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Abstract

In this work we apply the formalism developed in the previous paper

(“The arrangement field theory”) to describe the content of standard model

plus gravity. We discover a triality between Arrangement Field Theory,

String Theory and Loop Quantum Gravity which appear as different man-

ifestations of the same theory. Finally we show as three families of fields

arise naturally and we discover a new road toward unification of gravity

with gauge and matter fields.
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1 Introduction

The arrangement field paradigm describes universe by means of a graph, ie an

ensemble of vertices and edges. However there is a considerable difference between

this framework and the usual modeling with spin-foams or spin-networks. The

existence of an edge which connects two vertices is in fact probabilistic. In this

framework the fundamental quantity is an invertible matrix M with dimension

n× n, where n is the number of vertices. In the entry ij of such matrix we have a

quaternionic number which gives the probability amplitude for the existence of an

edge connecting vertex i to vertex j. In the introductory work [1] we have devel-

oped a simple scalar field theory in this probabilistic graph (we call it “non-ordered

space”). We have seen that a space-time metric emerges spontaneously when we

fix an ensemble of edges. Moreover, the quantization of metric descends naturally

from quantization of M in the non-ordered space. In section 2 we summarize these

results.

In section 3 we express Ricci scalar as a simple quadratic function of M . We

discover how the gravitational field emerges from diagonal components of M , in

contrast to gauge fields which come out from non-diagonal components.

In section 4 we define a quartic function of M which develops a Gauss Bonnet

term for gravity and the usual kinetic term for gauge fields.

In section 5 we discover a triality between Arrangement Field Theory, String

Theory and Loop Quantum Gravity which appear as different manifestations of

the same theory.

In section 6 we show that a grassmanian extension of M generates automati-

cally all known fermionic fields, divided exactly in three families. We see how grav-

itational field exchanges homologous particles in different families. The resulting

scheme finds an analogue in supersymmetryc theories, with known fermionic fields

which take the role of gauginos for known bosons.

In the subsequent sections we explore some practical implications of arrange-
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ment field theory, in connection to inflation, dark matter and quantum entan-

glement. Moreover we explain how deal with theory perturbatively by means of

Feynman diagrams.

We warmly invite the reader to see introductory work [1] before proceeding.

2 Formalism

In paper [1] we have considered an euclidean 4-dimensional space represented by

a graph with n vertices. We restrict our attention to euclidean spaces also in this

work, giving in the end a suggestion for moving in lorentzian spaces. Moreover we

assume the Einstein convention, summing over repeated indices.

In proof of theorem 8 in [1] we have demonstrated the equivalence between

the following actions:

S1 = (Mϕ)†(Mϕ) (1)

S2 =
n∑
i=1

√
|h|hµν(xi)(∇µϕ

i)∗(∇νϕ
i). (2)

M is any invertible matrix while the field ϕ is represented by a column array, with

an entry for every vertex in the graph:

ϕ =



ϕ(x1)

ϕ(x2)

ϕ(x3)
...

ϕ(xN)


. (3)

The entries of both M and φ take values in the division ring of quaternions,

usually indicated with H. The first action considers the universe as an abstract

ensemble of vertices, numbered from 1 to n, where n is the total number of space

vertices. The entry (ij) in the matrix M represents the probability amplitude for
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the existence of an edge which connects the vertex number i to the vertex number

j. We admit non-commutative geometries, which in this framework implies a

possible inequivalence |M ij| 6= |M ji|. More, the first action is invariant under

transformations (U1, U2) ∈ U(n,H)⊗ U(n,H) which send M in U2MU †1 .

In action (2) a covariant derivative for U(n,H)⊗U(n,H) appears, represented

by a skew hermitian matrix ∇ which expands according to ∇µ = M̃µ + Aµ. Here

M̃µ is a linear operator such that lim∆→0M̃µ = ∂µ. If we number the space vertices

along direction µ, M̃µ becomes

M̃ ij
µ = δ(i+1)j − δ(i−1)j (4)∑

j

M̃ ijϕj =
∑
j

δ(i+1)jϕj − δ(i−1)jϕj = ϕ(i+ 1)− ϕ(i− 1).

The gauge fields A act as skew hermitian matrices too:

A = (Aij) = (A(xi, xj))

(Aφ)i = Aijφj.

In proof of theorem 5 we have discovered that for every normal matrix M̂ ,

which is neither hermitian nor skew hermitian, four couples (U1, D
µ) exist, with

U1 unitary and Dµ diagonal, such that

U †1D
µ∇µU1 = M̂ (5)√

|h|hµν(xi) =
1

2
d∗µi d

ν
i + c.c. Dij

µ = dµi δ
ij. (6)

Here h is a non degenerate metric while the first relation determines uniquely the

values of gauge fields. The matrices ∇µ, U1, D
µ act on field arrays via matricial

product and the ensemble of four couples (U1, D
µ) is called “space arrangement”.

Further, in proof of theorem 6, we have seen that for every invertible matrix

M we can always find an unitary transformation UM and a normal matrix M̂ ,
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which is neither hermitian nor skew hermitian, such that M = UMM̂ . If we define

U2 = U1U
†
M , we have

M †M = M̂ †M̂ (7)

U †2D
µ∇µU1 = M. (8)

It’s sufficient to substitute (8) in (1) to verify its equivalence with (2). We have

called M̂ the “associated normal matrix” of M .

The action of a transformation (U1, U2) on ∇ follows from its action on M .

