
DESIGNING OF 8 BIT ALU AND IMPLEMENTING

ON XILINX VERTEX 4 FPGA

SUBMITTED BY

PREETI TAKHAR

PRIYANKA RAJPAL

RAHUL BORTHAKUR

SAKSHI AGARWAL

DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

AMITY SCHOOL OF ENGINEERING AND TECHNOLOGY

AMITY UNIVERSITY UTTAR PRADESH

NOIDA (U.P.)

APRIL 2011

2

DESIGNING OF 8 BIT ALU AND IMPLEMENTING

ON XILINX VERTEX 4 FPGA

Submitted to

Amity University Uttar Pradesh

in partial fulfillment of the requirements for the award of the Degree of

Bachelor of Technology in

Department Of Electronics and Communications

by

Preeti Takhar

Priyanka Rajpal

Rahul Borthakur

Sakshi Agarwal

Under the guidance of

Dr. Anu Mehra

Department of Electronics and Communications,

Amity School of Engineering and Technology

DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS,

AMITY SCHOOL OF ENGINEERING AND TECHNOLOGY

AMITY UNIVERSITY UTTAR PRADESH

NOIDA (U.P.)

3

DECLARATION

We , Preeti takhar, Priyanka Rajpal, Rahul Borthakur and Sakshi Agarwal , students of B.Tech

(Electronics and Communication) hereby declare that the project titled “Designing of 8 bit ALU

and implementing it on Xilinx Vertex4 FPGA” which is submitted by me to Department of

Electronics and Communication, Amity School of Engineering and Technology, Amity

University, Uttar Pradesh, Noida, in partial fulfillment of requirement for the award of the degree

of Bachelor of Technology in Electronics and Communication , has not been previously formed

the basis for the award of any degree, diploma or other similar title or recognition.

Noida

Date Submitted By:

 Preeti Takhar

 Priyanka Rajpal

 Rahul Borthakur

Sakshi Agarwal.

iii

4

CERTIFICATE

On the basis of declaration submitted by Preeti Takhar, Priyanka Rajpal, Rahul Borthakur and

Sakshi Agarwal, students of B. Tech Electronics and Communications, I hereby certify that the

project titled “Designing of 8 bit ALU and implementing it on Xilinx Vertex4 FPGA” which is

submitted to Department of Electronics and Communications , Amity School of Engineering and

Technology, Amity University Uttar Pradesh, Noida, in partial fulfillment of the requirement for

the award of the degree of Bachelor of Technology in Electronics and Communications, is an

original contribution with existing knowledge and faithful record of work carried out by her

under my guidance and supervision.

To the best of my knowledge this work has not been submitted in part or full for any Degree or

Diploma to this University or elsewhere.

Noida

Date Dr. Anu Mehra.

Department of Electronics and Communications,

Amity School of Engineering and Technology

Amity University Uttar Pradesh, Noida.

iv

5

ACKNOWLEDGEMENT

We wish to express my sincere gratitude to Dr. Balvinder Shukla, D.G ASET & Pro Vice

Chancellor, Amity University, Uttar Pradesh, Mr.K.M.Soni, HOD ECE Department and

Mr.Lala Bhaskar, Program Leader, ECE(2007-11) Amity School of Engineering &

Technology for giving us the opportunity to do our final year project “DESIGNING OF ALU

AND ITS IMPLEMENTATION ON FPGA”.

We sincerely thank our faculty guide Dr.Anu Mehra, Professor, Amity School of

Engineering & Technology for guiding us in every way she could. We would also like to express

our gratitude to Mr. Ashutosh Gupta and Mrs Nidhi Gaur for their magnificent help and support

throughout the project.

Last but not the least, we wish to avail this opportunity to express our gratitude and love

to our friends and our beloved parents for their moral support, strength, help and for everything.

PLACE:

DATE:

 Preeti Takhar (A2305107163)

 Priyanka Rajpal(A2305107164)

 Rahul Borthakur(A2305107167)

 Sakshi Agarwal (A2305107184)

v

6

ABSTRACT

The main objective of project is to design and verify different operations of Arithmetic and

Logical Unit (ALU).

We have designed an 8 bit ALU which accepts two 8 bits numbers and the code corresponding to

the operation which it has to perform from the user. The ALU performs the desired operation and

generates the result accordingly. The different operations that we dealt with, are arithmetical,

logical and relational. Arithmetic operations include arithmetic addition, subtraction,

multiplication and division. Logical operations include AND, OR, NAND, XOR, NOT and

NOR. These take two binary inputs and result in output logically operated. The operations like

the greater than, less than, equal to, exponential etc are also included.

To implement ALU, the coding was written in VHDL and verified in ModelSim. The

waveforms were obtained successfully. After the coding was done, the synthesis of the code was

performed using Xilinx-ISE. Synthesis translates VHDL code into netlist (a textual description).

Thereafter, the simulation was done to verify the synthesized code. And it was, then converted

into binary format. Components and connections are mapped to CLB design and is placed and

routed to fit onto FPGA. User constraint file is generated and also bit file to load design on

FPGA when the later was connected to the laptop. Then device was configured and using FPGA

verification, debugging was done. Thus we successfully verified our code using FPGA.

vi

7

TABLE OF CONTENTS

Candidate’s Declaration iii

Certificate iv

Acknowledgements v

Abstract vi

Contents vii

List of Figures x

List of Tables xi

CHAPTER I INTRODUCTION

1.1 GENERAL 12

1.2 ABOUT ALU 13

 1.2.1 FLOWCHART 15

1.3 THE VARIOUS OPERATIONS 16

 1.3.1 ARITHMETICAL OPERATIONS 16

 1.3.2 LOGICAL OPERATIONS 19

CHAPTER II VHDL & MODELSIM

2.1 ABOUT VHDL 21

2.2 VHDL vs VERILOG 21

vii

8

2.3 ADVANTAGES OF VHDL 24

2.4 MODELSIM TOOL 25

CHAPTER III XILINX VERTEX 4 FPGA

3.1 INTRODUCTION 27

3.2 Xilinx ISE 9.1i 29

3.3 ADVANTAGES 30

3.4 DESIGN FLOW OVERVIEW 31

3.5 CREATE A NEW PROJECT 33

3.6 EDITING THE HDL SOURCE FILE 37

3.7 TIMING CONSTRAINTS UCF 37

3.8 DOWNLOAD DESIGN TO FPGA 41

CHAPTER IV RESULTS AND DISCUSSIONS

4.1 RESULTS OF 1-BIT ALU 45

4.2 DESIGN SUMMARY 53

4.3 SCHEMATICS 56

CHAPTER V FUTURE ASPECTS 56

viii

9

APPENDIX A TRUTH TABLES 57

APPENDIX B ORIGINAL & IMPLEMENTED CODE 58

APPENDIX C UCF FILE USED IN PROJECT 66

APPENDIX D SUCCESSFUL REPORTS 68

REFERENCES 77

ix

10

LIST OF FIGURES

Figure1.1 - ALU Architecture

Figure1.2 – ALU Block Diagram

Figure1.3 – ALU Flowchart

Figure2.1 – Project Flowchart

Figure3.1 - XILINX VERTEX 4 FPGA

Figure – 3.2 Design Flow

Figure – 3.3 UCF Design Flow

Figure – 3.4 impact Welcome Dialog Box

x

11

LIST OF TABLES

Table1 Arithmetic & Logical Operators

Table2 Opcode & Operations (for orginal code)

Table3 Opcode & Operations (for implemented code)

xi

12

CHAPTER I: INTRODUCTION

1.1 GENERAL:

In this project, our scope was to design an 8 bit ALU and its implement it on FPGA.

An arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical operations.

The ALU is a fundamental building block of the central processing unit (CPU) of a computer,

and even the simplest microprocessors contain one for purposes such as maintaining timers. The

processors found inside modern CPUs and graphics processing units (GPUs) accommodate very

powerful and very complex ALUs; a single component may contain a number of ALUs.

Most of a processor's operations are performed by one or more ALUs. An ALU loads

data from input registers, an external Control Unit then tells the ALU what operation to perform

on that data, and then the ALU stores its result into an output register. The inputs to the ALU are

the data to be operated on (called operands) and a code from the control unit indicating which

operation to perform. Its output is the result of the computation.

