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Boron Neutron Capture Therapy of Cancer:
Current Status and Future Prospects
Rolf F. Barth,1 Jeffrey A. Coderre,3 M. Gra�a H.Vicente,4 and Thomas E. Blue2

Abstract Background: Boron neutron capture therapy (BNCT) is based on the nuclear reaction that
occurs when boron-10 is irradiated with low-energy thermal neutrons to yield high linear energy
transferAparticles and recoiling lithium-7nuclei. Clinical interest inBNCThas focusedprimarilyon
the treatment of high-grade gliomas andeither cutaneous primaries or cerebralmetastases ofmel-
anoma, most recently, head and neck and liver cancer. Neutron sources for BNCTcurrently are
limited to nuclear reactors and these are available in the United States, Japan, several European
countries, andArgentina. Accelerators also canbeused toproduce epithermalneutrons and these
are being developed in several countries, but none are currently being used for BNCT.
Boron Delivery Agents: Two boron drugs have been used clinically, sodium borocaptate
(Na2B12H11SH) and a dihydroxyboryl derivative of phenylalanine called boronophenylalanine. The
major challenge in the development of boron delivery agents has been the requirement for selective
tumor targeting to achieve boronconcentrations (f20Ag/g tumor) sufficient to deliver therapeutic
doses of radiation to the tumor with minimal normal tissue toxicity. Over the past 20 years, other
classes of boron-containing compounds have been designed and synthesized that include boron-
containing amino acids, biochemical precursors of nucleic acids, DNA-binding molecules, and por-
phyrin derivatives. High molecular weight delivery agents include monoclonal antibodies and their
fragments, which can recognize a tumor-associated epitope, such as epidermal growth factor, and
liposomes. However, it is unlikely that any single agent will target all or evenmost of the tumor cells,
andmost likely, combinations of agents will be required and their delivery will have to be optimized.
ClinicalTrials:Current or recently completedclinical trials havebeencarriedout inJapan, Europe,
and the United States. The vast majority of patients have had high-grade gliomas. Treatment has
consisted first of ‘‘debulking’’ surgery to remove as much of the tumor as possible, followed by
BNCTat varying times after surgery. Sodiumborocaptate andboronophenylalanine administered
i.v have been used as the boron delivery agents. The best survival data from these studies are at
least comparable with those obtained by current standard therapy for glioblastoma multiforme,
and the safety of the procedure has been established.
Conclusions: Critical issues that must be addressed include the need for more selective and ef-
fective boron delivery agents, the development of methods to provide semiquantitative estimates
of tumor boron content before treatment, improvements in clinical implementationof BNCT, and a
need for randomized clinical trials with an unequivocal demonstration of therapeutic efficacy. If
these issues are adequately addressed, then BNCTcouldmove forward as a treatment modality.

High-grade gliomas, and specifically glioblastoma multiforme,
are still extremely resistant to all current forms of therapy,

including surgery, chemotherapy, radiotherapy, immunother-
apy, and gene therapy, after decades of intensive research (1–5).
Despite aggressive treatment using combinations of therapeutic
modalities, the 5-year survival rate of patients diagnosed with
glioblastoma multiforme in the United States is less than a few
percent (6, 7). By the time they have had surgical resection of
their tumors, malignant cells have infiltrated beyond the
margins of resection and have spread into both gray matter
and white matter (8, 9). As a result, high-grade supratentorial
gliomas must be regarded as whole-brain diseases (10). Glioma
cells and their neoplastic precursors have biochemical proper-
ties that allow them to invade the unique extracellular
environment of the brain (11, 12) and biological properties
that allow them to evade a tumor associated host immune
response (13). The inability of chemotherapy and radiotherapy
to cure patients with high-grade gliomas is due to their failure to
eradicate microinvasive tumor cells within the brain. Recent
molecular genetic studies of glioma suggest that it may be much

www.aacrjournals.org Clin Cancer Res 2005;11(11) June1, 20053987

Authors’ Affiliations: 1Department of Pathology and 2Nuclear Engineering
Program, The Ohio State University, Columbus, Ohio; 3Department of Nuclear
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts;
and 4Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana
Received1/7/05; accepted 3/8/05.
Grant support: NIH grants 1R01CA098945 (R.F. Barth) and 1R01CA098902
(M.G.H.Vicente), Department of Energy grants DE-FG02-93ER61612 (T.E. Blue)
and DE-FG02-01ER63194 (J.A. Coderre), and Royal G. and Mae H.Westaway
Family Memorial Fund at the Massachusetts Institute ofTechnology (J.A. Coderre).
The costs of publication of this article were defrayed in part by the payment of page
charges. This article must therefore be hereby marked advertisement in accordance
with18 U.S.C. Section1734 solely to indicate this fact.
Requests for reprints: Rolf F. Barth, M.D., Department of Pathology,The Ohio
State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210.
Phone: 614-292-2177; Fax: 614-292-7072; E-mail: barth.1@osu.edu.

F2005 American Association for Cancer Research.

Review

 American Association for Cancer Research Copyright © 2005 
 on January 4, 2013clincancerres.aacrjournals.orgDownloaded from 

DOI:10.1158/1078-0432.CCR-05-0035

http://clincancerres.aacrjournals.org/
http://www.aacr.org/


more complicated than this (14). The challenge facing us is to
develop molecular strategies that can selectively target malig-
nant cells, with little or no effect on normal cells and tissues
adjacent to the tumor.

In theory, boron neutron capture therapy (BNCT) provides a
way to selectively destroy malignant cells and spare normal
cells. It is based on the nuclear capture and fission reactions
that occur when boron-10 (10B), which is a nonradioactive
constituent of natural elemental boron, is irradiated with low-
energy thermal neutrons to yield high linear energy transfer
(LET) a particles (4He) and recoiling lithium-7 (7Li) nuclei:

In order for BNCT to be successful, a sufficient amount of 10B
must be selectively delivered to the tumor (f20 Ag/g or f109

atoms/cell), and enough thermal neutrons must be absorbed
by them to sustain a lethal 10B(n,a)7Li capture reaction.
Because the high LET particles have limited path lengths in
tissue (5-9 Am), the destructive effects of these high-energy
particles is limited to boron containing cells. Clinical interest in
BNCT has focused on the treatment of high-grade gliomas (15)
and either cerebral metastases (16) or cutaneous primaries of
melanoma (17). Most recently it has extended to head and neck
and liver cancer. Since BNCT is a biologically rather than
physically targeted type of radiation treatment, the potential
exists to destroy tumor cells dispersed in the normal tissue
parenchyma, if sufficient amounts of 10B and thermal neutrons
are delivered to the target volume, the potential exists to destroy
tumor cells dispersed in the normal tissue parenchyma. This
review will cover radiobiological considerations on which
BNCT is based, boron agents and optimization of their delivery,
neutron sources, which at this time are exclusively nuclear
reactors, past and ongoing clinical studies, and critical issues
that must be addressed if BNCT is to be successful. Readers
interested in more in-depth coverage of these and other topics
related to BNCT are referred to several recent reviews and
monographs (15, 18–21).

Radiobiological Considerations

Types of radiation delivered. The radiation doses delivered to
tumor and normal tissues during BNCT are due to energy
deposition from three types of directly ionizing radiation that
differ in their LET characteristics: (a) low LET g rays, resulting
primarily from the capture of thermal neutrons by normal
tissue hydrogen atoms [1H(n,g)2H]; (b) high LET protons,
produced by the scattering of fast neutrons and from the
capture of thermal neutrons by nitrogen atoms [14N(n,p)14C];
and (c) high LET, heavier-charged a particles (stripped-down
4He nuclei) and 7Li ions, released as products of the thermal
neutron capture and fission reactions with 10B [10B(n,a)7Li].
The greater density of ionizations along tracks of high LET

particles results in an increased biological effect compared with
the same physical dose of low LET radiation. Usually, this is
called relative biological effectiveness (RBE), which is the ratio
of the absorbed dose of a reference source of radiation (e.g., X-
rays) to that of the test radiation that produces the same
biological effect. Because both tumor and surrounding normal
tissues are present in the radiation field, there will be an
unavoidable, nonspecific background dose, consisting of both
high and low LET radiation even with an ideal epithermal
neutron beam. However, a greater concentration of 10B in the
tumor will result in it receiving a higher total dose than that of
adjacent normal tissues. This is the basis for the therapeutic
gain in BNCT. As reviewed recently by one of us (18), the total
radiation dose delivered to any tissue can be expressed in
photon equivalent units as the sum of each of the high LET
dose components multiplied by weighting factors, which
depend on the increased radiobiological effectiveness of each
of these components.