We can always use the invariance under U(n,H)⊗ U(n,H) to put M in the form

M = Dµ∇µ. Starting from this we have

U2MU †1 = U2D
µ∇µU

†
1 = U2D

µU †1U1∇µU
†
1 .

We define ∇′ = U1∇µU
†
1 the transformed of ∇ under (U1, U2) and D′µ = U2D

µU †1

the transformed of Dµ. We assume that Aµ inside ∇µ transforms correctly as a

gauge field, so that

∇[A]µφ = ∇[A]U †1φ
′ = U †1∇[AU1]µφ

′

φ′ = U1φ.

We want D′µ remain diagonal and h′ = h[D′] = h[D]. In this case there are two

relevant possibilities:

1. D is a matrix made by blocks m × m with m integer divisor of n and ev-

ery block proportional to identity. In this case the residual symmetry is

U(1,H)n×U(m,H)n/m with elements (sV, V ), s both diagonal and unitary,

V ∈ U(m,H)n/m;

2. h is any diagonal matrix. The symmetry reduces to U(1,H)n ⊗ U(1,H)n

which is local U(1,H)⊗ U(1,H) ∼ SU(2)⊗ SU(2) ∼ SO(4).
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In this way, if we keep fixed the metric h and keep diagonal D, the action (2) will

be invariant at least under U(1,H)n ⊗ U(1,H)n which doesn’t modify h.

We have supposed that a potential for M breaks the U(n,H)⊗ U(n,H) sym-

metry in U(1,H)n ⊗ U(m,H)n/m where m is an integer divisor of n. We’ll see

in fact that the more natural potential has the form tr (αM †M − βM †MM †M),

known as “mexican hat potential”. This potential is a very typical potential for a

spontaneous symmetry breaking. In this way all the vertices are grouped in n/m

ensembles Ua:

Ua = {xa1, xa2, xa3, . . . , xam}

ϕ = (ϕ(xai )) =



ϕ(x1
1) ϕ(x1

2) ϕ(x1
3) . . . ϕ(x1

m)

ϕ(x2
1) ϕ(x2

2) ϕ(x2
3) . . . ϕ(x2

m)

ϕ(x3
1) ϕ(x3

2) ϕ(x3
3) . . . ϕ(x3

m)
...

...
...

...
...

ϕ(x
n/m
1 ) ϕ(x

n/m
2 ) ϕ(x

n/m
3 ) . . . ϕ(x

n/m
4 )


(9)

A = (Aabij ) = (A(xai , x
b
j)).

Now the indices a, b of A act on the columns of ϕ, while the indices i, j act on

the rows. The fields Aabij with a = b maintain null masses and then they continue

to behave as gauge fields for U(m,H)n/m. Every U(m,H) term in U(m,H)n/m

acts independently inside a single Ua. So, if we consider the ensembles Ua as the

“real” physical points, we can interpret U(m,H)n/m as a local U(m,H).

It’s simple to verify:

hµν(xai ) = hµν(xaj ) ∀xai , xaj ∈ Ua

hµν(xa)
!

= hµν(Ua) = hµν(xai ) ∀xai ∈ Ua

Aij(x
a)

!
= Tr

[
A(xa)T ij

]
, where
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A(xa) =
∑
ij

A(xai , x
a
j )T

ij, with T ij generator of U(m,H)

(10)

3 Ricci scalar in the arrangement field paradigm

3.1 Two simple rules

In this subsection we demonstrate two simple rules which will permit us to simplify

considerably the structure of Ricci scalar, making it suitable for the arrangement

field formalism.

Theorem 1 For every couple of antisymmetric tensors in Minkowski space-time,

Aij = −Aji and Bij = −Bji, two fundamental relations are verified as follows:

−2AijBij = Re (ÂγB̂γ) (11)

2i[̂A,B]
γ

= εαβγÂαB̂β (12)

with

Âγ = iεαβγAαβ + 2A0γ

B̂γ = iετσγBτσ + 2B0γ.

Proof. We have only to explicit calculations. If we take signature (+−−−), the

first relation is easily verified:

Re (ÂγB̂γ) = −εαβγετσγAαβBτσ + 4A0γB0γ

= −(δατδβσ − δασδβτ )AαβBτσ + 4A0γB0γ

= −AαβBαβ + AαβBβα + 2A0γB0γ + 2Aγ0Bγ0

= −2AαβBαβ + 2A0γB0γ + 2Aγ0Bγ0

= −2AαβBαβ − 2A0γB0γ − 2Aγ0Bγ0 = −2AijBij. (13)
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For the second relation we separate real and imaginary components:

Im[̂A,B]
γ

= εαβγ(AατB
τβ −Bα

τA
τβ + Aα0B

0β −Bα
0A

0β)

= −2εαβγAατBτβ + 2εαβγAα0B0β (14)

Re
(
εαβγÂαB̂β

)
= −εαβγεσταAστεδωβBδω + 4εαβγA0αB0β

= −(δβσδγτ − δβτδγσ)AστεδωβBδω + 4εαβγA0αB0β

= −2εδωβAβγBδω − 4εαβγAα0B0β (15)

The first term of (14) for γ = 1 is −2(A21B13 − A31B12).

The first term of (15) for γ = 1 is

−2(A21B31 − A21B13 + A31B12 − A31B21) = 4(A21B13 − A31B12).

The first term of (14) for γ = 2 is −2(A32B21 − A12B23).