The coding of the ALU has been done in VHDL.VHDL (Very High Speed Integrated

Circuits Hardware Description Language) is a hardware description language used in electronic

design automation to describe digital and mixed-signal systems such as field-programmable gate

arrays and integrated circuits. It is commonly used to write text models that describe a logic

circuit. Such a model is processed by a synthesis program, only if it is part of the logic design. A

simulation program is used to test the logic design using simulation models to represent the logic

circuits that interface to the design.

After the coding had been completed in VHDL, the synthesis part was done using Xilinx-

ISE. Xilinx ISE is a software tool for synthesis and analysis of HDL designs, which enables the

developers to synthesize ("compile") their designs, perform timing analysis,

examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the target

device with the programmer.

13

1.2 ABOUT ALU

Microprocessors/Microcontrollers have a single module that performs arithmetic operations on

integer values. This is because many of the different arithmetic and logical operations can be

performed using similar (if not identical) hardware. The component that performs the arithmetic

and logical operations is known as the Arithmetic Logic Unit, or ALU.

The ALU is one of the most important components in a microprocessor, and is typically the part

of the processor that is designed first. Once the ALU is designed, the rest of the microprocessor

is implemented to feed operands and control codes to the ALU.

Figure1.1 : ALU block diagram

The arithmetic and logic unit (ALU) performs all arithmetic operations (addition,

 subtraction, multiplication, and division) and logic operations. Logic operations test

various conditions encountered during processing and allow for different actions to be taken

based on the results. The data required to perform the arithmetic and logical functions are inputs

from the designated CPU registers and operands. The ALU relies on basic items to perform its

operations. These include number systems, data routing circuits (adders/subtractors), timing,

instructions, operands, and registers. Figure1.1 shows a representative block diagram of

 an ALU. An ALU loads data from input registers, an external Control Unit then tells the ALU

what operation to perform on that data, and then the ALU stores its result into an output register.

The Control Unit is responsible for moving the processed data between these registers, ALU and

memory.

14

Figure1.2: ALU Architecture

An ALU must process numbers using the same format as the rest of the digital circuit. The

format of modern processors is almost always the two's complement binary number

representation. Early computers used a wide variety of number systems, including ones'

complement, two's complement sign-magnitude format, and even true decimal systems, with

ten tubes per digit.

ALUs for each one of these numeric systems had different designs, and that influenced the

current preference for two's complement, as this is the representation that makes it easier for the

ALUs to calculate additions and subtraction.

15

1.2.1 FLOWCHART

Figure1.3 – ALU Flowchart

Most ALUs can perform the following operations:

 Bitwise logic operations (AND, NOT, OR, XOR, NAND, NOR)

 Integer arithmetic operations (addition, subtraction, and sometimes multiplication and

division, though this is more expensive).

 Other operations like greater than, equal to, exponential, modulus etc.

16

 1.3 THE VARIOUS OPERATIONS

Table-1: Arithmetic & Logical Operators

1.3.1 ARITHMETICAL OPERATIONS

 ADDITION

Addition is the basic operation of arithmetic. In its simplest form, addition combines

two numbers, the addends or terms, into a single number, the sum of the numbers.

Adding more than two numbers can be viewed as repeated addition; this procedure is

known as summation and includes ways to add infinitely many numbers in an infinite

series; repeated addition of the number one is the most basic form of counting

 0101 (decimal 5) + 0011 (decimal 3) = 0100 (decimal 8)

ARITHMETIC OPERATIONS LOGICAL OPERATIONS

ADDITION AND

SUBTRACTION OR

MUTLIPLICATION NOT

DIVISION NAND

REMAINDER NOR

MODULUS XOR

UNARY ADDITION

UNARY SUBTRACTION

EXPONENTIAL

17

 SUBTRACTION

Subtraction is one of the four basic arithmetic operations; it is the inverse of addition,

meaning that if we start with any number and add any number and then subtract the

same number we added, we return to the number we started with. Subtraction is

denoted by a minus sign in infix notation.

 MULTIPLICATION

Multiplication is the second basic operation of arithmetic. Multiplication also

combines two numbers into a single number, the product. The two original numbers

are called the multiplier and the multiplicand, sometimes both simply called factors.

 DIVISION

Division is essentially the opposite of multiplication. Division finds the quotient of

two numbers, the dividend divided by the divisor. Any dividend divided by zero is

undefined. For positive numbers, if the dividend is larger than the divisor, the quotient

is greater than one, otherwise it is less than one (a similar rule applies for negative

numbers). The quotient multiplied by the divisor always yields the dividend.

REMAINDER

The binary % operator is said to yield the remainder of its operands from an implied

division; the left-hand operand is the dividend and the right-hand operand is the

divisor.

5%3 produces 2 (note that 5/3 produces 1)

5 %(-3) produces 2 (note that 5/(-3) produces -1)

18

(-5)%3 produces -2 (note that (-5)/3 produces -1)

(-5)%(-3) produces -2 (note that (-5)/(-3) produces 1)

MODULUS

In computing, the modulo operation, sometimes also called "remainder" or "rest",

gives the remainder from a division. It finds the remainder of division of one number

by another. Given two numbers, a (the dividend) and n (the divisor), a modulo n

abbreviated as a mod n) is the remainder, on division of a by n. For example, if you

divide 7 by 3, 3 goes in 7 two times. But there is a remainder of 1, and that is the result

of the modulo operation.

 UNARY ADDITION/ SUBTRACTION

Unary addition and subtraction operators are unary operators that add or subtract one

from their operand, respectively. They are commonly implemented in imperative

programming languages. The increment operator increases the value of its operand by

1. The operand must have an arithmetic data type, and must refer to a modifiable data

object. Similarly, the decrement operator decreases the value of its modifiable

arithmetic operand by 1.

EXPONENTIAL

In mathematics, the exponential function is the function ex, where e is the number

(approximately 2.718281828) such that the function ex is its own derivative.[1][2] The

exponential function is used to model phenomena when a constant change in the

independent variable gives the same proportional change (i.e., percent increase or

decrease) in the dependent variable. The function is often written as exp(x), especially

when it would be impractical to write the input expression as an exponent.

19

1.3.2 LOGICAL OPERATIONS

AND

A bitwise AND takes two binary representations of equal length and performs the

logical AND operation on each pair of corresponding bits. In each pair, the result is 1

if the first bit is 1 AND the second bit is 1. Otherwise, the result is 0. For example:

 0101 (decimal 5) AND 0011 (decimal 3) = 0001 (decimal 1)

OR

A bitwise OR takes two bit patterns of equal length, and produces another one of the

same length by matching up corresponding bits (the first of each; the second of each;

and so on) and performing the logical inclusive OR operation on each pair of

corresponding bits. In each pair, the result is 1 if the first bit is 1 OR the second bit is

1 OR both bits are 1, and otherwise the result is 0. For example:

 0101 (decimal 5) OR 0011 (decimal 3) = 0111 (decimal 7)

NOT

The bitwise NOT, or complement, is a unary operation that performs logical negation

on each bit, forming the ones' complement of the given binary value. Digits which

were 0 become 1, and vice versa. For example:

 NOT 0111 (decimal 7) = 1000 (decimal 8)\

20

NAND

A bitwise NAND takes two binary representations of equal length and performs the

logical NAND operation on each pair of corresponding bits. In each pair, the result is 0

if the first bit is 1 AND the second bit is 1. Otherwise, the result is 1. For example:

 0101 (decimal 5) AND 0011 (decimal 3) = 1110 (decimal 14)

NOR

A bitwise NOR takes two bit patterns of equal length, and produces another one of the

same length by matching up corresponding bits (the first of each; the second of each;

and so on) and performing the logical inclusive OR operation on each pair of

corresponding bits. In each pair, the result is 1 if the both bits are zero otherwise the

result is 0. For example:

 0101 (decimal 5) OR 0011 (decimal 3) = 1000 (decimal 8)

XOR

A bitwise exclusive or takes two bit patterns of equal length and performs the logical

XOR operation on each pair of corresponding bits. The result in each position is 1 if

the two bits are different, and 0 if they are the same. For example:

 0101 (decimal 5) XOR 0011 (decimal 3) = 0110 (decimal 6)

21

CHAPTER II: VHDL & MODELSIM

2.1 ABOUT VHDL

VHDL ((Very High Speed Integrated Circuits) Hardware Description Language) is a hardware

description language used in the electronic design automation to describe digital and mixed-

signal systems such as field-programmable gate arrays and integrated circuits.