Biological effectiveness factors. The dependence of the
biological effect on the microdistribution of 10B requires
the use of a more appropriate term than RBE to define the
biological effects of the 10B(n,a)7Li reaction. Measured
biological effectiveness factors for the components of the dose
from this reaction have been termed compound biological
effectiveness (CBE) factors and are drug dependent (21–23).
The mode and route of drug administration, the boron
distribution within the tumor, normal tissues, and even more
specifically within cells, and even the size of the nucleus within
the target cell population all can influence the experimental
determination of the CBE factor. CBE factors, therefore, are
fundamentally different from the classically defined RBE, which
primarily is dependent on the quality (i.e., LET) of the radiation
administered. CBE factors are strongly influenced by the
distribution of the specific boron delivery agent and can differ
substantially, although they all describe the combined effects of
a particles and 7Li ions. The CBE factors for the boron
component of the dose are specific for both the 10B delivery
agent and the tissue. A weighted Gy unit [Gy(w)] has been used
to express the summation of all BNCT dose components and
indicates that the appropriate RBE and CBE factors have been
applied to the high LET dose components. However, for clinical
BNCT, the overall calculation of photon equivalent [Gy(w)]
doses requires several assumptions about RBEs, CBE factors,
and the boron concentrations in various tissues, based on
currently available human or experimental data (24, 25).
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Table1. Assumptions used in the clinical trials of BPA-
based BNCT for calculation of the 10B(n,a)7Li
component of the Gy(w) dose in various tissues

Tissue Boron concentration* CBE factor

Blood Measured directly
Brain 1.0 times blood (27, 28) 1.3 (23)
Scalp/skin 1.5 times blood (26-28) 2.5 (26)
Tumor 3.5 times blood (162) 3.8 (21)

*ARBE of 3.2 is used for the high LETcomponent of the beam dose: protons
from the 14N(n,n)14C reaction and the recoil protons from fast neutron colli-
sions with hydrogen. Literature references are given in parentheses.
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Clinical dosimetry. The following biological weighting
factors, summarized in Table 1, have been used in all of the
recent clinical trials in patients with high-grade glioma using
boronophenylalanine (BPA) in combination with an epither-
mal neutron beam. The 10B(n,a)7Li component of the
radiation dose to the scalp has been based on the measured
boron concentration in the blood at the time of BNCT,
assuming a blood/scalp boron concentration ratio of 1.5:1
(26–28) and a CBE factor for BPA in skin of 2.5 (26). A RBE of
3.2 has been used in all tissues for the high LET components of
the beam: protons resulting from the capture reaction with
nitrogen and recoil protons resulting from the collision of fast
neutrons with hydrogen (27–29). It must be emphasized that
in order to use the experimentally derived values for estimation
of Gy(w) doses in clinical radiations, the tissue distribution of
the boron delivery agent in humans should be similar to that
in the experimental animal model.

Dose calculations become much more complicated when
combinations of agents are used. At its simplest, this could be
the two low molecular weight drugs BPA and sodium
borocaptate (BSH; Na2B12H11SH). These have been shown to
be highly effective when used in combination to treat F98
glioma-bearing rats (30, 31) and currently are being used in
combination in a clinical study in Japan (32). Because it is
impossible to know the true biodistribution of each drug,
dosimetric calculations in experimental animals have been
based on independent boron determinations in other tumor-
bearing animals that have received the same doses of drugs but
not BNCT. More recently, the radiation delivered has been
expressed as a physical dose rather than using CBE factors to
calculate a RBE equivalent dose (33). The calculations are
further complicated if low and high molecular weight delivery
agents are used in combination with one another. Tumor
radiation dose calculations, therefore, are based on multiple
assumptions regarding boron biodistribution, which may vary
from patient to patient as well as within different regions of the
tumor and among tumor cells. However, normal brain boron
concentrations are much more predictable and uniform;
therefore, it is both safe and reliable to base dose calculations
on normal brain tolerance.

Boron DeliveryAgents

General requirements. The development of boron delivery
agents for BNCT began f50 years ago and is an ongoing and
difficult task of the highest priority. The most important
requirements for a successful boron delivery agent are as follows:
(a) low systemic toxicity and normal tissue uptake with high
tumor uptake and concomitantly high tumor/brain and tumor/
blood concentration ratios (>3-4:1); (b) tumor concentrations of
f20 Ag 10B/g tumor; (c) rapid clearance from blood and normal
tissues and persistence in tumor during BNCT. However, it
should be noted that at this time no single boron delivery agent
fulfills all of these criteria. With the development of new
chemical synthetic techniques and increased knowledge of the
biological and biochemical requirements needed for an effective
agent and their modes of delivery, several promising new boron
agents have emerged (see examples in Fig. 1). The major
challenge in their development has been the requirement for
selective tumor targeting to achieve boron concentrations
sufficient to deliver therapeutic doses of radiation to the tumor

with minimal normal tissue toxicity. The selective destruction of
glioblastoma multiforme cells in the presence of normal cells
represents an even greater challenge compared with malignan-
cies at other anatomic sites, because high-grade gliomas are
highly infiltrative of normal brain, histologically complex, and
heterogeneous in their cellular composition.

First-generation and second-generation boron delivery agents.
The clinical trials of BNCT in the 1950s and early 1960s used
boric acid and some of its derivatives as delivery agents, but
these simple chemical compounds were nonselective, had
poor tumor retention, and attained low tumor/brain ratios
(34, 35). In the 1960s, two other boron compounds emerged
from investigations of hundreds of low molecular weight
boron-containing chemicals, one [(L)-4-dihydroxy-borylphe-
nylalanine] called BPA (compound 1) was based on
arylboronic acids (36) and the other was based on a newly
discovered polyhedral borane anion, sodium mercaptounde-
cahydro-closo-dodecaborate (37), called BSH (compound 2).
These second-generation compounds had low toxicity, per-
sisted longer in animal tumors compared with related
molecules, and had tumor/brain and tumor/blood boron
ratios of >1. As will be described later in this review, 10B-
enriched BSH and BPA, complexed with fructose to improve
its water solubility, have been used clinically in Japan, the
United States, Europe, and Argentina. Although these drugs
are not ideal, their safety following i.v. administration has
been established. Over the past 20 years, several other classes
of boron-containing compounds have been designed and
synthesized to fulfill the requirements indicated at the
beginning of this section. Detailed reviews of the state-of-
the-art in compound development for BNCT have been
published (38–41), and in this overview, we will only
summarize the main classes of compounds, with an emphasis
on recently published work in the area, and we will discuss
the general biochemical requirements for an effective boron
delivery agent.