The first term of (15) for γ = 2 is

−2(A32B12 − A32B21 + A12B23 − A12B32) = 4(A32B21 − A12B23).

The first term of (14) for γ = 3 is −2(A13B32 − A23B31).

The first term of (15) for γ = 3 is

−2(A13B23 − A13B32 + A23B31 − A23B13) = 4(A13B32 − A23B31).

Hence

Re
(
εαβγÂαB̂β

)
= −2Im[̂A,B]

γ

Moreover
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Re [̂A,B]
γ

= 2(A0
αB

αγ −B0
αA

αγ)

= 2(−A0αBαγ +B0αAαγ)

= 2(B0αAαγ − A0αBαγ) (16)

Im
(
εαβγÂαB̂β

)
= 2εαβγ(ετσαAτσB0β + A0αετσβBτσ)

= 2(δβτδγσ − δβσδγτ )AτσB0β + 2(δασδγτ − δατδγσ)A0αBτσ

= 2(AβγB0β − AγβB0β) + 2(A0σBγσ − A0τBτγ)

= 4(AβγB0β + A0σBγσ)

= 4(B0βAβγ − A0σBσγ) (17)

So

Im
(
εαβγÂαB̂β

)
= 2Re [̂A,B]

γ

and finally

εαβγÂαB̂β = 2i[̂A,B]
γ

(18)

QED

3.2 Ricci scalar with Barbero connection

The target of this section is to rewrite Ricci scalar using only a SU(2) connection

(called Barbero connection) instead of a SO(1, 3) or SO(4) connection. Classical

gravity doesn’t depend on formulation. This is not the case for a quantum theory

of gravity: however we don’t know what is the correct classical theory to quantize,

so that every classical equivalent formulation has the same chances.

We start from Ricci scalar in the Palatini formulation of General Relativity:
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R(x) = {∂µωijν (x)− ∂νωijµ (x) + [ωµ, ων ]
ij(x)}eµi eνj . (19)

The ω are gauge fields for SO(1, 3) and eµi are vielbein fields. We define Eµν
ij = eµ[ie

ν
j]

and apply (11):

R(x) = −1

4
{∂µω̂γν (x)− ∂νω̂γµ(x) + ̂[ωµ, ων ]

γ

(x)}Êγµν + c.c.. (20)

Applying now (12):

R(x) = −1

4
{∂µω̂γν (x)− ∂νω̂γµ(x)− i

2
εαβγω̂αµ ω̂

β
ν (x)}Êγµν + c.c.. (21)

We obtain a classically equivalent action by adding to Palatini action an Immirzi

term which doesn’t change the motion equations:

Rij
µν(x)Eµν

ij → Rij
µν(x)Eµν

ij +
1

γ
εij klR

kl
µν(x)Eµν

ij

= Rij
µν(x)Eµν

ij −
1

2γ
(Re ε̂ijαRα

µν(x))Eµν
ij

= −1

4
R̂γ
µν(x)Êγµν +

1

8γ
̂(Re ε̂αRα

µν(x))
γ

Êγµν + c.c.. (22)

Here γ is a constant called “Immirzi parameter”. Moreover

ε̂ijα = iεσταεijστ + 2εij0α

= iε0σταεijστ + 2εij0α

= iεα0στεijστ + 2εij0α

= 2i(δαiδ0j − δαjδ0i) + 2ε0αij (23)

Re ε̂ijαRα = −2(δαiδ0j − δαjδ0i)Im(Rα) + 2ε0αijRe(Rα) (24)
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̂(Re ε̂αRα)
γ

= −4iεστγ(δασδ0τ − δατδ0σ)Im(Rα) + 2iεστγε0αστRe(Rα)−

−4(δα0δ0γ − δαγδ00)Im(Rα) + 4ε0α0γRe(Rα)

= 4iReRγ + 4ImRγ = 4iR∗γ (25)

Hence:

Rij
µν(x)Eµν

ij +
1

γ
εij klR

kl
µν(x)Eµν

ij =

(
−1

4
Rγ
µν +

i

2γ
R∗γµν

)
Êγµν (26)

We fix γ = 2i:

R(x) = −1

4
(Rγ

µν −R∗γµν)Êγµν + c.c. = (ImRγ
µν)(Im Êγµν). (27)

If we write ω̂γ = Bγ + iCγ with B,C real tensors, the Ricci scalar becomes

R(x) = {∂µCγ
ν − ∂νCγ

µ +
1

2
εαβγCα

µC
β
ν −

1

2
εαβγBα

µB
β
ν }(Im Êγµν).

(28)

We vary the action with respect to B and achieve the classical value of B in the

vacuum:

εαβγBα
µIm Êγµν = εαβγBα

µε
στγEστµν = 0

(δασδβτ − δατδβσ)Bα
µE

στµν = Bα
µE

αβµν −Bα
µE

βαµν = 0

2Bα
µE

αβµν = 0 −→ Bα
µ = 0.

Substituting the solution B = 0, the action reduces to

R(x) = {∂µCγ
ν − ∂νCγ

µ +
1

2
εαβγCα

µC
β
ν }(Im Êγµν). (29)
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Classically, one can solve δS/δω = 0 in the vacuum and substitute the solution

inside action to obtain General Relativity with null torsion. In presence of matters,

the two actions

S1 = S1[ω, e] S2 = S2[e] = S1

[
ω

∣∣∣∣δS1

δω
= 0, e

]
give a different classical physics, although it is in both cases compatible with

modern measurements. What we have obtained in (29) is an action which sits

halfway between S1 and S2 and then it’s also compatible with measurements. We

define

Aµ =
1

4
Cγ
µ(iσ)γ A†µ = −Aµ

fµν = (Im Ê)γµνσγ

and use the relations

tr (σασβ) = 2δαβ

tr (σασβσγ) = 2iεαβγ.