VHDL is commonly used to write text models that describe a logic circuit. Such a model is

processed by a synthesis program, only if it is part of the logic design. A simulation program is

used to test the logic design using simulation models to represent the logic circuits that interface

to the design. This collection of simulation models is commonly called a testbench.

We designed hardware in a VHDL IDE (for FPGA implementation such as Xilinx ISE, Altera

Quartus, Synopsys Synplify or Mentor Graphics HDL Designer) to produce the RTL schematic

of the desired circuit. After that, the generated schematic verified using simulation software

which shows the waveforms of inputs and outputs of the circuit after generating the appropriate

testbench. To generate an appropriate testbench for a particular circuit or VHDL code, the inputs

have to be defined correctly. For example, for clock input, a loop process or an iterative

statement is required.

 2.2 VHDL vs VERILOG

There are now two industry standard hardware description languages, VHDL and Verilog. The

complexity of ASIC and FPGA designs has meant an increase in the number of specialist design

consultants with specific tools and with their own libraries of macro and mega cells written in

either VHDL or Verilog

22

 Compilation

VHDL: Multiple design-units (entity/architecture pairs), that reside in the same system

file, may be separately compiled if so desired. However, it is good design practice to keep

each design unit in its own system file in which case separate compilation should not be

an issue.

Verilog:. The Verilog language is still rooted in its native interpretative mode.

Compilation is a means of speeding up simulation, but has not changed the original

nature of the language. As a result care must be taken with both the compilation order of

code written in a single file and the compilation order of multiple files. Simulation results

can change by simply changing the order of compilation.

 Design Reusability

VHDL: Procedures and functions may be placed in a package so that they are available

to any design-unit that wishes to use them.

Verilog: There is no concept of packages in Verilog. Functions and procedures used

within a model must be defined in the module. To make functions and procedures

generally accessible from different module statements the functions and procedures must

be placed in a separate system file and included using the `include compiler directive.

 High level constructs

VHDL: There are more constructs and features for high-level modeling in VHDL than

there are in Verilog.

Abstract data types can be used along with the following statements:

* package statements for model reuse,

* configuration statements for configuring design structure,

* generate statements for replicating structure,

23

* generic statements for generic models that can be individually

characterized, for example, bit width.

All these language statements are useful in synthesizable models.

Verilog: Except for being able to parameterize models by overloading parameter

constants, there is no equivalent to the high-level VHDL modeling statements in Verilog.

 Managing large designs

VHDL: Configuration, generate, generic and package statements all help manage large

design structures.

Verilog: There are no statements in Verilog that help manage large designs

 Procedures and tasks

VHDL: allows concurrent procedure calls.

Verilog: does not allowconcurrent task calls.

 Test harnesses

Designers typically spend about 50% of their time writing synthesizable models and the

other 50% writing a test harness to verify the synthesizable models. Test harnesses are

not restricted to the synthesizable subset and so are free to use the full potential of

the language. VHDL has generic and configuration statements that are useful in test

harnesses that are not found in Verilog.

24

2.3 ADVANTAGES OF VHDL

1.) The key advantage of VHDL, when used for systems design, is that it allows the

behavior of the required system to be described (modeled) and verified (simulated) before

synthesis tools translate the design into real hardware (gates and wires).

2.) Another benefit is that VHDL allows the description of a concurrent system. VHDL is a

dataflow language, unlike procedural computing languages such as BASIC, C, and assembly

code, which all run sequentially, one instruction at a time.

3.) VHDL project is multipurpose. Being created once, a calculation block can be used in

many other projects. However, many formational and functional block parameters can be

tuned (capacity parameters, memory size, element base, block composition and

interconnection structure).

4.) VHDL project is portable. Being created for one element base, a computing device

project can be ported on another element base, for example VLSI with various technologies.

An example of VHDL coding....

library IEEE;

use IEEE.std_logic_1164.all;

-- this is the entity

entity ANDGATE is

 port (

 IN1 : in std_logic;

 IN2 : in std_logic;

 OUT1: out std_logic);

end ANDGATE;

25

architecture RTL of ANDGATE is

begin

OUT1 <= IN1 and IN2;

End RTL;

2.4 MODELSIM TOOL

TOOL USED: MODELSIM 6.0d

Mentor Graphics ModelSim 6.0d HDL Simulator is a source-level verification tool, allowing you

to verify HDL code line by line. We can perform simulation at all levels: behavioral (pre-

synthesis), structural (post-synthesis), and back-annotated, dynamic simulation.

Coupled with the most popular HDL debugging capabilities in the industry, ModelSim is known

for delivering high performance, ease of use, and outstanding product support.

An easy-to-use graphical user interface enables you to quickly identify and debug problems,

aided by dynamically updated windows. For example, selecting a design region in the Structure

window automatically updates the Source, Signals, Process, and Variables windows. These cross

linked ModelSim windows create an easy-to-use debug environment. Once a problem is found,

you can edit, recompile, and re-simulate without leaving the simulator. ModelSim fully supports

current VHDL and Verilog language standards. You can simulate behavioral, RTL, and gate-

level code separately or simultaneously. ModelSim supports all Actel FPGA libraries, ensuring

accurate timing simulations.

The comprehensive user interface makes efficient use of desktop real estate. The intuitive

arrangement of interactive graphical elements (windows, toolbars, menus, etc.) makes it easy to

view and access the many powerful capabilities of ModelSim. The result is a feature-rich user

interface that is easy to use and quickly mastered.

Project Flow

A project is a collection mechanism for an HDL design under specification or test. Even

though you don’t have to use projects in ModelSim, they may ease interaction with the tool and

are useful for organizing files and specifying simulation settings. The following diagram shows

the basic steps for simulating a design within a ModelSim project.

26

As you can see, the flow is similar to the basic simulation flow. However, there are two

important differences:

• You do not have to create a working library in the project flow; it is done for you

automatically.

• Projects are persistent. In other words, they will open every time you invoke ModelSim unless

you specifically close them.

Figure2.1 – Project Flowchart

27

CHAPTER III: XILINX VERTEX 4 FPGA

3.1 INTRODUCTION

The ML401/ML402/ML403 evaluation platform enables designers to investigate and experiment

with features of the Vertex™-4 families of FPGAs. This user guide describes features and

operation of the ML401, ML402, and ML403 (ML40x) evaluation platforms.

Figure3.1 - XILINX VERTEX 4 FPGA

28

FEATURES:

• Virtex-4 FPGA:

♦ ML401: XC4VLX25-FF668-10

♦ ML402: XC4VSX35-FF668-10

♦ ML403: XC4VFX12-FF668-10

• 64-MB DDR SDRAM, 32-bit interface running up to 266-MHz data rate

• One differential clock input pair and differential clock output pair with SMA

Connectors.

• One 100-MHz clock oscillator (socketed) plus one extra open 3.3V clock oscillator

Socket

• General purpose DIP switches (ML401/ML402 platform), LEDs, and push buttons

• Expansion header with 32 single-ended I/O, 16 LVDS capable differential pairs,14

spare I/Os shared with buttons and LEDs, power, JTAG chain expansion capability, and

IIC bus expansion

• Stereo AC97 audio codec with line-in, line-out, 50-mW headphone, and microphone-in

(mono) jacks

• RS-232 serial port

• 16-character x 2-line LCD display

• One 4-Kb IIC EEPROM

29

• VGA output:

♦ ML401: 50 MHz / 24-bit video DAC

♦ ML402: 140 MHz / 24-bit video DAC

♦ ML403: 140 MHz / 15-bit video DAC

3.2 Xilinx ISE 9.1i

The version includes all the features of the 9.1i release of the popular Xilinx ISE Foundation™

software with full support for optional embedded, digital signal processing (DSP) and real-time

debug design flows. Most notably, ISE WebPACK 9.1i software includes the new Xilinx

SmartCompile™ technology, which significantly improves run times by up to 6x faster than the

previous version, while maintaining exact design preservation of unchanged logic. ISE

WebPACK 9.1i software also includes support for all devices in the Spartan™-3A family of

FPGAs and select Virtex™-4 and Virtex-5 FPGA devices. New power optimization features help

designers reduce dynamic power by an average of 10 percent.

