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ABSTRACT. The ”quantitative problem” of the MWI is to justify the
interpretation of the Born rule measure |an|2 – the squared norm of
the amplitude associated with the nth out of N possible results – as a
probability. The essential difficulty is that the basic framework of the
MWI would seem to suggest an alternative probability rule, outcome
counting, which is that each separate outcome should be equally likely.
In this paper, a model is proposed that replaces the Born rule with out-
come counting as the fundamental probability rule at the fine-grained
level, and yet recovers the Born rule as a coarse-grained approxima-
tion. This model is proposed, not only as a solution to the quantitative
problem, but also as a novel derivation of the Born rule.

P.A.C.S.:

1 Introduction

In the Everett relative state formulation [1], which has come to be known
as the multiple worlds interpretation (MWI), probability makes its ap-
pearance at the moment one assumes that probabilities are governed
by the Born rule. According to the Born rule, a probability measure
mn = |an|2 is assigned to each of the N experimental results associated
with a measurement, with an being the complex coefficient of the nth

result as calculated by the Schrödinger equation. Despite the great deal
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of attention paid to the MWI since its introduction almost 50 years ago,
several interpretational issues remain unresolved.

One of the more thorny interpretational issues is what has been called
the ”quantitative problem.” The essential difficulty has been formulated
and discussed by various authors. According to Graham, “it is extremely
difficult to see what significance such a measure [the Born rule measure]
can have when its implications are completely contradicted by a simple
count of the worlds involved, worlds that Everett’s own work assures us
must all be on the same footing” [2]. More recently, Wallace has asked
why the probability of a given branch should be quantified “according
to the probability rule (the Born rule), and not (for instance) some
other assignment of probabilities to branches?” [3] And Greaves notes
that “The quantitative problem is perhaps unproblematic in the case
of equally weighted superpositions, but has been considered fatal in the
case of unequally weighted superpositions . . . it seems that all Everett
can say is that each outcome occurs in exactly one branch, which, we
might think, will yield equal probabilities if any at all” [4] (emphasis
mine).

A detailed discussion of the philosophical issues surrounding the
quantitative problem – including whether it even is a problem – is be-
yond the scope of this paper1. Instead, this paper adopts the viewpoint
expressed by Greaves above, and starts from the assumption that the
best and only solution to the quantitative problem is simply to find a
model that assumes ”equally weighted superpositions” in which “each
outcome . . . will yield equal probabilities.”

A first and seemingly trivial step towards this goal is simply to re-
think how to enumerate alternatives – in particular, to rethink what is
being enumerated2. Simply put, what is typically thought of as a single
result – say, the nth out of N possible results, with associated proba-

1The interested reader will find general discussion in Wallace ([3]), Greaves ([4]),
Saunders ([5]) (add more refs), and references therein. Van Esch [6] argues that
outcome counting (which he terms the ”alternate projection postulate”) is an in-
ternally consistent alternative to the Born rule. Weissman [7] and Hanson [8] have
independently put forth specific proposals to implement outcome counting that may
be compared and contrasted to the one in this paper.

2The ”alternatives” being enumerated have been variously called ”outcomes,” ”re-
sults,” ”superpositions,” ”worlds,” ”branches,” etc. by different authors. Unfortu-
nately there is no consistent use of terminology. This paper draws a distinction
between ”results” and ”outcomes,” whose meanings will hopefully be clear by con-
text.
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bility |an|2 – should be equated with a multitude of distinct outcomes,
the number of which is proportional to |an|2. This approach attempts
to justify the application of the Born rule to individual results by pos-
tulating the application of equiprobability to outcomes. In other words,
equiprobability is the fundamental probability rule, applied at the fine-
grained level where the distinction between outcomes is resolved. But
at a more coarse-grained level – where one loses the distinction between
outcomes and sees only the distinction between results – the Born rule
applies.