Third-generation boron delivery agents. So-called third-gen-
eration compounds mainly consist of a stable boron group or
cluster attached via a hydrolytically stable linkage to a tumor-
targeting moiety, such as low molecular weight biomolecules
or monoclonal antibodies (mAb). For example, the targeting
of the epidermal growth factor (EGF) receptor (EGFR) and its
mutant isoform EGFRvIII, which are overexpressed in gliomas
as well as in squamous cell carcinomas of the head and neck,
also has been one such approach (42). Usually, the low
molecular weight biomolecules have been shown to have
selective targeting properties and many are at various stages
of development for cancer chemotherapy, photodynamic
therapy, or antiviral therapy. The tumor cell nucleus and
DNA are especially attractive targets because the amount of
boron required to produce a lethal effect may be substantially
reduced if it is localized within or near the nucleus (43).
Other potential subcellular targets are mitochondria, lyso-
somes, endoplasmic reticulum, and Golgi apparatus. Water
solubility is an important factor for a boron agent that is to be
administered systemically, whereas lipophilicity is necessary
for it to cross the blood-brain barrier (BBB) and diffuse with-
in the brain and the tumor. Therefore, amphiphilic com-
pounds possessing a suitable balance between hydrophilicity
and lipophilicity have been of primary interest because
they should provide the most favorable differential boron
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concentrations between tumor and normal brain, thereby
enhancing tumor specificity. However, for low molecular
weight molecules that target specific biological transport
systems and/or are incorporated into a delivery vehicle, such
as liposomes, the amphiphilic character is not as crucial. The
molecular weight of the boron-containing delivery agent also
is an important factor, because it determines the rate of
diffusion within both the brain and the tumor.

Low MolecularWeight Agents

Boron-containing amino acids and polyhedral boranes. Recog-
ognizing that BPA and BSH are not ideal boron delivery agents,
considerable effort has been directed toward the design and
synthesis of third-generation compounds based on boron-
containing amino acids and functionalized polyhedral borane
clusters. Examples include various derivatives of BPA and other
boron-containing amino acids, such as glycine, alanine, aspartic
acid, tyrosine, cysteine, and methionine, as well as non-

naturally occurring amino acids (44–49). The most recently
reported delivery agents contain one or more boron clusters and
concomitantly larger amounts of boron by weight compared
with BPA. The advantages of such compounds are that they
potentially can deliver higher concentrations of boron to tumors
without increased toxicity. The polyhedral borane dianions
closo-B10H10

2� and closo-B12H12
2� and the icosahedral carboranes

closo-C2B10H12 and nido-C2B9H12
� have been the most attractive

boron clusters for linkage to targeting moieties due to their
ready incorporation into organic molecules, high boron
content, chemical and hydrolytic stability, hydrophobic char-
acter, and, in most cases, their negative charge. The simple
sodium salt of closo-B10H10

2� (GB-10, compound 3) has been
shown to have tumor-targeting ability and low systemic toxicity
in animal models (41) and has been considered as a candidate
for clinical evaluation (50). Other polyhedral borane anions
with high boron content include derivatives of B20H18

2�,
although these compounds have shown little tumor specificity
and therefore may be better candidates for encapsulation into
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Fig. 1. Some low molecular weight BNCT
agents under investigation. BPA
(compound 1) and BSH (compound 2)
are currently in clinical use. GB-10
(compound 3) has shown promise in
animal models, as have the nucleoside
derivatives h-5-o-carboranyl-2V-
deoxyuridine (D-CDU ; compound 4) and
N5-2OH (compound 5). Compound 6,
a trimethoxyindole derivative, has shown
promise in vitro and compound 7, H2DCP,
a porphyrin derivative, was shown to be
tumor selective.The maltose derivative
compound 8 has shown low cytotoxicity
and tumor cell uptake in vitro, the
biphosphonate compound 9 has
tumor-targeting ability, and the dequalinium
derivative dequalinium-B (DEQ-B ;
compound 10) has shown promise in
in vitro studies.
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either targeted or nontargeted liposomes (51, 52). Boron-
containing dipeptides also have shown low toxicity and good
tumor-localizing properties (53, 54).

Biochemical precursors and DNA-binding agents. Several
boron-containing analogues of the biochemical precursors of
nucleic acids, including purines, pyrimidines, nucleosides, and
nucleotides, have been synthesized and evaluated in cellular
and animal studies (55–58). Some of these compounds,
such as h-5-o-carboranyl-2V-deoxyuridine (compound 4) and
the 3-(dihydroxypropyl-carboranyl-pentyl)thymidine derivative
N5-2OH (compound 5), have shown low toxicities, selective
tumor cell uptake, and significant rates of phosphorylation into
the corresponding nucleotides (59, 60). Intracellular nucleotide
formation potentially can lead to enhanced tumor uptake and
retention of these types of compounds (59).

Another class of low molecular weight delivery agents are
boron-containing DNA-binding molecules, such as alkylating
agents, intercalators, groove binders, and polyamines. Some
examples are derivatives of aziridines, acridines, phenanthri-
dines, trimethoxyindoles (compound 6), carboranylpoly-
amines, Pt(II)-amine complexes, dibenzimidazoles, and
tribenzimidazoles (61–64). A limitation of boron-containing
polyamines is their frequently observed in vitro and in vivo
toxicity, although promising derivatives with low cytotoxicity
have been synthesized recently (65–68). Other nuclear-target-
ing molecules are nido-carboranyl oligomeric phosphate die-
sters. Despite their multiple negative charges, oligomeric
phosphate diesters have been shown to target the nuclei of
TC7 cells following microinjection (69), suggesting that the
combination of oligomeric phosphate diesters with a cell-
targeting molecule capable of crossing the plasma membrane
could provide both selectivity and nuclear binding. Such a
conjugate recently has been designed and synthesized (70),
although its biological evaluation has yet to be reported.

Boron-containing porphyrins and related structures. Several
boron-containing fluorescent dyes, including acridines, phenan-
thridines, porphyrins, and phthalocyanine derivatives, have
been synthesized and evaluated (71–73). These have the
advantage of being easily detected and quantified by fluores-
cence microscopy and have the potential for interacting with
DNA due to their planar aromatic structures. Among these
macrocycles, boron-containing porphyrins [e.g., H2DCP (com-
pound 7)] have attracted special attention due to their low
systemic toxicity compared with other dyes, easy synthesis with
high boron content, and their remarkable stability (74–77).
Porphyrin derivatives have been synthesized that contain up to
44% boron by weight by way of closo-carborane or nido-
carborane clusters linked to the porphyrin macrocycle via ester,
amide, ether, methylene, or aromatic linkages (71–73). The
nature of these linkages is believed to influence their stability and
systemic toxicity. Boron-containing porphyrins have excellent
tumor-localizing properties (71–78) and have been proposed
for dual application as boron delivery agents and photo-
sensitizers for photodynamic therapy (79–81) of brain tumors.
Despite the bulkiness of the carborane cages, carboranylpor-
phyrins have been shown to interact with DNA and thereby
produce in vitro DNA damage following light activation (82, 83).
A few boronated phthalocyanines also have been synthesized,
although these compounds usually have had decreased water
solubility and an increased tendency to aggregate compared with
the corresponding porphyrins (71, 72, 78). Boron-containing

acridine molecules also have been reported to selectively deliver
boron to tumors with high tumor/brain and tumor/blood ratios,
whereas phenanthridine derivatives were found to have poor
specificity for tumor cells (84–86).

Other low molecular weight boron delivery agents. Carbo-
hydrate derivatives of BSH and other boron-containing glucose,
mannose, ribose, gulose, fucose, galactose, maltose (com-
pound 8), and lactose molecules have been synthesized and
some of these compounds have been evaluated in both in vitro
and in vivo studies (87–93). These compounds usually are
highly water soluble, and as a possible consequence of this,
they have shown both low toxicity and uptake in tumor cells.
It has been suggested that their hydrophilic low molecular
weight derivatives have poor ability to cross tumor cell
membranes. However, they might selectively accumulate within
the glycerophospholipid membrane bilayer and in other areas
of the tumor, such as the vasculature.