FPGA Industry’s Most Complete Design Solution for Windows and Linux

ISE WebPACK 9.1i software offers a complete front-to-back FPGA design solution

allowing users to immediately begin projects. By providing integrated tools for HDL entry,

synthesis, implementation, and verification in a free downloadable environment, ISE 9.1i

helps users rapidly achieve design goals while reducing overall project cost. This release

includes ISE Simulator Lite on both Windows and Linux. The free MXE-III Starter version

is available for download from the Xilinx website giving designers a choice in free HDL

verification solutions.

30

3.3 ADVANTAGES

3.3.1 Increased Productivity

ISE WebPACK 9.1i software includes new SmartCompile technology to help designers

address the problems associated with re-implementing an entire design with each

incremental change. Such re-implementations take time and introduce risk of disrupting

portions of the design not directly involved with the change. Xilinx SmartCompile

technology addresses these issues with the following technologies:

Partitions: minimize effects of minor changes late in design cycles with copy-and-paste

functionality that automatically provides exact preservation of existing placement and

routing and reduces re-implementation time.

SmartGuide™: reduces time for re-implementation for small changes by leveraging

prior implementation results.

SmartPreview™: enables users to pause and resume place-and-route process and save

intermediate results to evaluate design state. By previewing implementation information

such as routing status and timing results, users can make important trade-off decisions

without waiting for complete implementation.

3.3.2 Faster Timing Closure

New features in ISE WebPACK 9.1i software build on the capabilities of Fmax

technology, especially designed to deliver unparalleled performance and timing closure

results for high density, high performance designs. ISE WebPACK 9.1i software includes

integrated timing closure flow which incorporates enhanced physical synthesis

optimizations to provide higher quality of results.

ISE WebPACK 9.1i software includes the expanded timing closure environment of the

standard ISE 9.1i version – a virtual ‘Timing Closure Cockpit’ – that enables intuitive

cross-probing between constraint entry, timing analysis, floor planning and report views

31

so designers can more easily analyze timing problems. The integrated timing closure flow

incorporates enhanced physical synthesis with improved timing correlation between

synthesis and placement timing, resulting in higher quality of results.

3.3.3 Power Optimization

New power optimization in Xilinx Synthesis Technology (XST) and placement, together

with improvements in routing, deliver an average of 10 percent lower dynamic power for

the Spartan-3 generation of FPGAs. Power optimization improvements in XST also

provide power-aware logic optimizations for macro processing on blocks such as

multipliers, adders and BRAMs. Implementation algorithms deploy power-efficient

placement strategies and lower capacitance nets within the device to minimize power

without sacrificing performance.

3.4 DESIGN FLOW OVERVIEW

Xilinx tools can be installed on your own PC so that you can draw schematics or write the code,

perform simulations without coming to the lab.You may download a free, compatible version

from the Xilinx web page called ISE WebPACK 10.1

The design steps are explained here

3.4.1 Design Entry

The first step is to enter your design. This can be done by creating “Source” files. Source

files can be created in different formats such as a schematic, or a Hardware Description

Language (HDL) such as VHDL, Verilog . A project design will consist of a top-level

source file and various lower level source files. Any of these files can be either a

schematic or a HDL file.

32

3.4.2 Design Simulation

Verification of the functionality can be done using Behavioral Simulation. Create a test

bench waveform containing input stimulus you can use to verify the functionality your

module.

3.4.3 Design Synthesis

The synthesis step creates EDIF or NGC netlist files from the various source files. The

netlist files can serve as an input to the implementation module. Popular synthesis tools

include: Synplify, Precision, PGA Compiler II, and XSTgn.

 3.4.4 Functional and Timing simulation

Design verification can be done at various stages. The simulator is used to verify the

functionality of a design (functional simulation), the behavior and the timing (timing

simulation) of your circuit. Timing simulation is run after implementing your circuit in

the FPGA since it needs to know the actual placement and routing to find out the exact

speed and timing of the circuit.

3.4.5 Design Implementation

After generating the netlist file (synthesis step), the implementation will convert the logic

design into a physical file that can be downloaded on the target device. This step

involves three sub-steps: Translating the netlist, Mapping and Place & Route. There are

several outputs of implementation: Reports, Timing simulation netlists, Floor plan files,

FPGA Editor files.

3.4.6 Download Design to the FPGA Board

Once a design is implemented, you must create a file that the FPGA can understand.

This file is called a bitstream: a BIT file (.bit extension). The BIT file can be

downloaded directly into the FPGA, or the BIT file can be converted into a PROM file,

which stores the programming information.

33

Figure – 3.2 Design Flow

3.5 CREATE A NEW PROJECT

Use this dialog box to create a new project, as described in Creating a Project. To access this

dialog box, select File > New Project.

 Name: Specifies the name for the project. Follow the naming conventions in Naming

Conventions.

 Location: Specifies the location of the project. You can browse to a directory or enter

the name of a directory. If you enter the name of a directory that does not exist, Project

Navigator creates the directory. By default, the software automatically creates a

subdirectory based on the name entered in the Name field.

 Working Directory: Specifies the location of the working directory. By default, the

working directory is the same as the project directory. However, you can specify a

working directory if you want to keep your ISE project file (.xise extension) separate

from your working area.

34

 Description: Allows you to add a description for your project. This field is optional.

 Product Category: Specifies an applicable product category. This selection filters the

device families and devices that are available in the Family and Device fields.

 Family: Specifies the device family, or Xilinx® architecture, into which you will

implement your design.

 Device: Specifies the device into which you will implement your design.

 Package: Specifies the package for the device being targeted.

 Speed: Specifies the speed grade of the device being targeted.

 Top-Level Source Type: Specifies the source type for the top-level design.

o HDL Select this option if your top-level design file is a VHDL or Verilog file.

An HDL Project can include lower-level modules of different file types, such as

other HDL files, schematics, and "black boxes," such as IP cores and EDIF files.

o Schematic Select this option if your top-level design file is a schematic file. A

schematic project can include lower-level modules of different file types, such as

HDL files, other schematics, and "black boxes," such as IP cores and EDIF files.

Project Navigator automatically converts any schematic files in your design to

structural HDL before implementation; therefore, you must specify a synthesis

tool when working with schematic projects.

o EDIF Select this option if you want to use an EDIF netlist as the top-level source

for the project. This may be the case if you are using a synthesis tool outside of

Project Navigator to synthesize the design.

o NGC/NGO Select this option if you want to use an NGC or NGO netlist as the

top-level source for the project.

 Synthesis Tool: Specifies the synthesis tool and synthesis language used for your

design. For synthesis tools that support only single-language designs, select the

35

appropriate language for your design (for example, Synplify (VHDL) or Synplify

(Verilog)).

o XST Xilinx Synthesis Technology (XST) is provided with the ISE® software. It

supports projects that include VHDL, Verilog, and schematic design files. Mixed-

language designs are supported Synplify and Synplify Pro Synplify and Synplify

Pro are integrated third party synthesis tools that must be purchased separately

from Synplicity, Inc. The Synplify software does not support projects that include

mixed language source files. The Synplify Pro software supports projects that

include mixed language source files, such as VHDL and Verilog sources files in

the same project. The Synplify and Synplify Pro software do not support projects

that include schematic design files.

o Precision: Precision is an integrated third party synthesis tool that must be

purchased separately from Mentor Graphics, Inc. The Precision software supports

projects that include schematic design files and projects that include mixed

language source files, such as VHDL and Verilog sources files in the same

project.

 Simulator: Specify the tool used for simulation and the language used for generating

simulation netlists.

o ISim: ISim is the simulator delivered with the ISE software. For more

information about this tool

o ModelSim: ModelSim is a third party tool that can be used in an integrated flow

within the ISE software.

o NC-Sim The NC-Sim simulator is a third party simulation tool that must be

purchased separately from Cadence. It is not integrated with the ISE software and

must be run standalone. For more information, see the documentation provided

with the simulator.

36

o VCS: The VCS simulator is a third party simulation tool that must be purchased

separately from Synopsys. It is not integrated with the ISE software and must be

run standalone. For more information, see the documentation provided with the

simulator.

o Other: Select other if you are using a simulator that is not listed.