The difficulty with this model – the reason it is trivial – is that it
does not specify what an outcome actually is, or what makes one out-
come distinct from another. Furthermore, there is a certain circularity to
its reasoning. The Born rule measure is justified as a probability because
its value is proportional to the number of outcomes associated with an
experimental result; but conversely, the number of outcomes associated
with a result is defined as its Born rule measure. A more satisfactory
model, therefore, would avoid this circularity by achieving two goals.
First, it would provide an independent conception of how outcomes are
counted, one that does not make recourse to probability. Ideally, such a
model would define ”distinct” as physically distinct, would specify how
they are physically distinct, and would specify how to enumerate them.
Second, such a model would demonstrate that this independent method
of outcome counting reproduces the Born rule at the coarse-grained level
(i.e., at the level of results). Perhaps most importantly, the assump-
tions that make up the model would not include an explicit or implicit
assumption of the Born rule.

The purpose of this paper, therefore, is to propose a model as dis-
cussed above that achieves these two goals, and so solves the quantitative
problem in a non-trivial manner. Section 2 will define many of the terms
to be used in this scheme. Section 3 will postulate their physical inter-
pretation, applicable in the ”low energy limit” 3. The thrust of these
sections will be to define a variable χ1

s,dn
whose role is to tell us how to

distinguish outcomes, as discussed above. In section 4, a very general
quantum mechanical experiment will be posed: assuming a particle is
emitted at location s (the source), calculate the relative probability of

3The concepts and terminology introduced in sections 2 and 3 borrow heavily from
loop quantum gravity (LQG) [9]. It is tentatively suggested that the present work
may be cast in the mold of LQG or one of its variants, although this is not explicitly
demonstrated.
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its detection at dn (the nth detector element). This experiment will be
analyzed by counting the number of physically distinct states (outcomes)
associated with the nth result and postulating this value – which turns
out to be (χ1

s,dn
)2 – to be the relative probability associated with that

result. It will then be shown, using the Feynman path integral (FPI)
technique [10], that this value is in proportion to its Born rule measure.
Section 5 ends with a discussion of the significance of this result.

2 Mathematical preliminaries

2.1 Spin foams

A quantum mechanical spacetime will be represented using a spin
foam, which is a (not necessarily connected) graph embedded in a 4-
dimensional continuum W . The graph is built out of nodes connected
by links. Each node is associated with a number C. Each link is associ-
ated with a number S, which we will interpret as the action of the link,
with φ = e−iS/~ being the amplitude of the link.4 Links are oriented, in
the sense that the action in one direction along a link is the negative of
the action in the opposite direction.

A fiber is defined as an ordered set of links connecting one node to
another, and a loop as a fiber that starts and ends at the same node.
The action of a fiber is the sum of the individual actions of each link that
make up the fiber. Action is assumed to be quantized, in the following
sense: the action of any loop is an integer multiple of π~:∑

j

Sj = π~m (1)

with the sum being performed over all of the links in the loop, and m
being any integer.5

2.2 Loop Complex

We will define and make use of several entities that can appear within
spin foams. See Figure 1 for an illustration of the terms defined in this
section.

4In LQG, C and S are interpreted as volume and area, respectively. This inter-
pretation of C and S is perfectly compatible with the proposed theory; we merely
stipulate that each link is associated with an area S that is proportional to a number
S′ = µS, µ being a conversion factor and a constant of the theory, and use S′ in
place of S as the action.

5One of the central results of LQG is that C and S are quantized [9], albeit not
in exactly the same manner as postulated above.
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A unit loop of index k is defined as a loop composed of k distinct
nodes and k distinct links such that each link has action π~/k (so that
the total action of the loop is π~.) Each node in a unit loop is associated
with the smallest quantum of volume, C, and is called a unit node.

A loop complex of index k is constructed as an ordered succession of
unit loops, each with index k. The nodes in a unit loop are numbered
i = 1, 2, ..., k, and the ith node in one unit loop is connected by a fiber
to the ith node in the adjacent loop. Any fiber connecting the ith node
in one unit loop to the ith node in a (not necessarily adjacent) unit loop
will be referred to as a path. The index of a path is equal to the index
of the loop complex. These paths may also be referred to as spin foam
paths to distinguish them from the closely related but distinct Feynman
particle paths (see below).

