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1 The problem.

Examination of exponential solutions for Laplace’s equation leads one to a re-
quirement to examine the product of intersecting bivectors such as

(XA KP) = = (¢ AV)(xAV) + (xAV) (X AV))

Here we see that the symmetric sum of bivectors x A k and x” A k is a scalar
quantity. This we will identify later as a quantity related to the bivector dot
product.

It is worthwhile to systematically examine the general products of inter-
secting bivectors, that is planes that share a common line, in this case the line
directed along the vector k. It is also notable that since all non coplanar bivec-
tors in IR® intersect this examination will cover the important special case of
three dimensional plane geometry.

A result of this examination is that many of the concepts familiar from vec-
tor geometry such as orthagonality, projection, and rejection will have direct
bivector equivalents.

General bivector geometry, in spaces where non-coplanar bivectors do not
neccessarily intersect (such as in R*) is also considered. Some of the results
require plane intersection, or become simpler in such circumstances. This will
be pointed out when appropriate.

2 Components of grade two multivector product.
The geometric product of two bivectors can be written:

AB = (AB), + (AB), + (AB), = A-B+ (AB), +AAB (1)

BA = (BA), + (BA), + (BA), =B-A+ (BA), + BAA 2)

Because we have three terms involved, unlike the vector dot and wedge
product we cannot generally separate these terms by symmetric and antisym-

metric parts. However forming those sums will still worthwhile, especially for
the case of interecting bivectors since the last term will be zero in that case.



21 Sign change of each grade term with commutation.

Starting with the last term we can first observe that

AAB=BAA 3)

To show thislet A =aAb,and B = cAd. When
A AB # 0, one can write:

AANB=aAbAcAd
=—-bAcAdAa
=cAdAaAb
=BAA

To see how the signs of the remaining two terms vary with commutation
form:

(A+B)>=(A+B)(A+B)
=A%+ B?+ AB+ BA

When A and B interect we can write A = a A x, and B = b A x, thus the
sum is a bivector

(A+B)=(a+b)Ax

And so, the square of the two is a scalar. When A and B have only non
intersecting components, such as the grade two R* multivector e}y + ess, the
square of this sum will have both grade four and scalar parts.

Since the LHS = RHS, and the grades of the two also must be the same. This
implies that the quantity

AB+BA=A-B+B-A+(AB), + (BA), +AAB+BAA
is a scalar <= A + B is a bivector, and in general has scalar and grade
four terms. Because this symmetric sum has no grade two terms, regardless of
whether A, and B intersect, we have:
(AB), + (BA), =
= (AB), = —(BA), (4)

One would intuitively expect A - B = B - A. This can be demonstrated by
forming the complete symmetric sum



AB+BA=A-B+B-A+(AB),+ (BA),+AAB+BAA
—A-B+B-A+(AB),— (AB),+AAB+AAB
—A-B+B-A+2AAB

The LHS commutes with interchange of A and B, as does A A B. So for the
RHS to also commute, the remaining grade 0 term must also:
A-B=B:-A (5)

2.2 Dot, wedge and grade two terms of bivector product.

Collecting the results of the previous section and substituiting back into equa-
tion 1 we have:

A~B:<AB+BA> ©)
2 0

(aB), = A PA @)

AAB:<AB+BA> ®)
2 4

When these intersect in a line the wedge term is zero, so for that special case
we can write:

A p_ AB+BA
2

AB - BA

<AB>2:#
AAB=0

(note that this is always the case for R?).

3 Intersection of planes.

Starting with two planes specified parametrically, each in terms of two direc-
tion vectors and a point on the plane:

Xx=p+au+pv 9)
y=q+aw+bz (10)
(11)



If these intersect then all points on the line must satisify x = y, so the solu-
tion requires:

ptau+pv=q+aw+bz
= (ptau+pv)A\wAz=(q+aw+bz) \WAz=qAWAzZ

Rearranging for B, and writing B = w A z:

_qAB—(p+au)AB
b= vAB
Note that when the solution exists the left vs right order of the division
by v A B should not matter since the numerator will be proportional to this
bivector (or else the p would not be a scalar).
Substitution of B back into x = p + au + Bv (all points in the first plane)
gives you a parametric equation for a line:

_,.la-p)1B 1
X=p-+ 7B v—i—ochB((v/\B)u (uAB)v)

Where a point on the line is:

(a—-p)NB_
vAB
And a direction vector for the line is:

P+

1
vAB

x (VvAB)*u— (vAB)(uAB)v

((vAB)u— (uAB)v)

Now, this result is only valid if v AB # 0 (ie: line of intersection is not
directed along v), but if that is the case the second form will be zero. Thus we
can add the results (or any non-zero linear combination of) allowing for either
of u, or v to be directed along the line of intersection:

a ((v AB)2u — (v AB)(uA B)v) +b ((u AB)2v — (uAB)(v A B)u> (12)

Alternately, one could formulate this in terms of A = uAv, w, and z. Is
there a more symetrical form for this direction vector?

3.1 Vector along line of intersection in R3

For IR? one can solve the intersection problem using the normals to the planes.
For simplicity put the origin on the line of intersection (and all planes through
a common point in R? have at least a line of intersection). In this case, for
bivectors A and B, normals to those planes are iA, and iB respectively. The
plane through both of those normals is:



(iA)(iB) — (iB)(iA) BA — AB
2 o 2

(iA) A (iB) = = (BA),

The normal to this plane

i(BA), (13)

is directed along the line of interesection. This result is more appealing
than the general RN result of equation 12, not just because it is simpler, but
also because it is a function of only the bivectors for the planes, without a re-
quirement to find or calculate two specific independent direction vectors in one
of the planes.

3.2 Applying this result to RN

If you reject the component of A from B for two intersecting bivectors:

Rejs (B) = 4 (AB),

the line of intersection remains the same ... that operation rotates B so that
the two are mutually perpendicular. This essentially reduces the problem to
that of the three dimensional case, so the solution has to be of the same form...
you just need to calculate a “pseudoscalar” (what you are calling the join), for
the subspace spanned by the two bivectors.

That can be computed by taking any direction vector that is on one plane,
but isn’t in the second. For example, pick a vector u in the plane A that is not
on the intersection of A and B. In mathese thatis u = % (A-u)(orurA=0),
where u A B # 0. Thus a pseudoscalar for this subspace is:

i— u/NB
~ |JuAB|

To calculate the direction vector along the intersection we don’t care about
the scaling above. Also note that provided u has a component in the plane A,
u - A is also in the plane (it’s rotated 77/2 from % (A - u).

Thus, provided that u - A isn’t on the intersection, a scaled “pseudoscalar”
for the subspace can be calculated by taking from any vector u with a compo-
nent in the plane A:

i (u-A)AB
Thus a vector along the intersection is:
d = ((u-A) AB)(AB), (14)

Interchange of A and B in either the trivector or bivector terms above would
also work.



Without showing the steps one can write the complete parametric solution
of the line through the planes of equations 9 and 10 in terms of this direction
vector:

(q—p)AB
X_P+<(d-A)/\B)(d A) +ad (15)
Since (d-A) # 0and (d-A) AB # 0 (unless A and B are coplanar), observe
that this is a natural generator of the pseudoscalar for the subspace, and as such
shows up in the expression above.
Also observe the non-coincidental similarity of the q — p term to Cramer’s
rule (a ration of determinants).

4 Components of a grade two multivector

The procedure to calculate projections and rejections of planes onto planes is
similar to a vector projection onto a space.

To arrive at that result we can consider the product of a grade two multi-
vector A with a bivector B and its inverse ( the restriction that B be a bivector,
a grade two multivector that can be written as a wedge product of two vectors,
is required for general invertability).

1 1 1 1
A-B=(A-—+(A=) +AA=)B
50 (A5 (45,740
1
=A--B
B

{ad) e (o) o)

1 1 1
AN=]-B AN=B AN=ANB
+( AB) +< /\B >4+ AB/\

Since § = — %, this implies that the 6-grade term A A g A B is zero. Since

the LHS has grade 2, this implies that the 0-grade and 4-grade terms are zero
(also independently implies that the 6-grade term is zero). This leaves:

1 1 1
A:A~BB+<<AB>2B>2+<A/\B)-B (16)



This could be written somewhat more symmetrically as

g ()
(ot (o) e (),

This is also a more direct way to derive the result in retrospect.
Looking at equation 16 we have three terms:

1.