 Preferred Language: Controls the default setting for process properties that generate

HDL output, such as source files, intermediate files, or structural simulation netlists. If

the Synthesis Tool and Simulator options are set to a single-language tool, the default

language for generated HDL output files is automatically set. If both the Synthesis Tool

and Simulator options are set to mixed-language (VHDL/Verilog) tools, you can use the

Preferred Language property to select the language in which generated HDL output is

created.

o Verilog: Select this option if both the Synthesis Tool and Simulator are set to

mixed-language and you want the default language to be Verilog.

o VHDL: Select this option if both the Synthesis Tool and Simulator are set to

mixed-language and you want the default language to be VHDL.

o N/A: This option appears if both the Synthesis Tool and Simulator are set to a

single language, because the generated language defaults are set based on the

languages you selected for the Synthesis Tool and Simulator.

 Property Specification in Project File: Controls how properties are stored in the .xise

file.

o Store non-default values only: Select this option to store only non-default

property settings in the .xise project file.

o Store all values: Select this option to store all property settings, including those

set to default values, in the .xise project file. This option is useful when working

with source control systems and when moving projects between different ISE

software versions, because the values for all properties are stored explicitly.

37

 Manual Compile Order: By default, the RTL compilation order is automatically

determined based on the ISE design hierarchy. This option allows you to override the

default behavior and set the compilation order manually. Selecting this option disables all

hierarchical parsing of HDL source files when they are added to the project, and the

design source is displayed in a single flat list rather than hierarchically. For designs with

a large number of HDL sources, this can make adding the source files faster.

 Enable Enhanced Design Summary: Shows the number of errors and warnings for the

entire project and for each of the Detailed Reports.

 Enable Message Filtering: Shows the number of messages you filtered. You must

enable this option, filter messages, and then run the software to show the number of

filtered messages.

 Display Incremental Messages: Shows the numbers of new messages for the most

recent software run. You must enable this option, and then run the software to show the

number of new messages.

3.6 EDITING THE HDL SOURCE FILE

The source file is displayed in the Project Navigator window. The source file window can be

used as a text editor to make any necessary changes to the source file. Make sure you enter the

pin type for all output pins have to (combinational or sequential). Save the HDL program

periodically by selecting the File->Save from the menu.

3.7 TIMING CONSTRAINTS UCF

The UCF file is an ASCII file specifying constraints on the logical design. You create this file

and enter your constraints in the file with a text editor. You can also use the Xilinx Constraints

Editor to create constraints within a UCF file. These constraints affect how the logical design is

38

implemented in the target device. You can use the file to override constraints specified during

design entry.

UCF Flow

The following figure illustrates the UCF flow.

Figure – 3.3 UCF Design Flow

The UCF file is an input to NGDBuild (see the preceding figure). The constraints in the UCF file

become part of the information in the NGD file produced by NGDBuild. For FPGAs, some of

these constraints are used when the design is mapped by MAP and some of the constraints are

written into the PCF (Physical Constraints File) produced by MAP.

The constraints in the PCF file are used by the each of the physical design tools (for example,

PAR and the timing analysis tools), which are run after your design is mapped.

Manual Entry of Timing Constraints: You can manually enter timing specifications as

constraints in a UCF file. When you then run NGDBuild on your design, your timing constraints

are added to the design database as part of the NGD file.

39

To avoid manually entering timing constraints in a UCF file, use the Xilinx Constraints Editor, a

tool that greatly simplifies constraint creation. For a detailed description of how to use the editor,

see the Xilinx Constraints Editor online help.

UCF/NCF File Syntax: Logical constraints are found in:

 a Netlist Constraint File (NCF), an ASCII file generated by synthesis programs

 User Constraint File (UCF), an ASCII file generated by the user

This section describes the rules for entering constraints in a UCF or NCF file.

It is preferable to place any user-generated constraint in the UCF file -- not in an NCF or PCF

file.

General Rules

Following are some general rules for the UCF and NCF files.

 The UCF and NCF files are case sensitive. Identifier names (names of objects in the

design, such as net names) must exactly match the case of the name as it exists in the

source design netlist. However, any Xilinx constraint keyword (for example, LOC,

PERIOD, HIGH, and LOW) may be entered in all upper-case, all lower-case, or mixed

case.

 Each statement is terminated by a semicolon (;).

 No continuation characters are necessary if a statement exceeds one line, since a

semicolon marks the end of the statement.

 You can add comments to the UCF/NCF file by beginning each comment line with a

pound (#) sign. Following is an example of part of a UCF/NCF file containing comments.

 # file TEST.UCF

 # net constraints for TEST design

 NET "$SIG_0" MAXDELAY 10;

40

 NET "$SIG_1" MAXDELAY 12 ns;

C and C++ style comments (/* */ and respectively) are also supported.

 Statements do not have to be placed in any particular order in the UCF/NCF file.

 Although not required, Xilinx recommends that NET and INST names be enclosed in

double quotes to avoid errors. Additionally, inverted signal names that contain a tilde, for

example, ~OUTSIG1, must always be enclosed in double quotes.

Conflict in Constraints

The constraints in the UCF/NCF files and the constraints in the schematic or synthesis file are

applied equally. It does not matter whether a constraint is entered in the schematic or synthesis

file or in the UCF/NCF files. If the constraints overlap, UCF overrides NCF and schematic

constraints. NCF overrides schematic constraints.

If by mistake two or more elements are locked onto a single location, the mapper detects the

conflict, issues a detailed error message, and stops processing so that you can correct the

mistake.

Syntax

The syntax for constraints in the UCF/NCF files is:

{NET|INST|PIN} "full_name" constraint;

or

SET set_name set_constraint;

where

o full_name is a full hierarchically qualified name of the object being referred to.

When the name refers to a pin, the instance name of the element is also required.

41

o Constraint is a constraint in the same form as it would be used if it were attached

as an attribute on a schematic object. For example, LOC=P38 or FAST, and so

forth.

o set_name is the name of an RLOC set.

o set_constraint is an RLOC_ORIGIN or RLOC_RANGE constraint

Specifying Attributes for TIMEGRP and TIMESPEC

To specify attributes for TIMEGRP, the keyword TIMEGRP precedes the attribute definitions in

the constraints files.

TIMEGRP "input_pads"=pads EXCEPT output_pads;

3.8 DOWNLOAD DESIGN TO THE FPGA BOARD

This is the last step in the design verification process. This section provides simple instructions

for downloading the counter design to the Spartan-3 Starter Kit demo board.

1. Connect the 5V DC power cable to the power input on the demo board (J4).

2. Connect the download cable between the PC and demo board (J7).

3. Select Synthesis/Implementation from the drop-down list in the Sources window.

4. Select counter in the Sources window.

5. In the Processes window, click the “+” sign to expand the Generate Programming

File processes.

42

6. Double-click the Configure Device (iMPACT) process.

1. The Xilinx WebTalk Dialog box may open during this process. Click Decline.

43

8. Select Disable the collection of device usage statistics for this project only and click OK.

9. In the Welcome dialog box, select Configure devices using Boundary-Scan (JTAG).

10. Verify that automatically connect to a cable and identify Boundary-Scan chain is

selected.

11. Click Finish.

12. If you get a message saying that there are two devices found, click OK to continue.

The devices connected to the JTAG chain on the board will be detected and displayed in the

iMPACT window.

44

Figure – 3.4 impact Welcome Dialog Box

45

 CHAPTER IV: RESULTS AND DISCUSSIONS

4.1 RESULTS OF 1-BIT ALU-

1. A+B when inst=000

46

2.) A-B when inst = 001

47

3.) not A when inst= 010

48

4.) Is A=B when inst = 011

49

5.) A= A+ 1 when inst=100

50

6. A mod B when inst=101

51

7. A **2 when inst=110

52

8. When others

53

4.2 DESIGN SUMMARY:

54

4.3 SCHEMATICS

1.) RTL SCHEMATICS :

2.) SCHEMATICS

55

3.) STRUCTURE:

TECHNICAL DIFFICULTY

We were using the FPGA kit vertex ML403 which had added certain restrictions to the project.

The push buttons that were used to provide the inputs from the user were five in number whereas

we required twenty one; as we were inputting two 8 bits data from user and five bits for the

selective instructions. Moreover, there were only four LEDs used for the display. Hence we had

to restrict our program to two one bit inputs and three bits selective instructions.

