Boundary conditions at current interface
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The source of the current is the polarizability of the particles. Current
density at the interface is given by: 3 = —iwn,p = —iwnsg.E where FE is
the electric field at the location of the particles. The polarizabiltiy « is a
tensor and it could be anisotropic.

1 Perpendicular polarized light

Suppose the incident light is of perpendicular polarization - in this case the
electric field components will be perpendicular to the incident plane. Hence
the dipole moment of the particles will also be perpendicular to the incident
plane. The magnetic field will be in the plane of incidence.

Figure 1: Application of boundary condition to perpendicularly polarized
light

The boundary condition for the magnetic field is got from applying the
surface integral of H over the rectangular loop shown in the figure and
considering what happens when the thickness of the loop approaches zero.
We get:

Htl - Ht2 = J—y
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and
Ey = Ep

Note the orientation of axes in this configuration:
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Figure 2: Application of boundary condition to perpendicularly polarized

light

This gives:

(H;cost; — H, cosb;) — Hycos0, = J_,
E,+FE, = E;

where, J_, denotes the component of the current in the —y direction. Note
that the positive y axis is into the plane of the paper as per the right hand
rule. If we have air on both sides, we end up with cos#; = cos 6, = cos b,

k,/ko Using E/H = poco we get:

1 k. B
Ek_o[(El - Er) - Et} = J,y

E,+FE. . =F

Substituting the second equation in the first:

1 k.

—Z[(Bi—E,)— (B, +E)] =J,
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Figure 3: Application of boundary condition for magnetic field to parallel
polarized light. The rectangular loop will be perpendicular to the page and
we need to find the current passing through the loop

Dividing throughout by F; and taking the incident wave to have unit
amplitude at the interface, we get the reflection coefficient to be:

B J_ypow
2k,
and the transmission coefficient as:
T=1+R

These two satisfy the energy conservation statement very well :
S, — Sy, =—J.E

where ) and S, are the Poynting vectors on either side of the interface and
E is the total electric field (incident + reflected).

1.1 p-polarized (parallel polarized, TM polarized)

For parallel polarized light the current will be in the x-z plane but different
from the orientation of the electric field ( which will also be in the x-z plane)
due to the effect of the polarizability tensor. Consider the case when the
polarizability is such that the current is only along z-axis, even though the
electric field has both x and z components.

The boundary conditions will then be (note that the magnetic field would
depend only on component of J along x-axis. However as I mentioned above
[ am analyzing for the case when the current has only a z-component):

(—E;cosb; + E, cosb,) = —E; cos 0,
Hi+H, —H =0
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Figure 4: Application of boundary condition for parallel polarized light.

k.
Using E/H = puoco taking cos0; = cos, = cosf, = . we get:
0

(E; — E,) = E,
E,+FE, = E,

which gives us 1 — R=1+R
Instead of taking the boundary condition of tangential electric field being
continuous, if I take the Gaussian boundary condition:

o
Etz - (Ezz + Erz) = —
€0
with o being the surface charge density. I get the two equations to be (with
k, being the inplane wave vector):

@[(Ez + Ey) — Et} -2
ko €o
E,+E, —FE =0

This is not solvabe too!

How do we obtain the reflection and transmission coefficient for such a
case 7,

And more importantly why is this method not working ? Does it have
anything to do with the anisotropicity that is assumed ?