It’s straightforward

R(x) = −2i tr {∂µAν(x)− ∂νAµ(x)− 2AµAν(x)}fµν

= −2i tr {∂µAν(x)− ∂νAµ(x)− [Aµ, Aν ](x)}fµν

= 2i tr ([∇µ,∇ν ]f
µν(x)) (30)

with

∇µ = ∂µ − Aµ

fµν = (Im Ê)γµνσγ = εαβγσγEαβµν

= −iσασβEαβµν = −i(eαµσα)(eβνσβ). (31)
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We can set dµ =
√
eeiµ(iσ)i with σ0 = 1, where e = |det (eiµ)|−1. In this way

2i
√
|h|fµν =

(
d†µdν − d†νdµ

)
.

This is because σασβ = −σασβ but σα1 = 1σα. In the end:

√
−hR(x) = tr

(
[∇µ,∇ν ](d

†µdν(x)− d†νdµ(x))
)

(32)

To move from lorentzian to euclidean spaces we have to substitute dx0 with −idx0.

This is equal to exchange σ0 with −iσ0 where it appears, ie inside dµ. We choose

to maintain the same definition

dµ =
√
eeiµ(iσi)

by redefining σ0 = −i1.

We use now the usual isomorphism between quaternions and Pauli matrices,

substituting i(σ0, σ1, σ2, σ3) with (1, i, j, k) and tr (∗∗) with 2(∗∗). The gauge fields

Aµ become purely imaginary quaternions and the Ricci scalar simplifies in

√
hR(x) = 2[∇µ,∇ν ](d

∗µdν(x)− c.c.)

= 2[∇µ,∇ν ]d
∗µdν(x) + c.c.. (33)

3.3 Ricci scalar in the new paradigm

Consider this definition

SHE = 8tr (M †M) = 8tr (M̂ †M̂)

where M̂ is the associated normal matrix of M as defined in [1]. MM † is self-

adjoint, so its track is real. We insert in SHE the usual expansion M̂ = UDµ∇µU
†,

obtaining
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SHE = 8tr [(UDµ∇µU
†)†(UDν∇νU

†)]

= 8tr [U∇†µD†µU †UDν∇νU
†]

= 8tr [∇ν∇†µD†µDν ]. (34)

This term is gauge invariant only if tr (∇†µ∇ν

√
hhµν) = 0. Hence we’ll impose

this condition on physical states of quantum theory and we’ll discard all terms

proportional to it.

SHE = 8tr [∇ν∇†µ
√
h(hµν + Eµν)]

= 8tr [∇ν∇†µ
√
hEµν ]

= −4tr {[∇†µ,∇ν ]
√
hEµν}. (35)

Expanding the covariant derivatives we obtain

SHE = 2
∑
a,b,c

{∂†µAν(xa, xb)− ∂νA†µ(xa, xb)−

−[A†µ, Aν ](x
a, xb)}d∗µ(xb)δbcdν(xc)δca + c.c.

= 2
∑
a

{∂†µAν(xa)− ∂νA†µ(xa)−

−[A†µ, Aν ](x
a, xa)}d∗µ(xa)dν(xa) + c.c.

= 2
∑
a,b 6=a

{∂†µAν(xa)− ∂νA†µ(xa)− [A†µ(xa), Aν(x
a)]−

−[A†µ(xa, xb), Aν(x
b, xa)]} · d∗µ(xa)dν(xa) + c.c.

(36)

Consider now a symmetry breaking with residual group U(m,H)n/m which

regroups vertices in ensembles Ua = {xa1, xa2, . . . , xam}. We assume that fields

A(xai , x
b
j) with a 6= b acquire big masses and thus we can neglect them. The
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symbol
∑

a becomes
∑

a,i, while
∑

a,b 6=a becomes
∑

a,i,b,j|(a,i)6=(b,j). After neglecting

heavy fields, the last one is simply
∑

a,i,j 6=i.

SHE = 2
∑
a

{∂†µtr Aν(xa)− ∂νtr A†µ(xa)− [tr A†µ(xa), tr Aν(x
a)]−

−
∑
i,j 6=i

[A†ijµ (xa)Ajiν (xa)− Aijν (xa)A†jiµ ](xa)} · d∗µ(xa)dν(xa) + c.c.

(37)

For what follows we write SHE = 2
∑

aR
ik
µνδ

ik(d∗µdν − c.c.) with

Rik
µν = ∂†µtr Aν(x

a)− ∂νtr A†µ(xa)− [tr A†µ(xa), tr Aν(x
a)]−

−
∑

i,j 6=i,k 6=j

[A†ijµ (xa)Ajkν (xa)− Aijν (xa)A†jkµ ](xa). (38)

Rik
µν is a generalization of curvature tensor. We have indicated with tr A the track

on ij, ie δijAij(xa) = δijA(xai , x
a
j ). Note that [A†ii, Ajj] = 0 when i 6= j and then∑

i[A
†ii
µ , A

ii
ν ] =

∑
ij[A

†ii
µ , A

jj
ν ] = [tr A†µ, tr Aν ]. Consider now any skew hermitian

matrix Wµ with elements W ij
µ = Aijµ for i 6= j and W ij

µ = 0 for i = j. It belongs

to the subalgebra of u(m,H) made by all null track generators. This means that

commutators between null track generators are null track generators too. In this

way

∑
i,i 6=j

[A†µ(xi, xj), Aν(x
j, xi)] = tr[W †

µ,Wν ] = 0.

