflect a value of 6 instead of 0, the fit is
perfect. This illustrates the importance of
choosing appropriate boundary conditions
for the problem at hand.

Example Problem #2:

As a final illustration, we will show how to enforce a slope at either end. Recall the equation of the 1st
derivative:

At x = x1:

y1' = 3a1(x1-x1)2 + 2b1(x1-x1) + c1 = 0 + 0 + c1 = c1 = (y2-y1)/h1 – y2"h1/6 – y1"h1/3
(2h1)y1" + (h1)y2" = 6[(y2-y1)/h1 - y1']

7/31/2007 Page 4 of 4 hotvette

At x = x3:

y3' = 3a2(x3-x2)2 + 2b2(x3-x2) + c2 = 3a2h2

2 + 2b2h2 + c2

y3' = 3h2
2(y3"-y2")/6h2 + 2h2y2"/2 + (y3-y2)/h2 – y3"h2/6 – y2"h2/3

y3' = 3h2(y3"-y2")/6 + h2y2" + (y3-y2)/h2 – y3"h2/6 – y2"h2/3
h2y3"/2 - h2y2"/2 + h2y2" – y3"h2/6 – y2"h2/3 = y3' - (y3-y2)/h2

3h2y3" - 3h2y2" + 6h2y2" – y3"h2 – 2y2"h2 = 6(y3' - (y3-y2)/h2)
y3"(3h2 – h2) - y2"(6h2 – 3h2 – 2h2) = 6(y3' - (y3-y2)/h2)
(h2)y2" + (2h2)y3" = 6[y3' - (y3-y2)/h2]

If we were to force the slope to be zero at both ends, the matrix equation would be:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−−
−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′
′′
′′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

223

112223

112

3

2

1

22

2211

11

/)(0
/)(/)(

0/)(
6

2.
)(2

.2

hyy
hyyhyy

hyy

y
y
y

hh
hhhh

hh

Using the simplified version, we have:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
+−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
+−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′
′′
′′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

21
18
3

875.0
75.0

125.0
24

)125.01(
0)125.0(21

0125.0
24

)(
2)25.0/(6

21.
141
.12

23

123

12

3

2

1

yy
yyy

yy

y
y
y

The solution is [y1", y2", y3"]T = [-3, 9, -15]T, from
which we can calculate the spline segment coefficients
and plot the result.

Conclusion:

We have demonstrated a method of formulating cubic
splines to interpolate a given set of points and shown
how to implement various free end boundary
conditions.

Discussion:

The formulation described here is by no means the
only one - there are other formulations of cubic
splines. One possibility is to set up the matrix

equations to directly calculate the spline segment coefficients, but it requires a matrix of dimension 4*(n-1),
which is much more computationally intensive than the method shown here. If it is desired to not choose the
free end boundary conditions, the splines on either end can be fit to the 3 points instead of 2, or the method
illustrated here can be used with the boundary conditions determined by fitting splines to 4 points on either end.
These are just a few of the possible techniques for cubic spline interpolation.