Low molecular weight boron-containing receptor-binding
molecules have been designed and synthesized. These have
been mainly steroid hormone antagonists, such as deriva-
tives of tamoxifen, 17h-estradiol, cholesterol, and retinoic acid
(94–98). The biological properties of these agents depend on
the density of the targeted receptor sites, although to date very
little biological data have been reported. Other low molecular
weight boron-containing compounds under development
include phosphates, phosphonates (compound 9), phenyl-
ureas, thioureas, nitroimidazoles, amines, benzamides, isocya-
nates, nicotinamides, azulenes, and dequalinium derivatives
(dequalinium-B, compound 10; refs. 40, 99–101). The use of
multiple boron delivery agents is probably essential for targeting
different subpopulations of tumor cells and subcellular sites.
Furthermore, lower doses of each individual drug would be
needed, which could reduce systemic toxicity while at the same
time enhance tumor boron levels to achieve a therapeutic effect.

High MolecularWeight Agents

Monoclonal antibodies, other receptor-targeting agents, and
liposomes. High molecular weight delivery agents, such as
mAbs and their fragments, which can recognize a tumor-
associated epitope, have been (102–104) and continue to be of
interest to us (105, 106) as boron delivery agents. Although
they can be highly specific, only very small quantities reach the
brain and tumor following systemic administration (107) due
to their rapid clearance by the reticuloendothelial system and
the BBB, which effectively limits their ability to cross capillary
vascular endothelial cells. Boron-containing bioconjugates of
EGF (108, 109), the receptor that is overexpressed on a variety
of tumors, including glioblastoma multiforme (110, 111), also
have been investigated as potential delivery agents to target
brain tumors. However, it is unlikely that either boronated
antibodies or other bioconjugates would attain sufficiently high
concentrations in the brain following systemic administration,
but, as described later in this section, direct i.c. delivery could
solve this problem. Another approach would be to directly
target the vascular endothelium of brain tumors using either
boronated mAbs or vascular endothelial growth factor, which
would recognize a tumor-associated or amplified vascular
endothelial epitope (112). This would obviate the problems
of passage of the bioconjugate across the BBB but most likely
would require repeated applications of BNCT. There also has
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been a longstanding interest on the use of boron-containing
liposomes as delivery agents (113, 114), but their size has
limited their usefulness as brain tumor–targeting agents,
because they are incapable of transversing the BBB unless they
have diameters of <50 nm (115). If, on the other hand, they
were administered i.c. or were linked to an actively transported
carrier molecule, such as transferrin, or if the BBB was
transiently opened, these could be very useful delivery agents,
especially for extracranial tumors, such as liver cancer.

Recent work of one of us (R.F.B.) has focused on the use of a
chimeric mAb, cetuximab (IMC-C225, also known as Erbitux),
produced by ImClone Systems, Inc., (New York, NY). This
antibody recognizes both wild-type EGFR and its mutant
isoform, EGFRvIII (116), and has been approved for clinical
use by the U.S. Food and Drug Administration for the treat-
ment of EGFR-positive recurrent colon cancer (117). Using
previously developed methodology (102), a precision macro-
molecule, a polyamido amino (PAMAM or ‘‘starburst’’) den-
drimer, has been heavily boronated and then linked by means
of heterobifunctional reagents to EGF (109), cetuximab (106),
or another mAb, L8A4, which is specifically directed against
EGFRvIII (118). To completely bypass the BBB, the bioconju-
gates were administered by either direct i.t. injection (119) or
convection enhanced delivery (120) to rats bearing i.c. implants
of the F98 glioma that had been genetically engineered to
express either wild-type EGFR (119) or EGFRvIII (121).
Administration by either of these methods resulted in tumor
boron concentrations that were in the therapeutic range (i.e.,
f20 Ag/g wet weight tumor). Similar data also were obtained
using boronated EGF, and based on the favorable uptake of
these bioconjugates, therapy studies were initiated at the
Massachusetts Institute of Technology reactor (MITR). The
mean survival times (MST) of animals that received either
boronated cetuximab (122) or EGF (123) were significantly
prolonged compared with those of animals bearing receptor-
negative tumors. A further improvement in MSTs was seen if
the animals received BPA, administered i.v. in combination
with the boronated bioconjugates, thereby validating our thesis
that combinations of agents may be superior to any single agent
(31). As can be seen from the preceding discussion, the design
and synthesis of low and high molecular weight boron agents
have been the subject of intensive investigation. However,
optimization of their delivery has not received enough
attention but nevertheless is of critical importance.

Optimizing Delivery of Boron-Containing Agents

General considerations. Delivery of boron agents to brain
tumors is dependent on (a) the plasma concentration profile of
the drug, which depends on the amount and route of
administration; (b) the ability of the agent to traverse the
BBB; (c) blood flow within the tumor; and (d) the lipophilicity
of the drug. In general, a high steady-state blood concentration
will maximize brain uptake, whereas rapid clearance will reduce
it, except in intra-arterial drug administration. Although the i.v.
route currently is being used clinically to administer both BSH
and BPA, this may not be ideal and other strategies may be
needed to improve their delivery. Delivery of boron-containing
drugs to extracranial tumors, such as head and neck and liver
cancer, presents a different set of problems, including
nonspecific uptake and retention in adjacent normal tissues.

Intra-arterial administration with or without blood-brain
barrier disruption. As shown in experimental animal studies
(30, 31, 124–126), enhancing the delivery of BPA and BSH can
have a dramatic effect on both increasing tumor boron uptake
and the efficacy of BNCT. This has been shown in the F98 rat
glioma model where i.c. injection of either BPA or BSH
doubled the tumor boron uptake compared with that obtained
by i.v. injection (30). This was increased 4-fold by disrupting
the BBB by infusing a hyperosmotic (25%) solution of
mannitol via the internal carotid artery. MSTs of animals that
received either BPA or BSH i.c. with BBB-D were increased
295% and 117%, respectively, compared with irradiated
controls (30). The best survival data were obtained using both
BPA and BSH in combination administered by i.c. injection
with BBB-D. The MST was 140 days with a cure rate of 25%
compared with 41 days following i.v. injection with no long-
term surviving animals (31). Similar data have been obtained
using a rat model for melanoma metastatic to the brain. BPA
was administered i.c. to nude rats bearing i.c. implants of the
human MRA 27 melanoma with or without BBB-D. The MSTs
were 104 to 115 days with 30% long-term survivors compared
with a MST of 42 days following i.v. administration (124).
A similar enhancement in tumor boron uptake and survival
was observed in F98 glioma-bearing rats following i.c. infusion
of the bradykinin agonist, receptor-mediated permeabilizer-7,
now called Cereport (125). In contrast to the increased tumor
uptake, normal brain boron values at 2.5 hours following i.c.
injection were very similar for the i.v. and i.c. routes with or
without BBB-D. Because BNCT is a binary system, normal brain
boron levels only are of significance at the time of irradiation
and high values at earlier time points are inconsequential.
These studies have shown that a significant therapeutic gain can
be achieved by optimizing boron drug delivery, and this should
be important for both ongoing and future clinical trials using
BPA and/or BSH.

Direct intracranial delivery. Different strategies may be
required for other low molecular weight boron-containing
compounds whose uptake is cell cycle dependent, such as
boron-containing nucleosides, where continuous administra-
tion over a period of days may be required. We have reported
recently that direct i.t. injection or convection enhanced
delivery of the borononucleoside N5-2OH (compound 5)
were both effective in selectively delivering potentially thera-
peutic amounts of boron to rats bearing i.c. implants of the F98
glioma (60). Direct i.t. injection or convection enhanced
delivery most likely will be necessary for a variety of high
molecular weight delivery agents, such as boronated mAbs
(126), and ligands, such as EGF (120), as well as for low
molecular weight agents, such as nucleosides and porphyrins.
Recent studies have shown that convection enhanced delivery
of a boronated porphyrin derivative similar to compound 7,
designated H2DCP, resulted in the highest tumor boron values
and tumor/brain and tumor/blood ratios that we have seen
with any of the boron agents that we have ever studied (127).