Hence we can delete the mixed term in SEH .

SHE = 2
∑
a

{∂†µtr Aν(xa)− ∂νtr A†µ(xa)− [tr A†µ(xa), tr Aν(x
a)]} ·

·(d∗µ(xa)dν(xa)− c.c.)

In the arrangement field paradigm, the operator † transposes also rows with

columns in matrices which represent ∂ and A. As we have seen, the fields A
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which intervene in R are only the diagonal ones, so the transposition of rows with

columns is trivial. Conversely, if we consider the matrix which represents ∂ (we

have called it M̃), we note that ∂† = −∂. Hence

∇†ν = (∂ν + Aν)
† = ∂†ν + A†ν = −∂ν − Aν = −∇ν .

Applying this to SHE,

SHE = −2
∑
a

{∂µtr Aν(xa)− ∂νtr Aµ(xa)− [tr Aµ(xa), tr Aν(x
a)]} ·

·(d∗µ(xa)dν(xa)− c.c.)

= 2[
G

∇µ,
G

∇ν ](d
∗µ(xa)dν(xa)− c.c.)

=
∑
a

√
hR(xa)→

∫
d4x
√
hR(x) (39)

Here
G

∇ is the gravitational covariant derivative
G

∇ = ∂− tr A. It’s very remarkable

that gauge fields inR are only the diagonal ones. First, this is the unique possibility

to obtain
G

∇†ν = −
G

∇ν . Moreover, while gauge fields in R are tracks of matrices

(Aij)(x
a), we’ll see as the other gauge fields in Standard Model correspond to non

diagonal components.

4 The kinetic term

If we expand the field M as follows, with

M = ∂ + δM, (40)

the Ricci scalar becomes proportional to

∂δM † − ∂δM + δMδM †. (41)
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Thus we have a quadratic term of “mass” and two superficial terms. These last

become null for appropriate boundary conditions on the field.

We lack a kinetic term for M . How can we build it? One option is as follows:

SGB = 2tr (M †MM †M) (42)

= 2tr
[
U∇†µD†µU †UDν∇νU

†U∇†αDα†U †UDβ∇βU
†]

= 2tr
[
∇†µD†µDν∇ν∇†αD†αDβ∇β

]
We assume a residual symmetry under U(m,H)n/m. This means that Dµ are

matrices made of blocks m × m where every block is a quaternionic multiple of

identity. We use newly the correspondence between (1, i, j, k) and i(σ0, σ1, σ2, σ3),

writing any quaternion d as

d = da(iσ
a) + d0(iσ0)

We use letters a, b, c, d for indices with run on Pauli matrices, α, β, µ, ν for

spatial coordinates indices and ijk for gauge indices (ie indices with run inside a

single Ua). Moreover we have to consider two gauge conditions

tr (∇†µ∇ν

√
hhµν) = 0

tr (dβ{∇β,∇†µ}d∗µdν∇ν∇†αd∗α) = 0.

The first one is what we have used for SHE; the second one permits us to ignore

terms proportional to {∇β,∇†µ} inside SGB. Pay attention to not confuse the index

a in the first group with the index a which runs over the vertices like in xai .

We will see that physical fields are complex field which arise in three families,

one for every possible choice of imaginary unit. This is true both for fermionic and

bosonic fields. Thus the indices with letters a, b, c, d run over the three families.

We take
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Qij
aβµ = εabc∇ik

βb∇∗jkµc

Wαβ
a =

√
h

2
εabcEαβ

bc +
√
hEαβ

a0 =
1

2
εabcD†αb D

β
c +

1

2
D†αa D

β
0 −

1

2
D†β0 D

α
a

Wαβ
0 =

√
hhαβ =

1

2
D†αa D

β
a +

1

2
D†αa D

β
a +

1

2
D†α0 D

β
0 +

1

2
D†β0 D

α
0

SGB =
∑
a

LGB(xa)

Then

LGB =
1

2

[
Qij
βµW

µνQji
ναW

αβ
]

=
1

2
tr (σaσbσcσd)

[
Qij
aβµW

µν
b Qji

cναW
αβ
d

]
−
[
Qij
aβµW

µν
0 Qji

aναW
αβ
0

]
=

(
δabδcd − δacδbd + δadδbc

) [
Qij
aβµW

µν
b Qji

cναW
αβ
d

]
−
[
Qij
aβµW

µν
0 Qji

aναW
αβ
0

]
We analyze each term one by one

L1
GB =

[
Qij
aβµW

µν
a Qji

cναW
αβ
c

]
=

1

2

[
Qij
abβµW

µν
ab Q

ji
cdναW

αβ
cd

]
= 2hRijν

β Rjiβ
ν (43)

L2
GB = −

[
Qij
aβµW

µν
b Qji

aναW
αβ
b +Qij

aβµW
µν
0 Qji

aναW
αβ
0

]
= −h

2
Rij
acβµR

jiac
να (hµαhνβ − hµβhνα + Eβµ

bd E
να
bd )−

√
h

4!
εβµναRij

acβµR
acji
να

= −hRij
acβµR

jiac
να h

µαhνβ − hRijRji − hRij
acβµR

∗jiacβµ (44)

L3
GB =

[
Qij
aβµW

µν
b Qji

bναW
αβ
a

]
= 2hRijα

µ Rjiµ
α (45)

Rij
βµ was defined in (38), while 4

√
hRij

µ = Rij
βµd

β and
√
hRij = Rij

βµd
βd∗µ. You

understand in a moment that for i 6= j we have Rij
acβµR

jiac
να h

µαhνβ =
∑

b F
b
µνF

bµν
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with ε(bac) = 1. The index b runs over three fields families and Fbµν is a strength

field tensor. In this way the terms Rijν
β Rjiβ

ν and RijRji are terms which mix

families.