A loop complex may be open or closed. An open loop complex is
one whose unit loops are arranged linearly. A closed loop complex is
one that doubles back on itself, so that the unit loops are arranged as a
cyclic group.

An extended loop is defined as a loop composed of two adjacent spin
foam paths and the two links (components of unit loops) that connect
them. The two unit loops may be, but are not necessarily, adjacent in
the loop complex. We stipulate that the action around any extended
loop is an even integer multiple of π~:∑

j

Sj = 2π~m (2)

with the sum being performed over all of the links in the loop, and m
being any integer.

From the above, we may deduce that for k > 1, the sum of the am-
plitudes of the k paths connecting any two unit loops in a unit complex
equals zero. Consider the extended loop in Figure 1A. Let Si and Si+1

indicate the actions of the two spin foam paths in this extended loop.
(Keep in mind that the action in one direction is the negative of the
action in the reverse direction.) Applying equation 2 to the extended
loop, we have:

π~/k + Si + π~/k–Si+1 = 2π~m (3)

Si–Si+1 = 2π~m–2π~/k (4)

This equation indicates that the amplitudes of two adjacent paths are
2π~/k out of phase. This is depicted in Figure 1B, which shows that
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the amplitudes of the k paths are equidistributed on the unit circle. We
arrive at the conclusion that the sum of the amplitudes of the k paths of
the complex equals zero. This statement is not true for k = 1, in which
case there is only a single path, whose amplitude is not constrained by
the above considerations.

Define Dl as the unit loop density as follows. Consider an (arbitrarily
small) 4-region A in a foam. Designate the total number of unit loops in
A as ul, and the total number of unit nodes in A as un. The unit loop
density at A is defined as the ratio Dl = ul/un.

3 Physical interpretation in the low energy approximation

Each spin foam is a quantum mechanical spacetime. For the description
of any given experiment, we will require not one, but rather an ensem-
ble of spin foams which exist in superposition to one another. For the
physical interpretation of a given foam, we will assume a ”low energy
approximation,” which consists of the following series of assumptions.

3.1 The existence of a background manifold

The first of these assumptions is the existence of a 4-dimensional man-
ifold M that serves as a background space for the theory. (In the non-
relativistic case, M is simply flat spacetime, i.e. R4.) M may be thought
of (loosely) as a sort of blank movie screen on which each foam in the
ensemble may be individually projected. This process of ”projection”
from a foam onto M is achieved through a mapping function, ζ, which
inputs one foam (or subregions of a foam) and outputs an image of the
foam (or the subregion) on M . Thus, the images of nodes and fibers in
a foam will be points and curves in M . In addition, ζ will output the
unit loop density Dl as well as a distribution of mass-energy (particles,
potential wells, etc.) over M for each foam in the ensemble.

An ensemble of foams gives rise to an ensemble of images, and these
images will agree on some details (especially macroscopic ones), and
disagree on others (especially microscopic ones). Any detail that fits
under the rubric of ”experimental setup” (see below) must be a common
feature of every image in the ensemble.

3.2 The images of spin foam paths are Feynman particle paths

For any given spin foam, we will assume that the set of images of all
spin foam paths is in one-to-one correspondence to the set of all possible
paths in M , as generated by the Feynman path integral (see below).
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Furthermore, we assume that the action of a given Feynman path in M ,
as determined by the FPI, is equal to the action of the corresponding spin
foam path. The distribution of actions (and hence amplitudes) of the
set of ”all possible paths” is determined uniquely from the experimental
setup via the FPI technique (see below) and hence must be a feature
that every foam in the ensemble agrees upon.