56

CHAPTER V: FUTURE ASPECTS

In computing, an Arithmetic Logic Unit (ALU) is a digital circuit that performs arithmetic and

logical operations. The ALU is a fundamental building block of the central processing unit

(CPU) of a computer, and even the simplest microprocessors contain one for purposes such as

maintaining timers. The ALU can be inside high speed computers and even supercomputers .It

will find its requirement in the field of nano-technology. Commercially it would be very useful

in the smart mobile phones and calculating devices. The processors found inside modern CPUs

and graphics processing units (GPUs) accommodate very powerful and very complex ALUs; a

single component may contain a number of ALUs. Hence the ALU interfaced with various

devices will find its application in almost every electronic device.

57

APPENDIX A TRUTH TABLES

FOR ORIGINAL CODE

Table2 – Opcode & Operations (for orginal code)

58

FOR IMPLEMENTED CODE

Table3 – Opcode & Operations (for implemented code)

59

APPENDIX B ORIGINAL & IMPLEMENTED CODE

 ORIGINAL CODE

-- Company:

-- Engineer:

--

-- Create Date: 16:25:01 03/29/2011

-- Design Name:

-- Module Name: hi - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

use IEEE.NUMERIC_BIT.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity my_alu is

 Port (

 clk:in std_logic;

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector (7 downto 0);

60

 Inst : in std_logic_vector (4 downto 0);

 R : out std_logic_vector(7 downto 0));

end my_alu;

architecture Behavioral of my_alu is

begin

process(a,b,clk)

 variable temp : integer ;

begin

 if clk='1' then

case Inst is

when "00000" => --Add (R=A+B)

temp := conv_integer(A)+ conv_integer(B);

R <= conv_std_logic_vector(temp,8);

when "00001" => --Subtract (R=A-B)

temp := conv_integer(A) - conv_integer(B);

R <= conv_std_logic_vector(temp,8);

when "00010" => --Subtract (R=B-A)

temp := conv_integer(B)- conv_integer(A);

R <= conv_std_logic_vector(temp,8);

when "00011" => -- (R=A AND B)

R <=A AND B;

when "00100" => -- (R=A OR B)

R <= A OR B;

when "00101" => -- (R=A XOR B)

R <= A XOR B;

when "00110" => -- (R=A NAND B)

R <= A NAND B;

when "00111" => -- (R=A NOR B)

R <= A NOR B;

when "01000" => -- (R=A XNOR B)

R <= A XNOR B;

when "01001" => -- (R=A equal to B)

61

if A = B

--then temp:= '1';

then R <=conv_std_logic_vector('1' ,8);

else R <=conv_std_logic_vector('0' ,8);

end if;

when "01010" => -- (R=A less than B)

if A < B

--then temp:= '1';

then R <=conv_std_logic_vector('1' ,8);

else R <=conv_std_logic_vector('0' ,8);

end if;

when "01011" => -- (R=A greater than B)

if A > B

then R <=conv_std_logic_vector('1' ,8);

else R <=conv_std_logic_vector('0' ,8);

end if;

when "01100" => -- (R=A less than or equal to B)

if A <= B

then R <=conv_std_logic_vector('1' ,8);

else R <=conv_std_logic_vector('0' ,8);

end if;

when "01101" => -- (R=A greater than or equal to B)

if A >= B

then R <=conv_std_logic_vector('1' ,8);

else R <=conv_std_logic_vector('0' ,8);

end if;

when "01110" => -- (R=A incremented by 1)

temp := (conv_integer(A))+ 1;

R <=conv_std_logic_vector(temp,8);

when "01111" => -- (R=A decremented by 1)

temp := (conv_integer(A))- 1;

R <=conv_std_logic_vector(temp,8);

62

when "10000" => -- (R=B incremented by 1)

temp := (conv_integer(B))+ 1;

R <=conv_std_logic_vector(temp,8);

when "10001" => -- (R=B decremented by 1)

temp := (conv_integer(B))- 1;

R <=conv_std_logic_vector(temp,8);

when "10010" => -- (R=A divided by B)

temp := conv_integer(A) / conv_integer(B);

R<= conv_std_logic_vector(temp,8);

when "10011" => -- (R=A modulus to B)

temp := conv_integer(A) mod conv_integer(B);

R<= conv_std_logic_vector(temp,8);

when "10100" => -- (R=A remainder B)

temp := conv_integer(A) rem conv_integer(B);

R<= conv_std_logic_vector(temp,8);

when "10101" => -- (R=exponent of A)

temp := conv_integer(A)**(2);

R<= conv_std_logic_vector(temp, 8);

when "10110" => -- (R=exponent of B)

temp := conv_integer(B)**(2);

R<= conv_std_logic_vector(temp, 8);

when "10111" => -- (R=not of A0)

if (A(0)='0')

then R <=conv_std_logic_vector('1',8);

else R <=conv_std_logic_vector('0',8);

end if;

when "11000" => -- (R=not of B0)

if (B(0)='0')

then R <=conv_std_logic_vector('1',8);

else R <=conv_std_logic_vector('0',8);

end if;

63

when others=>

 R<="11111111";

end case;

end if;

end process;

end Behavioral;

 IMPLEMENTED CODE

--

-- Company:

-- Engineer:

--

-- Create Date: 12:27:44 04/01/2011

-- Design Name:

-- Module Name: ALUNEW2 - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

64

entity my_alu is

 Port (clk:in std_logic;

 A : in std_logic;

 B : in std_logic;

 I : in std_logic_vector (2 downto 0);

 R : out std_logic_vector (3 downto 0));

 end my_alu;

architecture Behavioral of my_alu is

begin

process(A, B, clk)

 variable temp : integer ;

begin

 if (clk'event and clk='1')then

case I is

when "000" => --Add (R=A+B)

temp := conv_integer(A)+ conv_integer(B);

R <= transport conv_std_logic_vector(temp,4) after 10 ns ;

when "001" => --Subtract (R=A-B)

temp := conv_integer(A) - conv_integer(B);

R <= conv_std_logic_vector(temp,4);

when "010" => -- (R=not of A0)

if (A='0')

then R <=conv_std_logic_vector('1',4);

else R <=conv_std_logic_vector('0',4);

end if;

when "011" => -- (R=A equal to B)

if A = B

--then temp:= '1';

then R <=conv_std_logic_vector('1' ,4);

else R <=conv_std_logic_vector('0' ,4);

end if;

when "100" => -- (R=A incremented by 1)

65

temp := (conv_integer(A))+ 1;

R <=conv_std_logic_vector(temp,4);

when "101" => -- (R=A modulus to B)

temp := conv_integer(A) mod 10;

R<= conv_std_logic_vector(temp,4);

when "110" => -- (R=remainder of A)

temp := conv_integer(A)rem 10;

R<= conv_std_logic_vector(temp, 4);

when others=>

R<="1111";

end case;

end if;

end process;

end Behavioral;

66

APPENDIX C UCF FILE USED IN PROJECT

Net clk LOC=AE14;

Net clk IOSTANDARD = LVCMOS33;

Net clk TNM_NET = clk;

#TIMESPEC TS_clk = PERIOD clk 10000 ps;

Net R<0> LOC=G5; #led-0(lsb)

Net R<0> IOSTANDARD = LVCMOS25;

Net R<0> PULLUP;

Net R<0> SLEW = SLOW;

Net R<0> DRIVE = 2;

Net R<0> TIG;

Net R<1> LOC=G6; #led-0(lsb)

Net R<1> IOSTANDARD = LVCMOS25;

Net R<1> PULLUP;

Net R<1> SLEW = SLOW;

Net R<1> DRIVE = 2;

Net R<1> TIG;

Net R<2> LOC=A11; #led-0(lsb)

Net R<2> IOSTANDARD = LVCMOS25;

Net R<2> PULLUP;

Net R<2> SLEW = SLOW;

Net R<2> DRIVE = 2;

Net R<2> TIG;

Net R<3> LOC=A12; #led-0(lsb)

Net R<3> IOSTANDARD = LVCMOS25;

Net R<3> PULLUP;

Net R<3> SLEW = SLOW;

Net R<3> DRIVE = 2;

Net R<3> TIG;

push buttons\par

Net A LOC=E2; # north

67

Net A IOSTANDARD = LVCMOS25;