The trouble with SGB is that it generates a factor h instead of
√
h. However,

we can solve the problem imposing the gauge condition h = 1. Note that for i = j

we have

LGB = −RacβµR
acβµ −R2 −RacβµR

∗acβµ + 4Rα
µR

µ
α

which is a topological term and it doesn’t change the Einstein equations. The

Gauss-Bonnet theorem on a 4 dimensional manifold says that

SGB =

∫
LGB = 8π2χ(Λ4).

This remains true with SGB = tr (M †MM †M) only if gauge conditions are satis-

fied, so that we can substitute them with SGB = 8π2χ(Λ4). In this way we obtain

a Faddev-Popov term like FP = tr (c̄M †MM †Mb) with c̄, b ghost fields.

Expanding M we obtain terms from SGB of the following form:

(∂δM) (∂δM) −→ Kinetic (46)

(δM)2 (∂δM) −→ Mixed

(δM)4 −→ Potential

The potential term combines with mass term to generate a non-trivial potential

of form

(δM)4 − (δM)2 (47)

It has non trivial minimums which should correspond to classical solutions for

gauge fields and Einstein equations solutions for the metric.
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5 Connections with Strings and Loop Gravity

We have seen in [1], at Remark 13, that some similarities exist between diago-

nal components of M (loops) and closed strings in string theory. Now we have

discovered that such diagonal components describe a gravitational field. Is then

a case that the lower energy state for closed string is the graviton? We think no.

Moreover, we have seen that gauge fields correspond to non-diagonal components

of M , ie open edge in the graph. This finds also a connection with open strings,

whose lower energy states are gauge fields. We have shown that a symmetry

U(m,H) arises when vertices are grouped in ensembles Ua containing m vertices.

This seems to represent a superimposition of m universes or branes. Gauge fields

for such symmetry correspond to open edge which connect vertices in the same

Ua. Is then a case that the same symmetry arises in open strings with endpoints

in m superimposed branes? We still think no. Until now we have supposed that

open edges between vertices in the same Ua have length zero, so that we haven’t

to introduce extra dimensions. However, by T − duality such edges correspond to

open strings with U(m,H) Chan-Paton which moves in an infinite extended extra

dimension. This happens because an absente extra dimension is a compactified

dimension with R = 0 and T − duality sends R in 1/R. Regarding edges between

vertices in different Ua, we see that they have a mass proportional to separation

between endpoints. This is true both in our model and string theory.

The following two theorems emphasize a triality between Arrangement Field The-

ory, String Theory and Loop Quantum Gravity. We can see as they are different

manifestations of the same theory.

Theorem 2 Every element M ij in the arrangement matrix can be written as a

state in the Hilbert space of Loop Quantum Gravity, ie an holonomy for a SU(2)

gauge field1. In this way, every field (gauge or gravitational) becomes a manifes-

1In Loop Gravity the gauge field appears usually in the form iA with A real. We incorporate
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tation of only gravitational field.

Proof. An element M ij can always be written in the following form:

M ij = |M ij|exp
(∫ xj

xi

Aµdx
µ

)
(48)

with µ = 1, 2, 3 and

|M ij| = exp

(∫ xj

xi

A0dx
0

)
.

Here Aµ is a purely imaginary SU(2) connection and A0 is a real field. Obviously,

we take Aµ quaternionic by using the usual correspondence with Pauli matrices.

The integration is intended over the edge which goes from vertex i to vertex j,

parametrized by any τ ∈ [0, 1]. If you look (48), you see on the left a discrete

space (the graph) with discrete derivatives and fields which are defined only on

the vertices. On the right you find instead a Hausdorff space with continuous

paths, continuous derivatives and fields which are defined everywhere. Applying

eventually a transformation in U(n,H)⊗ U(n,H), we have

M ij = Dikµ∇kj
µ = Diiµ∇ij

µ = dµ(xi)∇ij
µ . (49)

In Loop Quantum Gravity we consider any space-time foliation defined by some

temporary parameter and then we quantize the theory on a tridimensional slice.

The simpler choice is a foliation along x0: in this case the metric on the slice is

simply the spatial block 3 × 3 inside the four dimensional metric when it’s taken

in temporary gauge. In such framework we have d0 = 1 and [dµ(x), Aν(x
′)] =

δµν δ
3(x − x′) with µ, ν = 1, 2, 3. We deduce the relation dµ(x) = δ/δAµ(x) and

apply it to (49) when vertices i and j sit on the same slice. We obtain

dµ(xi)∇ij
µ =

δ

δAµ(xi)
∇ij
µ = |M ij|exp

(∫ xj

xi

Aµdx
µ

)
(50)

the i inside A so that Aiσi corresponds to a quaternionic number.
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with µ = 1, 2, 3. Note that x0(xi) = x0(xj) when i and j sit on the same slice.