Neutron Sources for Boron Neutron Capture
Therapy

Nuclear reactors. Neutron sources for BNCT currently are
limited to nuclear reactors, and in the present section, we only
will summarize information that is described in more detail in
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a recently published review (128). Reactor-derived neutrons are
classified according to their energies as thermal (En < 0.5 eV),
epithermal (0.5 eV < En < 10 keV), or fast (En >10 keV).
Thermal neutrons are the most important for BNCT because
they initiate the 10B(n,a)7Li capture reaction. However, because
they have a limited depth of penetration, epithermal neutrons,
which lose energy and fall into the thermal range as they
penetrate tissues, are now preferred for clinical therapy. Several
reactors with very good neutron beam quality have been
developed and currently are being used clinically. These include
(a) MITR, shown schematically in Fig. 2 (129); (b) the clinical
reactor at Studsvik Medical AB in Sweden (130); (c) the FiR1
clinical reactor in Helsinki, Finland (131); (d) R2-0 High Flux
Reactor at Petten in the Netherlands (132); (e) LVR-15 reactor
at the Nuclear Research Institute in Rez, Czech Republic
(133); (f) Kyoto University Research reactor in Kumatori,
Japan (134); (g) JRR4 at the Japan Atomic Energy Research
Institute (135); and (h) the RA-6 CNEA reactor in Bariloche,
Argentina (136). Other reactor facilities are being designed,
notably the TAPIRO reactor at the ENEA Casaccia Center near
Rome, Italy, which is unique in that it will be a low-power fast-
flux reactor (137), and facilities in South Korea and Beijing,
China. Two reactors that have been used in the past for clinical
BNCT are the Musashi Institute of Technology reactor in Japan
and the Brookhaven Medical Research reactor at the Broo-
khaven National Laboratory (BNL) in Upton, Long Island, NY
(27, 28, 138). The Musashi Institute of Technology was used by
Hatanaka (139) and later by Hatanaka and Nakagawa (140).
The Brookhaven Medical Research reactor was used for the
clinical trial that was conducted at the BNL between 1994 and
1999 (141) and the results are described in detail later in this
section. Due to a variety of reasons, including the cost of
maintaining the Brookhaven Medical Research reactor, it has
been deactivated and is no longer available for use.

Reactor modifications. Two approaches are being used to
modify reactors for BNCT. The first or direct approach is to
moderate and filter neutrons that are produced in the reactor
core. The second, the fission converter plate approach, is

indirect in that neutrons from the reactor core create fissions
within a converter plate that is adjacent to the moderator
assembly, and these produce a neutron beam at the patient
port. The MITR (142), which uses a fission converter plate,
currently sets the world standard for the combination of high
neutron beam quality and short treatment time. It operates at a
power of 5 MW and has been used for clinical and experimental
studies for BNCT. Although the power is high compared with
the majority of other reactors that are being used, the treatment
time is unusually short, because it uses a fission converter plate
to create the neutron beam. All other reactors use the direct
approach to produce neutron beams for BNCT. Three examples
are the FiR1 reactor in Finland (131), the Studsvik reactor in
Sweden (130), and the Washington State University reactor in
the United States (143), which was built for the treatment of
both small and large experimental animals.

Accelerators. Accelerators also can be used to produce
epithermal neutrons and accelerator-based neutron sources
(ABNS) are being developed in several countries (144–150),
and interested readers are referred to a recently published
detailed review on this subject (151). For ABNS, one of the
more promising nuclear reactions involves bombarding a 7Li
target with 2.5 MeV protons. The average energy of the neutrons
that are produced is 0.4 MeV and the maximum energy is 0.8
MeV. Reactor-derived fission neutrons have greater average and
maximum energies than those resulting from the 7Li(p,n)7Be
reaction. Consequently, the thickness of the moderator material
that is necessary to reduce the energy of the neutrons from the
fast to the epithermal range is less for an ABNS than it is for a
reactor. This is important because the probability that a neutron
will be successfully transported from the entrance of the
moderator assembly to the treatment port decreases as the
moderator assembly thickness increases. Due to lower and less
widely distributed neutron source energies, ABNS potentially
can produce neutron beams with an energy distribution that is
equal to or better than that of a reactor. However, reactor-
derived neutrons can be well collimated, while in contrast it
may not be possible to achieve good collimation of ABNS
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Fig. 2. Schematic diagram of the MITR.
The fission converter ^ based epithermal
neutron irradiation (FCB) facility is housed
in the experimental hall of the MITR and
operates in parallel with other user
applications.The fission converter contains
an array of10 spent MITR-II fuel elements
cooled by forced convection of heavy water
coolant. A shielded horizontal beam line
contains an aluminum andTeflon filter
moderator to tailor the neutron energy
spectrum into the desired epithermal energy
range. A patient collimator defines the beam
aperture and extends into the shielded
medical room to provide circular apertures
ranging from16 to 8 cm in diameter.The
in-air epithermal flux for the available field
sizes ranges from3.2 to 4.6�109 n/cm2 s at
the patient position.Themeasured specific
absorbed doses are constant for all field
sizes and are well below the inherent
background of 2.8� 10�12 C+y(w) m2/n
produced by epithermal neutrons in tissue.
The dose distributions achieved with the
fission converter approach the theoretical
optimum for BNCT.
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neutrons at reasonable proton beam currents. The necessity of
good collimation for the effective treatment of glioblastoma
multiforme is an important and unresolved issue that may
affect usefulness of ABNS for BNCT. ABNS also are compact
enough to be sited in hospitals, thereby allowing for more
effective but technically more complicated procedures to carry
out BNCT. However, to date, no accelerator has been
constructed with a beam quality comparable with that of the
MITR, which can be sited in a hospital and that provides a
current of sufficient magnitude to treat patients in <30 minutes.
Furthermore, issues relating to target manufacture and cooling
must be solved before ABNS can become a reality. Although
progress has been slow the ABNS that is being developed at
the University of Birmingham in England, by modifying a
Dynamitron linear electrostatic accelerator (144), may be the
first facility where patients will be treated. Another ABNS is
being constructed by LINAC Systems, Inc., in Albuquerque, NM
(152), and this could be easily sited in a hospital and produce
an epithermal neutron beam.

Beam optimization. For both reactors and ABNS, a moder-
ator assembly is necessary to reduce the energy of the neutrons
to the epithermal range. The neutrons comprising the neutron
beam have a distribution of energies and are accompanied by
unwanted X-rays and g photons. A basic tenet of BNCT is that
the dose of neutrons delivered to the target volume should not
exceed the tolerance of normal tissues, and this applies to
neutron beam design as well as to treatment planning (25). The
implication of this for beam design is that the negative
consequences of increased normal tissue damage for more
energetic neutron beams at shallow depths outweigh the
benefits of more deeply penetrating energetic neutrons. For
fission reactors, the average energy of the neutrons produced is
f2 MeV, but small numbers have energies as high as 10 MeV.
There is generally a tradeoff between treatment time and the
optimum beam for patient treatment in terms of the energy
distribution of the neutrons and the contamination of the
neutron beam with X-rays and g photons. Not surprisingly,
reactors with the shortest treatment time (i.e., the highest
normal tissue dose rate) operate at the highest power, because
the number of neutrons that is produced per unit time is
proportional to the power, measured in MW. Furthermore,
high beam quality is most easily achieved using reactors with
high power, because a larger fraction of the neutrons can be
filtered as the neutrons traverse the moderator assembly
without making the treatment time exceedingly long.

Clinical Studies of Boron Neutron Capture
Therapy for BrainTumors

Early trials. Although the clinical potential of BNCT was
recognized in the 1930s (153), it was not until the 1950s that the
first clinical trials were initiated by Farr at the BNL (34, 35) and
by Sweet and Brownell at the Massachusetts General Hospital
using the MITR (35, 154, 155). The disappointing outcomes of
these trials, which ended in 1961 and subsequently were
carefully analyzed by Slatkin (156), were primarily attributable
to (a) inadequate tumor specificity of the inorganic boron
chemicals that had been used as capture agents, (b) insufficient
tissue penetrating properties of the thermal neutron beams, and
(c) high blood boron concentrations that resulted in excessive
damage to normal brain vasculature and to the scalp (35, 154).