Net A PULLUP;

Net A SLEW = SLOW;

Net A DRIVE = 2;

Net A TIG;

Net I<0> LOC=E10; # east

Net I<0> IOSTANDARD = LVCMOS25;

Net I<0> PULLUP;

Net I<0> SLEW = SLOW;

Net I<0> DRIVE = 2;

Net I<0> TIG;

Net I<1> LOC=A5; # south

Net I<1> IOSTANDARD = LVCMOS25;

Net I<1> PULLUP;

Net I<1> SLEW = SLOW;

Net I<1> DRIVE = 2;

Net I<1> TIG;

Net I<2> LOC=F9; # west\m<2>

Net I<2> IOSTANDARD = LVCMOS25;

Net I<2> PULLUP;

Net I<2> SLEW = SLOW;

Net I<2> DRIVE = 2;

Net I<2> TIG;

Net B LOC=C6; #Center

Net B IOSTANDARD = LVCMOS25;

Net B PULLUP;

Net B SLEW = SLOW;

Net B DRIVE = 2;

Net B TIG;

68

APPENDIX D SUCCESSFUL REPORTS

SYNTHESIS REPORT

Reading design: my_alu.prj

===

====

* HDL Compilation *

===

====

Compiling vhdl file "D:/lab1/ALUNEW/ALUNEW2.vhd" in Library work.

Architecture behavioral of Entity my_alu is up to date.

===

====

* Design Hierarchy Analysis *

===

====

Analyzing hierarchy for entity <my_alu> in library <work> (architecture <behavioral>).

===

====

* HDL Analysis *

===

====

Analyzing Entity <my_alu> in library <work> (Architecture <behavioral>).

WARNING:Xst:819 - "D:/lab1/ALUNEW/ALUNEW2.vhd" line 43: The following signals are

missing in the process sensitivity list:

 I.

Entity <my_alu> analyzed. Unit <my_alu> generated.

===

====

* HDL Synthesis *

===

====

Performing bidirectional port resolution...

Synthesizing Unit <my_alu>.

 Related source file is "D:/lab1/ALUNEW/ALUNEW2.vhd".

WARNING:Xst:646 - Signal <temp> is assigned but never used.

WARNING:Xst:737 - Found 4-bit latch for signal <R>.

69

 Found 1-bit adder carry out for signal <R$addsub0000> created at line 49.

 Found 1-bit adder carry out for signal <R$addsub0001> created at line 75.

 Found 4-bit 8-to-1 multiplexer for signal <R$mux0001> created at line 47.

 Found 1-bit subtractor for signal <R$sub0000> created at line 54.

 Found 1-bit xor2 for signal <R$xor0000> created at line 66.

 Summary:

 inferred 3 Adder/Subtractor(s).

 inferred 4 Multiplexer(s).

Unit <my_alu> synthesized.

===

====

HDL Synthesis Report

Macro Statistics

Adders/Subtractors : 3

 1-bit adder carry out : 2

 1-bit subtractor : 1

Latches : 1

 4-bit latch : 1

Multiplexers : 1

 4-bit 8-to-1 multiplexer : 1

Xors : 1

 1-bit xor2 : 1

===

====

===

====

* Advanced HDL Synthesis *

===

====

Loading device for application Rf_Device from file '4vfx12.nph' in environment C:\Xilinx91i.

===

====

Advanced HDL Synthesis Report

Macro Statistics

Adders/Subtractors : 3

 1-bit adder carry out : 2

 1-bit subtractor : 1

Latches : 1

 4-bit latch : 1

70

Multiplexers : 1

 4-bit 8-to-1 multiplexer : 1

Xors : 1

 1-bit xor2 : 1

===

====

===

====

* Low Level Synthesis *

===

====

INFO:Xst:2261 - The FF/Latch <R_2> in Unit <my_alu> is equivalent to the following

FF/Latch, which will be removed : <R_3>

Optimizing unit <my_alu> ...

Mapping all equations...

Building and optimizing final netlist ...

Found area constraint ratio of 100 (+ 5) on block my_alu, actual ratio is 0.

Latch R_2 has been replicated 1 time(s) to handle iob=true attribute.

Final Macro Processing ...

===

====

Final Register Report

Found no macro

===

====

===

====

* Partition Report *

===

====

Partition Implementation Status

 No Partitions were found in this design.

===

====

* Final Report *

===

====

Clock Information:

71

-----------------------------------+------------------------+-------+

Clock Signal | Clock buffer(FF name) | Load |

-----------------------------------+------------------------+-------+

clk | BUFGP | 4 |

-----------------------------------+------------------------+-------+

Asynchronous Control Signals Information:

--

No asynchronous control signals found in this design

Timing Summary:

Speed Grade: -10

 Minimum period: No path found

 Minimum input arrival time before clock: 2.342ns

 Maximum output required time after clock: 4.790ns

 Maximum combinational path delay: No path found

===

====

Process "Synthesize" completed successfully

 IMPLEMENTATION REPORT

NotUpToDate:generated file list is cmd

ngdbuild -ise "D:/lab1/ALUNEW/ALUNEW.ise" -intstyle ise -dd _ngo -nt

timestamp -uc "C:/Documents and Settings/pty/Desktop/final

project/ise.ucf" -p xc4vfx12-ff668-10 "my_alu.ngc" my_alu.ngd is cmd

Command Line: C:\Xilinx91i\bin\nt\ngdbuild.exe -ise D:/lab1/ALUNEW/ALUNEW.ise

-intstyle ise -dd _ngo -nt timestamp -uc C:/Documents and

Settings/pty/Desktop/final project/ise.ucf -p xc4vfx12-ff668-10 my_alu.ngc

my_alu.ngd

Reading NGO file "D:/lab1/ALUNEW/my_alu.ngc" ...

Applying constraints in "C:/Documents and Settings/pty/Desktop/final

project/ise.ucf" to the design...

Checking timing specifications ...

72

Checking Partitions ...

Checking expanded design ...

WARNING:NgdBuild:486 - Attribute "SLEW" is not allowed on symbol "A" of type

 "IPAD". This attribute will be ignored.

WARNING:NgdBuild:486 - Attribute "DRIVE" is not allowed on symbol "A" of type

 "IPAD". This attribute will be ignored.

WARNING:NgdBuild:486 - Attribute "SLEW" is not allowed on symbol "B" of type

 "IPAD". This attribute will be ignored.

WARNING:NgdBuild:486 - Attribute "DRIVE" is not allowed on symbol "B" of type

 "IPAD". This attribute will be ignored.

WARNING:NgdBuild:486 - Attribute "SLEW" is not allowed on symbol "I<2>.PAD" of

 type "IPAD". This attribute will be ignored.

WARNING:NgdBuild:486 - Attribute "DRIVE" is not allowed on symbol "I<2>.PAD" of

 type "IPAD". This attribute will be ignored.

WARNING:NgdBuild:486 - Attribute "SLEW" is not allowed on symbol "I<1>" of type

 "IPAD". This attribute will be ignored.

WARNING:NgdBuild:486 - Attribute "DRIVE" is not allowed on symbol "I<1>" of type

 "IPAD". This attribute will be ignored.

WARNING:NgdBuild:486 - Attribute "SLEW" is not allowed on symbol "I<0>" of type

 "IPAD". This attribute will be ignored.

WARNING:NgdBuild:486 - Attribute "DRIVE" is not allowed on symbol "I<0>" of type

 "IPAD". This attribute will be ignored.

Partition Implementation Status

 No Partitions were found in this design.

NGDBUILD Design Results Summary:

 Number of errors: 0

 Number of warnings: 10

Writing NGD file "my_alu.ngd" ...

Writing NGDBUILD log file "my_alu.bld"...

NGDBUILD done.

Process "Translate" completed successfully

Using target part "4vfx12ff668-10".

Mapping design into LUTs...

Running directed packing...

Running delay-based LUT packing...

73

Running related packing...