1
A.- =B
B

This is the component of A that lies in the plane B (the projection of A

onto B).
1
A-)B 17
<< B>2 >2 47

If B and A have any intersecting components, this is the components of
A from the intersection that are perpendicular to B with respect to the
bivector dot product. ie: This is the rejective term.

1
AN |-B
This is the remainder, the non-projective and non-coplanar terms. Greater

than three dimensions is required to generate such a term. Example:

A =epp+ex+ey
B = €34

Product terms for these are:

A-B=1
(AB), = ey
ANB = e
The decomposition is thus:
1
A= (A-B+(AB), + AAB) B (1+ exs + e1234)e43



4.1 Closerlook at the grade two term

The grade two term of equation 17 can be expanded using its antisymmetric
bivector product representation

(%),

=
I

|
NI—= NI= N|-
N\
>
|

Observe here one can restrict the examination to the case where B is a unit
bivector without loss of generality.

()

(A +iAi)

NI~ N~

(A - i*Ai)

The second term is a rotation in the plane i, by 180 degrees:

i‘l’Ai — e7i7‘f/2 Aein/z
So, any components of A that are completely in the plane cancel out (ie: the
A %i component).
Also, if (Ai), # 0 then those components of Ai commute so

<A - i*Ai>4 = (A), — <i*Ai>

4

This implies that we have only grade two terms, and the final grade selec-
tion in equation 17 can be dropped:

(33, (44)



It’s also possible to write this in a few alternate variations which are useful
to list explicitly so that one can recognize them in other contexts:

1 1 1
A-)B=:(A-_AB
< B>2 2( B )

A + BAB)

—~ —
o>

A—AB)B

|
Uw/\)I\)\)—\NM—\
>
~—
N
o>

T~
>
o

%

N

4.2 Projection and Rejection

Equation 18 can be substuited back into equation 16 yeilding:

1 1 1
A=A --B A-)B AAN=|-B 19
5 (45),2 (215 ®
Now, for the special case where A A B = 0 (all bivector components of the
grade two multivector A have a common vector with bivector B) we can write

1 1
A=A -—B+(A-)B
5 (%),
1 1
=B=-A+B{=-A
5 At (ph),

= Projg(A) + Rejg(A)

It’s worth verifying that these two terms are orthogonal (with respect to the
grade two vector dot product)

Projg (A) - Rejg (A) = (Projg(A) Rejg(A)),

_ <A- 1BB<1A> >
B o\B"/,/,

= 57 ((AB+BA)(BA - AB))g

_ ﬁ(ABBA — ABAB + BABA — BAAB),

= gz ("ABAB + BABA),



Since we have introduced the restriction A A B # 0, we can use the dot
product to reorder product terms:

AB=-BA+2A-B
This can be used to reduce the grade zero term above:

(BABA — ABAB), = (BA(—AB +2A -B) — (—BA +2A - B)AB),
— +2(A-B)(BA — AB),
= +4(A - B)((BA),),
=0

This proves orthogonality as expected.

4.3 Grade two term as a generator of rotations.

Figure 1: Bivector rejection. Perpendicular component of plane.

Figure 1 illustrates how the grade 2 component of the bivector product acts
as a rotation in the rejection operation.

Provided that A and B are not coplanar, (AB), is a plane mutually perpen-
dicular to both.

Given two mutually perpendicular unit bivectors A and B, we can in fact
write:

10



B = A(BA),
B = (AB),A

Compare this to a unit bivector for two mutually perpendicular vectors:

b=a(aAb)
b=(bAa)a

In both cases, the unit bivector functions as an imaginary number, applying
a rotation of 7r/2 rotating one of the perpendicular entities onto the other.