Japanese clinical trials. Clinical studies were resumed by
Hatanaka in Japan in 1967 following a 2-year fellowship in
Sweet’s laboratory at the Massachusetts General Hospital using
a thermal neutron beam and BSH, which had been developed
as a boron delivery agent by Soloway at the Massachusetts
General Hospital (37). In Hatanaka’s procedure (139, 140), as
much of the tumor as possible was surgically removed
(‘‘debulking’’), and at some time thereafter, BSH (compound
2) was administered by a slow infusion, usually intra-arterially
(139) but later i.v. (140). Twelve to 14 hours later, BNCT was
carried out at one or another of several different nuclear
reactors. Because thermal neutrons have a limited depth of
penetration in tissue, this necessitated reflecting the skin and
raising the bone flap to directly irradiate the exposed brain. This
eliminated radiation damage to the scalp and permitted
treatment of more deep-seated residual tumors. As the
procedure evolved over time, a ping pong ball or silastic sphere
was inserted into the resection cavity as a void space to improve
neutron penetration into deeper regions of the tumor bed and
adjacent brain (139, 140, 157, 158). This is a major difference
between the procedure carried out by Hatanaka, Nakagawa,
and other Japanese neurosurgeons and the BNCT protocols that
have been carried out in the United States and Europe, which
used epithermal neutron beams that have not required
reflecting the scalp and raising the bone flap at the time of
irradiation. This has made it difficult to directly compare the
Japanese clinical results with those obtained elsewhere, and this
has continued on until very recently when the Japanese started
using epithermal neutron beams (32). Most recently, Miyatake
et al. have initiated a clinical study using the combination of
BSH and BPA, both of which were administered i.v. at 12 hours
and 1 hour, respectively, before irradiation with an epithermal
neutron beam (32). A series of 11 patients with high-grade
gliomas have been treated, and irrespective of the initial tumor
volume, magnetic resonance imaging and computed tomogra-
phy images showed a 17% to 51% reduction in tumor volume
and this reached a maximum of 30% to 88%. However, the
survival times of these patients were not improved over
historical controls and further studies are planned to improve
the delivery of BPA and BSH, which may enhance survival.

Analysis of the Japanese clinical results. Retrospective anal-
ysis of subgroups of patients treated in Japan by Hatanaka
and Nakagawa (157, 158) have described 2-, 5-, and 10-year
survival rates (11.4%, 10.4%, and 5.7%, respectively) that
were significantly better than those observed among patients
treated with conventional, fractionated, external beam photon
therapy. However, a cautionary note was sounded by
Laramore et al. (159) who analyzed the survival data of a
subset of 12 patients from the United States who had been
treated by Hatanaka between 1987 and 1994. They concluded
that there were no differences in their survival times
compared with those of age-matched controls, analyzed
according to the stratification criteria used by Curran et al.
(6). In a recent review of Hatanaka’s clinical studies,
Nakagawa reported that the physical dose from the
10B(n,a)7Li reaction, delivered to a target point 2 cm beyond
the surgical margin, correlated with survival (158). For 66
patients with glioblastoma multiforme, those who survived <3
years (n = 60) had a minimum target point dose of 9.5 F 5.9
Gy, whereas those who survived >3 years (n = 6) had a
minimum target point dose of 15.6 F 3.1 Gy from the
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10B(n,a)7Li reaction (158). The boron concentrations in brain
tissue at the target point, which are required to calculate the
physical radiation dose attributable to the 10B(n,a)7Li capture
reaction, were estimated to be 1.2 times that of the patient’s
blood boron concentration (160).

Other recent and ongoing clinical trials. Beginning in 1994,
several clinical trials, summarized in Table 2, were initiated in
the United States and Europe. These marked a transition from
low-energy thermal neutron irradiation to the use of higher-
energy epithermal neutron beams with improved tissue
penetrating properties, which obviated the need to reflect skin
and bone flaps before irradiation. Up until recently, the
procedure carried out in Japan required neurosurgical inter-
vention immediately before irradiation, whereas the current
epithermal neutron-based clinical protocols are radiotherapeu-
tic procedures, done several weeks after debulking surgery and
without the need of this. Clinical trials for patients with brain
tumors were initiated at several locations, including (a) the
BMRR at BNL from 1994 to 1999 for glioblastoma multiforme
using BPA with one or two neutron radiations, given on
consecutive days (161–163); (b) the MITR from 1996 to 1999
for glioblastoma multiforme and i.c. melanoma (164, 165); (c)
the High Flux Reactor, Petten, the Netherlands, and the
University of Essen in Germany in 1997 using BSH (166); (d)
the FiR1 at the Helsinki University Central Hospital (131) in
1999 to the present; (e) the Studsvik Reactor Facility in Sweden
from 2001 to the present, carried out by the Swedish National
Neuro-Oncology Group (130); and (f) the Nuclear Research
Institute reactor in Rez, Czech Republic, by Tovarys using BSH
(167). The number of patients treated in this study is small and
the follow-up is still rather short.

Initially, clinical studies using epithermal neutron beams
were primarily phase I safety and dose-ranging trials and a
BNCT dose to a specific volume or critical region of the normal
brain was prescribed. In both the BNL and the Harvard/MIT
clinical trials, the peak dose delivered to a 1 cm3 volume was
escalated in a systematic way. As the dose escalation trials have
progressed, the treatments have changed from single-field
irradiations or parallel opposed irradiations to multiple
noncoplanar irradiation fields, arranged to maximize the dose
delivered to the tumor. A consequence of this approach has
been a concomitant increase in the average doses delivered to
normal brain. The clinical trials at BNL and Harvard/MIT using
BPA (compound 1) and an epithermal neutron beam in the
United States have now been completed.

Analysis of the Brookhaven and Massachusetts Institute of
Technology clinical results. The BNL and Harvard/MIT studies
have provided the most detailed data relating to normal brain
tolerance following BNCT. A residual tumor volume of z60
cm3 led to a greater incidence of acute central nervous system
toxicity. This primarily was related to increased i.c. pressure,
resulting from tumor necrosis and the associated cerebral
edema (141, 163, 165). The most frequently observed
neurologic side effect associated with the higher radiation
doses, other than the residual tumor volume–related effects,
was radiation-related somnolence (168). This is a well-
recognized effect following whole-brain photon irradiation
(169), especially in children with leukemia or lymphoma, who
have received central nervous system irradiation. However,
somnolence is not a very well-defined radiation-related end
point because it frequently is diagnosed after tumor recurrence

has been excluded. Therefore, it is not particularly well suited as
a surrogate marker for normal tissue tolerance. In the dose
escalation studies carried out at BNL (141, 163, 164), the
occurrence of somnolence in the absence of a measurable
tumor dose response was clinically taken as the maximum
tolerated normal brain dose. The volume-averaged whole-brain
dose and the incidence of somnolence increased significantly as
the BNL and Harvard/MIT trials progressed. The volume of
tissue irradiated is a determining factor in the development of
side effects (169). Average whole-brain doses of >5.5 Gy(w)
were associated with somnolence in the trial carried out at BNL
but not in all of the patients in the Harvard/MIT study
(18, 141, 164). The BNL and Harvard/MIT trials were
completed in 1999. Both produced median and 1-year survival
times that were comparable with conventional external beam
photon therapy (6). Although both were primarily phase I trials
to evaluate the safety of dose escalation as the primary end
point for radiation-related toxicity, the secondary end points
were quality of life and time to progression and overall survival.
The median survival times for 53 patients from the BNL trial
and the 18 glioblastoma multiforme patients from the Harvard/
MIT trial were 13 and 12 months, respectively. Following
recurrence, most patients received some form of salvage
therapy, which may have further prolonged overall survival.
Time to progression, which would eliminate salvage therapy as
a confounding factor, probably would be a better indicator of
the efficacy of BNCT, although absolute survival time still is the
‘‘gold standard’’ for any clinical trial. The quality of life for most
of the BNL patients was very good, especially considering that
treatment was given in one or two consecutive daily fraction(s).