3.3 Loop density is minimized

The unit loop density Dl of an (arbitrarily small) spacetime region A is,
in large part, a function of the ultra-local structure of the spin foam in A;
in particular, of the precise manner with which different spin foam paths
are ”coassociated” into loop complexes. This is illustrated in Figure
2B. Elements of two foams are depicted giving rise to identical images
consisting of two (arbitrarily small) 4-regions, A and B, and four paths
that connect them. The two foams agree that the actions of these four
paths (mod 2π~) are 0, 1

2π~, π~, and 3
2π~. The difference between the

two foams is that the four paths are connected into two index k = 2
loop complexes in the upper panel foam, as opposed to one index k = 4
complex in the lower panel foam. Such ultra-local variability can lead to
wide variation in Dl from one foam to the next.

In the low energy approximation, unit loop density Dl is assumed to
take the minimum possible value at each point in M .6 By this rule, the
foam in the upper panel of Figure 2B is excluded from the ensemble.
Since the solution to Dmin

l over M depends only upon the set of all
possible paths and their actions, and each of these is prescribed uniquely
by the experimental setup, then the solution to Dmin

l over M is likewise
unique for a given experimental setup.

This still allows a large degree of microscopic variability from one spin
foam to another in the ensemble. For example, the difference between
one foam and another may be nothing more than a ”swap” of two spin
foam paths between one loop complex to another, which is permissible
if they are of identical action (mod 2π~).

3.4 Particle model

Our simple model of a particle in a spin foam will be to stipulate the
following: for each particle, there corresponds a single closed loop com-
plex of index k = 1, the significance of which is that its associated spin

6If we interpret S and C as action and volume, respectively, then the minimization
of unit loop density Dl could be viewed as a least action principle.
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foam paths trace the trajectory of the particle through 4-space. In other
words, if a particle is observed in the (arbitrarily small) spacetime re-
gion A in a spin foam, and is additionally observed in another spacetime
location B, then there must exist an associated closed loop complex of
index k = 1, with one unit loop in A and the other in B. This will, in
turn, mean that out of all the particle paths connecting A to B, two of
them are “special” in the sense that they correspond to the two ways
around the closed loop complex associated with the particle. Further-
more, these two ”special” spin foam paths must be of index k = 1. These
two paths through 4-space need not (necessarily) be in close proximity
to one another between A and B.7 Of course, there will typically be
additional k = 1 spin foam paths connecting A to B that are not as-
sociated with this particular particle. These are either not associated
with particle trajectories, or are associated with the trajectories of other
(unrelated) particles. In addition, there will also be spin foam paths of
k > 1 connecting A to B that are also not associated with the particle.

3.5 Definition of χk
A,B

Given a particle that traverses the (arbitrarily small) spacetime regions
A and B in a spin foam as discussed above, we imagine there to be a
very large number of unit loops in A, and likewise in B, ranging over
all indices, and giving rise to a very large number of spin foam paths
stretching between A and B. (Recall that there must be one spin foam
path for each of the ”all possible paths” generated by the FPI.) Define
χk

A,B as the number of spin foam paths of index k connecting region A
and region B.

4 Experiment

We will consider a very general quantum mechanical experiment: given a
particle that is observed within the (arbitrarily small) spacetime region
s (the source) in M , calculate the relative probability that it will be
detected within the (arbitrarily small) spacetime region dn (in which is
located the nth of N detector elements). This can be used to model
(among other things) the 2-slit experiment, which Feynman has argued
contains the “essential mystery” of QM.

7It would be interesting to consider whether one direction around this closed
loop might correspond to a particle, with the other direction corresponding to an
antiparticle.
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Let us review how the above scenario is analyzed by the Feynman
path integral technique. This is performed in the background M . The
first step is to enumerate the set of “all possible paths” from the source s
to the detector dn. Each path has an associated action S and amplitude
φ = e−iS/~. Calculation of the action requires knowledge of the potential
as a function of spacetime location, so it is assumed that this is included
in the experimental setup. The wavefunction an is calculated as the sum
of the amplitudes φ of every path from s to dn: an =

∑
φ.