As with vectors one can split the rotation of the unit bivector into half angle
left and right rotations. For example, for the same mutually perpendicular pair
of bivectors one can write

B =A(BA),

— o (BA)/4 A o(BA)ym/4
1 1
=—(1—-BA) |]A| —(1+BA
<\/§ ( )> (ﬂ ( )>

Direct multiplication can be used to verify that this does in fact produce the
desired result.
In general, writing

(BA),

i= =

[(BA),|

the rotation of plane B towards A by angle 6 can be expressed with either a
single sided full angle

Ro.a—B(A) = Ae®
—e A

or double sided the half angle rotor formulas:

Roa_p(A) = e 1972 A¢l0/2 — RTAR (20)

11



Where:

R — oif/2

= cos(6/2) + &giii sin(0/2)

As with half angle rotors applied to vectors, there are two possible orien-
tations to rotate. Here the orientation of the rotation is such that the angle is
measured along the minimal arc betwen the two, where the angle between the
two is in the range (0, 7r) as opposed to the (77, 277) rotational direction.

44 Angle between two intersecting planes.

Worth pointing out for comparison to the vector result, one can use the bivector
dot product to calculate the angle between two interecting planes. This angle
of separation 6 between the two can be expressed using the exponential:

(BA)y

B — A elBan’

. (BA) 4
— _AB = elBAN]

Taking the grade zero terms of both sides we have:
. (BA) 4
_<AB>O = <e<BA>z >
0

_A-B
|A[[B]

The sine can be obtained by selecting the grade two terms

= cos(f) =

can _ (BA),

—(AB), = T(Ba) SO
gy _ [(BA)|
= sin(f) = |A||B2|

Note that the strictly positive sine result here is consistent with the fact that
the angle is being measured such that it is in the (0, 7r) range.

4.5 Rotation of an arbitrarily oriented plane.

As stated in a few of the GA books the rotor equation is a rotation represen-
tation that works for all grade vectors. Let’s verify this for the bivector case.
Given a plane through the origin spanned by two direction vectors and rotated
about the origin in a plane specified by unit magnitude rotor R, the rotated

12



plane will be specified by the wedge of the rotations applied to the two direc-
tion vectors:
Let
A=uAv

Then,

R(A) = R(u) AR(v)
= (R'uR) A (RTVR)

1
=5 (R'TuRR*VR — R'vRR'uR)

1

E(R’LuvR —R'vuR)

suv —vu
2

=RfuAvR

=R'AR

=R R

Observe that with this half angle double sided rotation equation, any com-
ponent of A in the plane of rotation, or any component that does not intersect
the plane of rotation, will be unchanged by the rotor since it will commute with
it. In those cases the opposing sign half angle rotations will cancel out. Only
the components of the plane that are perpendicular to the rotational plane will
be changed by this rotation operation.

5 A couple of reduction formula equivalents from
R? vector geometry.

The reduction of the R? dot of cross products to dot products can be naturally
derived using GA arguments. Writing i as the R® pseudoscalar we have:

b

(axb)-(exd)= 2] -Ccd

1 (aAbcAd+cAdaAb>
i i i i

N

_ _12) ((aAb)(cAd)+(cAd)(aAb))

=—(aAb)-(cAd)—(aAb)A(cAd)

In IR3 this last term must be zero, thus one can write

13



(axb) - (cxd)=—(aAb) - (cAd) (21)

This is now in a form where it can be reduced to products of vector dot
products.

(aAb)-(cAd)

((anb)(end) + (cAnd)(anb)),

((anb)(end)+ (dAc)(bAa)),

((ab—a-b)(cAd)+ (dAc)(ba—b-a)),

(ab(cAd)+ (d Ac)ba),

(a(b-(cAd)+DbA(cAd))((dAc)-b+ (dAc)Ab)a),

(a(b-(cAd))+ ((dAc)-b)a),

NP NP RN R R R =R =N = N =

(a((b-c)d = (b-d)c) + (d(c-b) —c(d-b))a),
=5((a-d)(b-¢) - (b-d)(a-c)+(d-a)(c-b) —(c-a)(d-b))
=(a-d)(b-c)—(a-c)(b-d)

Summarizing with a comparison to the R relations we have:

(aAb)-(cAd)=—(axb) (cxd)=(a-d)(b-c)—(a-c)(b-d) (22)

(aAc)-(bAc)=—(axc)-(bxc)=(a-c)(b-c)—c*(a-b) (23)

The bivector relations hold for all of RN.

14