Clinical trials carried out in Sweden and Finland. The clinical
team at the Helsinki University Central Hospital and VTT
(Technical Research Center of Finland) have reported on 18
patients using BPA as the capture agent (290 mg/kg infused
over 2 hours) with two irradiation fields and whole-brain
average doses in the range of 3 to 6 Gy(w) (131). The estimated
1-year survival was 61%, which was very similar to the BNL
data. This trial is continuing and the dose of BPA has been
escalated to 450 mg/kg and will be increased to 500 mg/kg,
infused over 2 hours.5 Because BNCT can deliver a significant
dose to tumor with a relatively low average brain dose, this
group also has initiated a clinical trial for patients who have
recurrent glioblastoma multiforme after having received full-
dose photon therapy. In this protocol, at least 6 months must
have elapsed from the end of photon therapy to the time of
BNCT and the peak brain dose should be <8 Gy(w) and the
whole-brain average dose <6 Gy(w). As of August 2004, only
a few patients have been treated, but this has been well
tolerated.

Investigators in Sweden have carried out a BPA-based trial
using an epithermal neutron beam at the Studsvik Medical AB
reactor (130). This study differed significantly from all previous
clinical trials in that the total amount of BPA administered was
increased to 900 mg/kg, infused i.v. over 6 hours. This
approach was based on the following preclinical data: (a) the
in vitro observation that several hours were required to fully
load cells with BPA (170); (b) long-term i.v. infusions of BPA in
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rats increased the absolute tumor boron concentrations in the
9L gliosarcoma model, although the tumor/blood ratio
remained constant (171, 172); and (c) most importantly,
long-term i.v. infusions of BPA seemed to improve the uptake
of boron in infiltrating tumor cells at some distance from the
main tumor mass in rats bearing i.c. 9L gliosarcomas (173,
174). The longer infusion time of BPA has been well tolerated
(130), and the preliminary median survival time for 17 patients
from this trial was 18 months, which is significantly longer
than the BNL or Harvard/MIT data. All patients were treated
with two fields, and the average whole-brain dose was 3 to 6
Gy(w), which was lower than the higher end of the doses used
in the Brookhaven trial, although the peak dose was <15
Gy(w), which was similar to that used at BNL. Because in
Sweden patients with glioblastoma multiforme who have
recurred are not subjected to aggressive salvage therapy,6 the
survival data were not influenced by subsequent treatments, as
was the case for the BNL and MIT patients, and therefore
they more accurately represent the true effects of BNCT on the
tumor. If the improved median survival time is firmly
established, this would represent a significant advance because
one BNCT treatment resulted not only in improved survival but
also in a better quality of life.

Clinical Studies of Boron Neutron Capture
Therapy for OtherTumors

Treatment of melanoma. Other than patients with primary
brain tumors, the second largest group that has been treated
by BNCT were those with cutaneous melanomas. Mishima et
al. previously had carried out extensive studies in experimental
animals with either primary or transplantable melanomas
using 10B-enriched BPA as the capture agent (175, 176). The

use of BPA was based on the premise that it would be
selectively taken up by and accumulate in neoplastic cells that
were actively synthesizing melanin (177). Although it was
subsequently shown that a variety of malignant cells prefer-
entially took up large amounts of BPA compared with normal
cells (178), Mishima’s studies clearly stimulated clinical
interest in BPA as a boron delivery agent. Because BPA itself
has low water solubility, it was formulated with HCl to make
it more water soluble. The first patient, who was treated by
Mishima in 1985, had an acral lentigenous melanoma of his
right toe that had been amputated (179). However, 14 months
later, he developed a s.c. metastatic nodule on the left occiput,
which was determined to be inoperable due to its location.
The tumor was injected peritumorally at multiple points for a
total dose of 200 mg BPA. Several hours later, by which time
BPA had cleared from normal skin but still had been retained
by the melanoma, the tumor was irradiated with a collimated
beam of thermal neutrons. Based on the tumor boron
concentrations and the neutron fluence, an estimated 45
Gy(w) equivalent dose was delivered to the melanoma.
Marked regression was noted after 2 months, and the tumor
had completely disappeared by 9 months (175, 179). This
successful outcome provided further evidence for proof of
principle of the usefulness of BNCT to treat a radioresistant
tumor. Subsequently, at least an additional 18 patients with
either primary or metastatic melanoma have been treated by
Mishima et al. (180). The BPA either was injected peritumor-
ally or administered orally as a slurry (181) until Yoshino et al.
improved its formulation and water solubility by complexing
it with fructose, following which it was administered i.v.
(182). This important advance ultimately led to the use of BPA
in the clinical trials in patients with brain tumors that were
described in the preceding section. In all of Mishima’s patients,
there was local control of the treated primary or metastatic
melanoma nodule(s) and several patients were tumor free at
z4 years following BNCT (180).
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Table 2. Summary of current or recently completed clinical trials of BNCT for the treatment of glioblastoma

Facility No. patients
Duration of
administration Drug Dose (mg/kg)

HTR,Musashi Institute ofTechnology, JRR,
Kyoto University research reactor, Japan

>200 (1968) 1h BSH 100

High Flux Reactor, Petten, the Netherlands 26 (1997-present) 100mg/kg/min BSH 100
LVR-15, Rez, Czech Republic 5 (2001-present) 1h BSH 100
BrookhavenMedical Research reactor,

Brookhaven, United States
53 (1994-1999) 2 h BPA 250-330

MITR-II, M67MIT, United States 20k (1996-1999) 1-1.5 h BPA 250-350
MITR-II, FCBMIT, United States 6 (2001-present) 1.5 h BPA 350
Studsvik ABSweden 17 (30){ (2001-present) 6 h BPA 900
FiR1, Helsinki Finland 18 (1999-present) protocol P-01 2 h BPA 290-400
FiR1, Helsinki Finland 3 (2001-present)** protocol P-03 2 h BPA 290

*During the irradiation.
c10B physical dose component dose to a point 2 cm deeper than the air-filled tumor cavity.
b
Four fractions, eachwith a BSH infusion,100 mg/kg the first day, enough to keep the average blood concentration at 30 Ag 10B/g during treatment on days 2 to 4.

x10B physical dose component at the depth of the thermal neutron fluencemaximum.
kIncludes two i.c. melanomas.
{J. Capala, personal communication.
**Retreatment protocol for recurrent glioblastoma.

6J. Capala, personal communication.
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Several patients with either cutaneous or cerebral metastases
of melanoma have been treated by Busse et al. using BPA
fructose as the delivery agent (18, 183). The most striking
example of a favorable response was in a patient with an
unresected cerebral metastasis in the occipital lobe. The tumor
received a dose of 24 Gy(w) and monthly magnetic resonance
imaging studies revealed complete regression over a 4-month
interval (183). As demonstrated radiographically, a second
patient with a brain metastasis had a partial response. Several
other patients with either cutaneous or metastatic melanoma
to the brain have been treated at other institutions, including
the first in Argentina (184), and the consensus seems to be
that these tumors are more responsive to BNCT than
glioblastoma multiforme. This is supported by experimental
studies carried out by two of us (R.F.B. and J.A.C.) using a
human melanoma xenograft model (185, 186), which showed
enhanced survival times and cure rates superior to those
obtained using the F98 rat glioma model (187). In summary,
multicentric metastatic brain tumors, and more specifically
melanomas, which cannot be treated by either surgical
excision or stereotactic radiosurgery, may be candidates for
treatment by BNCT.