Each foam in the ensemble, therefore, must agree on the following
details: a particle emitted from a source s, an array of N detector ele-
ments dn, the potential, and Dl. There are, however, several important
details that can vary from foam to foam. These include which detec-
tor detects the particle; the path(s!) that the particle took from source
to detector; and, as discussed above, the ultra-local details underlying
which spin foam paths are coassociated with which.

4.1 There are (χ1
s,dn

)2 outcomes associated with the nth result

Recall that for a given spin foam, the trajectory of a particle through
4-space is traced by two uniquely associated spin foam paths that are
components of a closed loop complex with unity index (k = 1). For
any given spin foam, the total number of index k = 1 spin foam paths
from s to dn equals, by definition, χ1

s,dn
. Within any particular spin

foam, if the particle in question is observed in the region dn, then two
and only two of these χ1

s,dn
spin foam paths correspond to the particle

under observation, with the remaining k = 1 paths being irrelevant to
the particle in question.

So let us postulate that the process of observation of the particle at
the detector corresponds to identification of these two out of χ1

s,dn
spin

foam paths. Note that the number of ways to pick two out of χ1
s,dn

paths is ”2 choose χ1
s,dn

” i.e. 1
2 (χ1

s,dn
)(χ1

s,dn
− 1), which is proportional

to (χ1
s,dn

)2 for large χ1
s,dn

. Therefore, an observer identifying these two
paths will identify one out of approximately (χ1

s,dn
)2 distinct outcomes.

We might postulate that each one of these (χ1
s,dn

)2 outcomes corresponds
to one distinct physical state of the observer, induced by the process of
observation.

So let us postulate that this is the physical variable that we have been
looking for that makes one outcome distinct from another. According
to the central tenet of this paper, the probability of a given result is
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proportional to the number of outcomes associated with that result.
Therefore, the number of outcomes associated with the nth result is
(χ1

s,dn
)2. Therefore, we predict the probability of detection at detector

element dn to be proportional to (χ1
s,dn

)2.

4.2 The minimization of loop density implies χ1
s,dn

∼ |an|

As discussed above, the minimization of Dl implies that as many unit
nodes – and hence, as many spin foam paths – as possible will be coasso-
ciated into loop complices of high index; and conversely, that the number
of paths with index k = 1 will be minimized. Thus, the minimization of
Dl implies the minimization of χ1

s,dn
. What can we say about the lowest

possible value of χ1
s,dn

?

Consider the constraint that k spin foam paths can only be coasso-
ciated into a single loop complex if their amplitudes are equidistributed
on the unit circle. Consider a subset of all of the paths from s to dn,
with p paths in the subset. If their amplitudes are distributed equally
on the unit circle, we will call this an equidistributed subset, and will
note that these paths may be coassociated into a single loop complex
of index k = p (Figure 2A, left). We also note that the sum of the
amplitudes of these p paths equals zero. Suppose now that we have a
subset of p paths whose amplitudes sum to zero, but which are not nec-
essarily equidistributed (Figure 2A, middle). We will refer to this as a
symmetrically distributed subset of paths. If the sum of the amplitudes
is not zero, we call this an asymmetrically distributed subset of paths
(Figure 2A, right). We remark that it is always possible for a symmet-
rically distributed subset of paths to have the characteristic that each
and every path in the subset is of index k > 1. On the other hand, for
an asymmetrically distributed subset, there will always be at least one
path with index k = 1.

We further remark that for any set of all paths from s to dn, it is
possible to divide this into two subsets, a symmetric and an asymmetric
one. It should be apparent that if the number of paths in the symmetric
subset is maximized, with the number of paths in the asymmetric subset
therefore minimized, then every path in the asymmetric subset will be of
index k = 1, and furthermore will be of the same phase 8. Since they are
of the same phase, then the number of paths in the asymmetric subset

8This analysis assumes that we do not apply the semiclassical approximation to
the FPI.
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(χ1
s,dn

) will be proportional to the absolute value of the sum of their
phases (|an|). Therefore, the low energy approximation implies that:

χ1
s,dn

∼ |an| (5)

Squaring yields:

(χ1
s,dn

)2 ∼ |an|2 (6)

Note that the left hand side of the above equation is the relative
probability of detection at the nth detector element, as predicted by the
proposed model (above). The right hand side of the above equation is,
of course, the same probability, as predicted by the standard Born rule.