Hence

|M ij| = exp

(∫ xj

xi

A0dx
0

)
= exp

(∮
A0dx

0

)
.

Consider now the following relation:

exp

(∫ xj

xi

Aµdx
µ

)
=

δ

δAν

∫
Ω

d2s nνexp

(∫ xj

xi

Aµdx
µ

)
(51)

with

nν =
1

2
ενµα

∂xµ

∂sa
∂xα

∂sb
εab.

Here sa with a = 1, 2 are coordinates on a two dimensional surface Ω. Ω is intended

to shrink around point xi until it contains only that point. We substitute (51) in

(50), obtaining

δ

δAiν
∇ij
ν =

δ

δAν

∫
Ω

d2s nν |M ij|exp
(∫ xj

xi

Aµdx
µ

)
and then

∇ij
ν =

∫
Ω

d2s nν |M ij|exp
(∫ xj

xi

Aµdx
µ

)
+Kν

=

∫
Ω

d2s nνexp

(∫ xj

xi

Aµdx
µ

)
+Kν .

In the second line we have taken µ = 0, 1, 2, 3. For diagonal components this

becomes

Aiiν =

∫
Ω

d2s nνexp

(∮
Aµdx

µ

)
+Kν . (52)

We have used ∂ii = 0 because the matrix which represents the discrete derivative

is null along diagonal. The circle in
∮

is infinitely small and then
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Aiiν =

∫
Ω

d2s nν

(
1 +

∮
Aµdx

µ

)
+Kν

= (ΣΩ + A0)nν(xi) + Aν(xi) +Kν . (53)

The surface Ω shrinks on xi and then Σ→ 0. If we set Kν = A0nν(xi), we obtain

Aiiν = Aν(xi).

This verifies the consistence of our definition and proves the theorem.

Remark 3 (third quantization) Note that canonical quantization of gauge fields

implies

[
∂0A

ij
α (xa), A

ij
ν (xb)

]
=

[
∂0Aµ

δ∇ij
α

δAµ
(xa),∇ij

ν (xb)

]
= δανδ

3(xa − xb).

Here we have used the fact that ∂ij = 0 not only for i = j but also for i and j in the

same ensemble Ua. This implies ∇ij = Aij. Moreover ∇ij is a state in the Hilbert

space of Loop Quantum Gravity and hence we have a sort of third quantization

which applies on gravitational states and creates gauge fields:

[
Ȧµ

δΨ[A]

δAµ
,Ψ[A′]

]
= δ(A− A′).

Theorem 4 The actions tr (M †M) and tr (M †MM †M) are sums of exponenti-

ated string actions.

Proof. We obtain from theorem 2:

M ijM∗jkMklM∗li = exp

(∫
∂�
Aµdx

µ

)
= exp

(∫
�
Fµνdx

µ ∧ dxν
)

= exp

(∫
�
εabFµνX

µ
,aX

ν
,b d

2s

)
(54)
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This is the exponential of an action for open strings whose worldsheet is a square

made by edges (ij), (jk), (kl), (li). The strings move in a curved background with

antisymmetric metric Fµν = (d ∧ A)µν . In a similar manner

M ijM∗jkMki = exp

(∫
4
εabFµνX

µ
,aX

ν
,b d

2s

)
(55)

This is the exponential of an action for open strings whose worldsheet is a triangle.

M ijM∗ji = exp

(∫
O

εabFµνX
µ
,aX

ν
,b d

2s

)
(56)

This is the exponential of an action for open strings whose worldsheet is a circle.

M ii = exp

(∫
O

εabFµνX
µ
,aX

ν
,b d

2s

)
(57)

The same of above.

M iiM jj = exp

(∫
Cil

εabFµνX
µ
,aX

ν
,b d

2s

)
(58)

This is the exponential of an action for closed strings whose worldsheet is a cilinder.

This concludes the proof.

6 Standard model interactions

We suppose that a residual symmetry for U(1,H)n⊗U(6,H)n/6 survives. U(1,H)

correspond to a SU(2) in the SU(2)⊗ SU(2) ∼ SO(4) which is the gravitational

gauge group. The second SU(2) is comprised in U(6,H)n/6 If we consider the

ensembles Ua = (xa1, x
a
2, x

a
3, x

a
4, x

a
5, x

a
6) as the real physical points, U(6,H)n/6 can

be considered as a local U(6,H).
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The fields A(xai , x
b
j) with a = b (we call them A(xa)) can be written as a

combination of 6× 6 skew adjoint quaternionic matrices. These matrices form the

U(6,H) algebra which has 78 generators ω with ω† = −ω.

ω =



~y b+~b c+ ~c d+ ~d e+ ~e m+ ~m

−b+~b ~a1 f + ~f g + ~g h+ ~h p+ ~p

−c+ ~c −f + ~f ~a2 s+ ~s q + ~q r + ~r

−d+ ~d −g + ~g −s+ ~s ~a3 k + ~k t+ ~t

−e+ ~e −h+ ~h −q + ~q −k + ~k ~a4 v + ~v

−m+ ~m −p+ ~p −r + ~r −t+ ~t −v + ~v ~a5


Consider now the subalgebra of the following form with complex (not quater-

nionic) components except for y which remains quaternionic:

ω =



~y 0 0 0 0 0

0 ~a1 f + ~f g + ~g h+ ~h p+ ~p

0 −f + ~f ~a2 s+ ~s q + ~q r + ~r

0 −g + ~g −s+ ~s ~a3 k + ~k t+ ~t

0 −h+ ~h −q + ~q −k + ~k ~a4 v + ~v

0 −p+ ~p −r + ~r −t+ ~t −v + ~v ~a5


Moreover we put the additional condition ~a =

∑
l ~al = 0. The field y = tr ω is

the only one which contributes to Ricci scalar. Conversely, all other fields belong

to a SU(5) subgroup, which defines the Georgi - Glashow grand unification theory.