Other tumor types treated by boron neutron capture therapy.
Two other types of cancer recently have been treated by
BNCT. The first are recurrent tumors of the head and neck.
Kato et al. have reported on a series of six patients, three of
whom had squamous cell carcinomas, two had sarcomas,
and one had a parotid tumor (188). All of them had received
standard therapy and had developed recurrent tumors for
which there were no other treatment options. All of the
patients received a combination of BSH (5 g) and BPA
(250 mg/kg body weight) administered i.v. In all but one
patient, BNCT was carried out at the Kyoto University
Research Reactor Institute using an epithermal neutron beam
in one treatment that was given 12 hours following
administration of BSH and 1 hour after BPA. The patient
with the parotid tumor, who received a second treatment 1
month following the first, had the best response with a 63%
reduction in tumor volume at 1 month and a 94% reduction
at 1 year following the second treatment without evidence of
recurrence. The remaining five patients showed responses
ranging from a 10% to 27% reduction in tumor volume with
an improvement in clinical status. This study has extended

the use of BNCT to a group of cancers that frequently are
ineffectively treated by surgery, radiotherapy, and chemo-
therapy. However, further clinical studies are needed to
objectively determine the clinical usefulness of BNCT for
head and neck cancers, and another study currently is in
progress at Helsinki University Central Hospital.7

The second type of tumor that recently has been treated by
BNCT is adenocarcinoma of the colon that had metastasized to
the liver (189). Although hepatectomy followed by allogeneic
liver transplantation has been carried out at several centers
(190, 191), Pinelli and Zonta et al. in Pavia, Italy, have
approached the problem of multicentric hepatic metastases
using an innovative but highly experimental procedure. Their
patient had >14 metastatic nodules in the liver parenchyma, the
size of which precluded surgical excision. Before hepatectomy
was done, the patient received a 2-hour infusion of BPA
fructose (300 mg/kg body weight) via the colic vein. Samples of
tumor and normal liver were taken for boron determinations,
and once it was shown that boron selectively had localized in
the tumor nodules with small amounts in normal liver, the
hepatectomy was completed (189). The liver then was trans-
ported to the Reactor Laboratory of the University of Pavia for
neutron irradiation, following which it was reimplanted into
the patient. More than 2 years later in October 2004, the patient
had no clinical or radiographic evidence of recurrence and
carcinoembryonic antigen levels were low (192). Although it is
unlikely that this approach will have any significant clinical
impact on the treatment of the very large number of patients
who develop hepatic metastases from colon cancer, it
nevertheless again provides proof of principle that BNCT can
eradicate multicentric deposits of tumor in a solid organ. The
Pavia group has plans to treat other patients with metastatic
liver cancer and several other groups (193–195) are exploring
the possibility of treating patients with primary as well as
metastatic tumors of the liver using this procedure.

Critical Issues

There are several critical issues that must be addressed if
BNCT is to become a useful modality for the treatment of
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Table 2. Summary of current or recently completed clinical trials of BNCT for the treatment of glioblastoma (Cont’d)

Boron concentration*
(Mg 10B/g) Estimated peak normal brain dose [Gy(w)] Average normal brain dose [Gy(w)] Reference

f20-30 15 Gyc 10B component ND (157,158)

30b 8.6-11.4 Gyx 10B component ND (166)
f20-30 <14.2 <2 (167)
12-16 8.4-14.8 1.8-8.5 (141,168)

10-12 8.7-16.4 3.0-7.4 (165)
f15 Unpublished

24 (range,15-34) 7.3-15.5 3.6-6.1 (130)
12-15 8-13.5 3-6 <7 (131)
12-15 <8 2-3 <6 (131)

7L. Kankaanranta, personal communication.
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cancer and, most specifically, brain tumors. First, there is a need
for more selective and effective boron agents that, when used
either alone or in combination, could deliver the requisite
amounts (f20 Ag/g) of boron to the tumor. Furthermore, their
delivery must be optimized to improve both tumor uptake and
cellular microdistribution, especially to different subpopula-
tions of tumor cells (196). Several studies have shown that
there is considerable patient-to-patient as well i.t. variability in
the uptake of both BSH (197, 198) and BPA (162, 173, 174) in
patients with brain tumors. At present, the dose and delivery of
these drugs have yet to be optimized, but based on
experimental animal data (30, 31, 33, 124, 172), improvement
in dosing and delivery could have a significant impact on
increasing tumor uptake and microdistribution.

Second, because the radiation dosimetry for BNCT is based
on the microdistribution of 10B (199), which is indeterminable
on a real-time basis, methods are needed to provide semi-
quantitative estimates of the boron content in the residual
tumor. Imahori et al. (200–202) in Japan and Kabalka (203) in
the United States have carried out imaging studies with 18F-
labeled BPA and have used data obtained from these studies to
determine whether a patient might be a suitable candidate for
BNCT using BPA as the delivery agent. In the absence of real-
time tumor boron uptake data, the dosimetry for BNCT is very
problematic. This is evident from the discordance of estimated
doses of radiation delivered to the tumor and the therapeutic
response, which should have been greater than that which was
seen if the tumor dose estimates were correct (141).

Third, there is a discrepancy between the theory behind BNCT,
which is based on a very sophisticated concept of selective
cellular and molecular targeting of high LET radiation, and the
implementation of clinical protocols, which are based on very
simple approaches to drug administration, dosimetry, and
patient irradiation. This in part is due to the fact that BNCT
has not been carried out in advanced medical settings with a
highly multidisciplinary clinical team in attendance. At this time,
BNCT has been totally dependent on nuclear reactors as neutron
sources. These are a medically unfriendly environment and are
located at sites at varying distances from tertiary care medical
facilities, which has made it difficult to attract patients, and the
highly specialized medical team that ideally should be involved
in clinical BNCT. Therefore, there is an urgent need for either
very compact medical reactors such as one under construction in
Beijing, China or ABNS that could be easily sited at selected
centers that treat many patients with brain tumors.

Fourth, there is a need for randomized clinical trials. This is
especially important because almost all major advances in

clinical cancer therapy have come from these, and up until this
time, no randomized trials of BNCT have been conducted. The
pitfalls of non-randomized clinical trials for the treatment of
brain tumors have been well documented (204, 205). It may be
somewhat wishful thinking to believe that the clinical results with
BNCT will be so clear-cut that a clear determination of efficacy
could be made without such trials. These will require a reasonably
large number of patients to provide unequivocal evidence of
efficacy with survival times significantly better than those
obtainable with promising currently available therapy for both
glioblastoma multiforme (206, 207) and metastatic brain tumors
(208). This leads to the issue of conducting such trials, which
might best be accomplished through cooperative groups, such as
the Radiation Therapy Oncology Group in the United States or
the European Organization for Research Treatment of Cancer.

Finally, there are several promising leads that could be
pursued. The up-front combination of BNCT with external
beam radiation therapy or in combination with chemotherapy
has not been explored, although recently published experimen-
tal data suggest that there may be a significant gain if BNCT is
combined with photon irradiation (33). The extension of animal
studies, showing enhanced survival of brain tumor-bearing rats
following the use of BSH and BPA in combination, administered
intra-arterially with or without BBB-D, has not been evaluated
clinically. This is a promising approach, but it is unlikely that it
could be carried out at a nuclear reactor.

As is evident from this review, BNCT represents an
extraordinary joining together of nuclear technology, chemis-
try, biology, and medicine to treat cancer. Sadly, the lack of
progress in developing more effective treatments for high-grade
gliomas has been part of the driving force that continues to
propel research in this field. BNCT may be best suited as an
adjunctive treatment, used in combination with other modal-
ities, including surgery, chemotherapy, and external beam
radiation therapy, which, when used together, may result in an
improvement in patient survival. Clinical studies have shown
the safety of BNCT. The challenge facing clinicians and
researchers is how to get beyond the current impasse. We have
provided a road map to move forward, but its implementation
still remains a daunting challenge!
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