Therefore we may conclude what we set out to prove, which is that
the proposed scheme makes the same prediction as the Born rule, and
hence of quantum mechanics in general. It is noteworthy that the list of
assumptions that lead to the left hand side of the above equation does
not include the Born rule, either overtly or in disguised form. It may be
claimed that the proposed model therefore represents at least the sketch
of a derivation of the Born rule from independent assumptions.

4.3 Discussion

The primary motivation for this scheme is the philosophical conviction
that outcome counting is the only probability rule that fits the ontologi-
cal framework of the MWI. The purpose of this paper has therefore been
to propose a solution to the quantitative problem of the MWI in which
probability is fundamentally governed at the fine-grained level by out-
come counting. Quantum statistics is then recovered by demonstrating
that the Born rule applies at a more coarse-grained level. To avoid cir-
cular reasoning, the number of outcomes is determined by counting the
number (χ1

s,dn
)2 of distinct physical states associated with the process

of observation.

The secondary motivation for the development of this scheme is the
prospect that it could be a facet of a larger theory of quantum gravity
(QG). Many of the concepts introduced in section 2 are borrowed, albeit
loosely, from loop quantum gravity (LQG), and it is tentatively suggested
that the proposed scheme could be made to fit the framework of LQG
or some related theory of QG. If such is the case, then the true test of
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the value of the proposed scheme will be whether its incorporation is an
aide or an obstacle to the further development of an overall theory.

So how might the proposed scheme be of such aide? In principle, its
role would be to refine the search for a theory of QG by pointing out
certain mathematical elements that should be present. This will require
identifying exactly which elements of the proposed model are essential,
and which are extraneous. There are likely many small variations that
could be made to the proposed scheme that would preserve its essential
structure. The basic idea is to start with a superposition of spacetimes,
and to assume that each spacetime contains its own representation of
the set of ”all possible” Feynman paths. A scheme is then established
which allows for symmetric subsets of paths to ”cancel each other out” –
meaning that we can ignore them – leaving a collection of leftover paths
whose number χ must be proportional to the wavefunction. Finally it is
established that detection of the particle is concomitant with choosing
two of these leftover paths, so that the number of distinct physical states
induced by the observation process is ”2 choose χ” ∼ χ2. It is not until
this last step that a probability rule is implemented, which is that each of
these χ2 states is equally likely. Most importantly, the essential structure
of this scheme is designed so that the Born rule is not assumed, but rather
derived.

At the very least, the proposed theory may be considered as an ex-
istence proof demonstrating the possibility that a theory of QG can be
founded on a fundamentally classical notion of probability – outcome
counting – and yet still lead in the approximation to quantum statistics.
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Figure 1: A. A closed loop complex of index k = 3, composed of six
unit loops. Small filled circles are nodes, and lines connecting them are
links. An extended loop is shown in bold; this contains two spin foam
paths with actions Si and Si+1, as well as two links (components of unit
loops) each with action π~/3, as indicated. The actions of links are
oriented (indicated by arrows). B. The amplitudes φ = e−iS/~ of three
adjacent spin foam paths of index k = 3 are plotted on the complex
plane, illustrating that they are equidistributed on the unit circle and
that they sum to zero.
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Figure 2: A. Amplitudes of spin foam paths are plotted on the complex
plane as in Figure 1B, demonstrating an equidistributed subset of 3 paths
(left), symmetrically distributed subset of 5 paths (middle) and asym-
metrically distributed subset of 3 paths (right). B. Values of χk

A,B vary
from one foam to the next as a result of differences in the microscopic
spin foam structure within the spacetime regions A and B (indicated by
boxes). The same four spin foam paths may be composed into either
two k = 2 closed loop complexes (upper panel) or one k = 4 complex
(lower panel). The principle of Dl minimization favors the lower foam
over the upper one.