Design Summary:

Number of errors: 0

Number of warnings: 6

Logic Utilization: Number of 4 input LUTs: 6 out of 10,944 1%

Logic Distribution:

Number of occupied Slices: 3 out of 5,472 1%

Number of Slices containing only related logic: 3 out of 3 100%

 Number of Slices containing unrelated logic: 0 out of 3 0%

 *See NOTES below for an explanation of the effects of unrelated logic

Total Number of 4 input LUTs: 6 out of 10,944 1%

 Number of bonded IOBs: 10 out of 320 3%

 Number of BUFG/BUFGCTRLs: 1 out of 32 3%

 Number used as BUFGs: 1

 Number used as BUFGCTRLs: 0

Total equivalent gate count for design: 65

Additional JTAG gate count for IOBs: 480

Peak Memory Usage: 211 MB

Total REAL time to MAP completion: 16 secs

Total CPU time to MAP completion: 7 secs

NOTES:

 Related logic is defined as being logic that shares connectivity - e.g. two

 LUTs are "related" if they share common inputs. When assembling slices,

 Map gives priority to combine logic that is related. Doing so results in the best timing

performance.

 Unrelated logic shares no connectivity. Map will only begin packing unrelated logic into a slice

once 99% of the slices are occupied through related logic packing.

 Note that once logic distribution reaches the 99% level through related logic packing, this does

not mean the device is completely utilized.

 Unrelated logic packing will then begin, continuing until all usable LUTs and FFs are

occupied. Depending on your timing budget, increased levels of unrelated logic packing may

adversely affect the overall timing performance of your design.

Mapping completed.

See MAP report file "my_alu_map.mrp" for details.

Process "Map" completed successfully

Constraints file: my_alu.pcf.

Loading device for application Rf_Device from file '4vfx12.nph' in

environment C:\Xilinx91i.

 "my_alu" is an NCD, version 3.1, device xc4vfx12, package ff668, speed -10

74

Initializing temperature to 85.000 Celsius. (default - Range: -40.000

to 100.000 Celsius)

Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Volts)

Device speed data version: "PRODUCTION 1.63 2006-11-06".

Device Utilization Summary:

 Number of BUFGs 1 out of 32 3%

 Number of External IOBs 10 out of 320 3%

 Number of LOCed IOBs 10 out of 10 100%

 Number of OLOGICs 4 out of 320 1%

 Number of Slices 3 out of 5472 1%

 Number of SLICEMs 0 out of 2736 0%

Overall effort level (-ol): Standard

Placer effort level (-pl): High

Placer cost table entry (-t): 1

Router effort level (-rl): Standard

Starting initial Timing Analysis. REAL time: 17 secs

Finished initial Timing Analysis. REAL time: 17 secs

Starting Placer

Phase 1.1

Phase 1.1 (Checksum:9896d9) REAL time: 29 secs

Phase 2.7

Phase 2.7 (Checksum:1312cfe) REAL time: 29 secs

Phase 3.31

Phase 3.31 (Checksum:1c9c37d) REAL time: 29 secs

Phase 4.2

Phase 4.2 (Checksum:26259fc) REAL time: 29 secs

Phase 5.30

Phase 5.30 (Checksum:2faf07b) REAL time: 29 secs

Phase 6.3

Phase 6.3 (Checksum:39386fa) REAL time: 29 secs

Phase 7.5

Phase 7.5 (Checksum:42c1d79) REAL time: 29 secs

Phase 8.8

.Phase 8.8 (Checksum:99399f) REAL time: 29 secs

Phase 9.5

Phase 9.5 (Checksum:55d4a77) REAL time: 29 secs

Phase 11.18

Phase 11.18 (Checksum:68e7775) REAL time: 29 secs

Phase 12.27

Phase 12.27 (Checksum:7270df4) REAL time: 29 secs

75

Phase 13.5

Phase 13.5 (Checksum:7bfa473) REAL time: 29 secs

REAL time consumed by placer: 29 secs

CPU time consumed by placer: 9 secs

Writing design to file my_alu.ncd

Total REAL time to Placer completion: 30 secs

Total CPU time to Placer completion: 9 secs

Starting Router

Phase 1: 56 unrouted; REAL time: 31 secs

Phase 2: 32 unrouted; REAL time: 31 secs

Phase 3: 6 unrouted; REAL time: 31 secs

Phase 4: 6 unrouted; (0) REAL time: 31 secs

Phase 5: 6 unrouted; (0) REAL time: 31 secs

Phase 6: 6 unrouted; (0) REAL time: 31 secs

Phase 7: 0 unrouted; (0) REAL time: 31 secs

Phase 8: 0 unrouted; (0) REAL time: 31 secs

Phase 9: 0 unrouted; (0) REAL time: 31 secs

Total REAL time to Router completion: 31 secs

Total CPU time to Router completion: 9 secs

Partition Implementation Status

 No Partitions were found in this design.

Generating "PAR" statistics.

Generating Clock Report

+---------------------+--------------+------+------+------------+-------------+

| Clock Net | Resource |Locked|Fanout|Net Skew(ns)|Max Delay(ns)|

+---------------------+--------------+------+------+------------+-------------+

| clk_BUFGP | BUFGCTRL_X0Y0| No | 4 | 0.037 | 2.514 |

+---------------------+--------------+------+------+------------+-------------+

* Net Skew is the difference between the minimum and maximum routing

only delays for the net. Note this is different from Clock Skew which

is reported in TRCE timing report. Clock Skew is the difference between

the minimum and maximum path delays which includes logic delays.

Timing Score: 0

Generating Pad Report.

All signals are completely routed.

76

Total REAL time to PAR completion: 33 secs

Total CPU time to PAR completion: 11 secs

Peak Memory Usage: 236 MB

Placement: Completed - No errors found.

Routing: Completed - No errors found.

Timing: Completed - No errors found.

Number of error messages: 0

Number of warning messages: 0

Number of info messages: 0

Writing design to file my_alu.ncd

PAR done

Process "Place & Route" completed successful

Started : "Generate Post-Place & Route Static Timing".

Loading device for application Rf_Device from file '4vfx12.nph' in environment

C:\Xilinx91i.

 "my_alu" is an NCD, version 3.1, device xc4vfx12, package ff668, speed -10

Analysis completed Sun Apr 03 18:07:17 2011

--

Generating Report ...

Number of warnings: 0

Total time: 24 secs

Process "Generate Post-Place & Route Static Timing" completed successfully

Started : "Generate Programming File".

WARNING:PhysDesignRules:781 - PULLUP on an active net. PULLUP of comp R<0>/R<0>

 is set but the tri state is not configured.

WARNING:PhysDesignRules:781 - PULLUP on an active net. PULLUP of comp R<1>/R<1>

 is set but the tri state is not configured.

WARNING:PhysDesignRules:781 - PULLUP on an active net. PULLUP of comp R<2>/R<2>

 is set but the tri state is not configured.

WARNING:PhysDesignRules:781 - PULLUP on an active net. PULLUP of comp R<3>/R<3>

 is set but the tri state is not configured.

Process "Generate Programming File" completed successfully

77

REFERENCES

BOOKS:

1.) Circuit Design with VHDL by Volnei A. Pedroni

2.) VHDL Primer by J. Bhaskar.

3.) The Student's Guide to VHDL (Systems on Silicon) by Peter J Ashenden

4.) VHDL Programming By Example by Douglas L. Perry

PDFS

1.) Xilinx ML 401/402/403 Evaluation Platform User Guide.

2.) ISE 9.1i Quick Start Tutorial.

WEBSITES:

1.) http://www.sm.luth.se/csee/courses/smd/098/lab2.pdf

2.) http://www.vlsibank.com/sessionspage.asp?titl_id=30020

3.) http://cegt201.bradley.edu/projects/proj2006/vhdlmcpr/

4.) http://cegt201.bradley.edu/projects/proj2006/vhdlmcpr/

5.) http://www.xilinx.com/support/sw_manuals/xilinx82/

6.) http://toolbox.xilinx.com/docsan/xilinx8/help/iseguide/iseguide.htm

7.) http://toolbox.xilinx.com/docsan/xilinx8/help/iseguide/html/ise_fpga_design_flow_overv

iew.htm

8.) http://www.ee.iitb.ac.in/vlsi/resources/resource/xilinx8.2_final_copy.pdf

http://toolbox.xilinx.com/docsan/xilinx8/help/iseguide/html/ise_fpga_design_flow_overview.htm
http://toolbox.xilinx.com/docsan/xilinx8/help/iseguide/html/ise_fpga_design_flow_overview.htm
http://www.ee.iitb.ac.in/vlsi/resources/resource/xilinx8.2_final_copy.pdf

	AND