The symmetry breaking in Georgi - Glashow model is induced by Higgs bosons

in representations which contain triplets of color. These color triplet Higgs can

mediate a proton decay that is suppressed by only two powers of GUT scale.

However, our mechanism of symmetry breaking doesn’t use such Higgs bosons,

but descends from the expectation values of quadratic terms AA, which derive

from non trivial minimums of a potential AA − AAAA. So we circumvent the

problem.
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Restrict now the attention to the SU(2)GRAV ITY ⊗ SU(2) ⊗ U(1) ⊗ SU(3)

generators, that are the generators of standard model plus gravity.

ω =



~y 0 0 0 0 0

0 ~a1 f + ~f 0 0 0

0 −f + ~f ~a2 0 0 0

0 0 0 ~a3 k + ~k t+ ~t

0 0 0 −k + ~k ~a4 v + ~v

0 0 0 −t+ ~t −v + ~v ~a5


It’s easy to see that all the standard model fields transform under this subgroup

as the adjoint representation of U(6,H). In this way themselves are elements of

U(6,H) algebra, explicitly:

ψ =



0 e −ν dcR dcG dcB

−e∗ 0 ec −uR −uG −uB
ν∗ −ec∗ 0 −dR −dG −dB
−dc∗R u∗R d∗R 0 ucB −ucG
−dc∗G u∗G d∗G −uc∗B 0 ucR

−dc∗B u∗B d∗B uc∗G −uc∗R 0


We have used the standard formalism for Georgi - Glashow model, where the

basic fields are all left. In place of right fields it uses their charge conjugates

c, that are left fields. The subscripts R,G,B indicates the color charge for the

strong interacting particles (R=red, G=green, B=blue). The sub matrix (ωij)

with i, j = 2, 3, 4, 5, 6 is the representation 10 of SU(5) (the adjoint representation),

while the array (ω1j) with j = 2, 3, 4, 5, 6 is the representation 5̄ of the same group

(the fundamental representation).

In this formalism, given ω ∈ su(3)⊗su(2)⊗u(1), the transformation δψ = [ω, ψ]

corresponds to the usual transformation δψ = ωψ in the standard model formalism.

We see that the only fields which transform correctly under SU(2) gravity are e,

ν and dc. For now we do not care.
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We note rather that, when we restrict the elements of ω from the quaternions

to the complex numbers, we have 3 possibility to do it. A complex number is not

only in the form a + ib, with a, b ∈ R, but also a + jb and a + kb. The same

is true for a fixed linear combination a + (ci + dj + fk)b, where c, d, f ∈ R and

c2 + d2 + f 2 = 1.

The choice of j in place of i determines another set of (ω, ψ) isomorphic to

the first one. So we have a second family of fermionic fields. In the same way we

obtain a third set choosing k. Here’s how emerge the three families of fermionic

fields found in the modern experiments.

The three families are related by the group SU(2) which rotates an unitary

vector in R3 with coordinates (c, d, f). Its generators are

ω =
~y

6



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Their diagonal form suggests an identification between this group and gravi-

tational SU(2). If the two groups coincided, all fields would transform correctly

under gravitational SU(2).

Note that three families have to exist also for bosonic particles (photon, W±,

Z, gluons) although they are probably indistinguishable.

Other interesting thing is that we have no warranty for the persistence of

U(6,H) in the entire universe. However we have surely at least the symmetry

U(1,H)⊗ U(1,H), which implies the secure existence of gravity.

We can introduce grassmann coordinate with derivatives ∂g and ∂†g, and co-

variant derivatives θ∇g = θ∂g + θψ and θ†∇†g = θ†∂†g + θ†ψ†. In the arrangement

field formalism these descend from a grassmanian matrix Mg or M †
g .
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We can consider a unique generalized matrix M̂ = Mg + M that, up to a

generalized U(n,H), becomes

M̂ = θ∇g + dµ∇µ = θ∂g + θψ + dµ∇µ

M̂ † = ∇†gθ† +∇†µd∗µ = ∂†gθ
† + ψ†θ† +∇†µd∗µ. (59)

θ belongs to the ensemble of grassmanian quaternions (we call it HG). This

means

θ = θ0 + i′θ1 + j′θ2 + k′θ3 with θ0, θ1, θ2, θ3 grassmanian

i′
†

= −i′ j′
†

= −j′ k′
†

= −k′

θ† = θ0 − i′θ1 − j′θ2 − k′θ3

∂gθ = ∂†gθ
† = 1 ∂gθ

† = ∂†gθ = 0

i′j′ = j′i′ = k′ j′k′ = k′j′ = i′ k′i′ = i′k′ = j′

ii′ = i′i = jj′ = j′j = kk′ = k′k = −1

ij′ = j′i = k′ jk′ = k′j = i′ ki′ = i′k = j′

i′
2

= j′
2

= k′
2

= θ2 = 0

θθ̃ = −θ̃θ ∀θ, θ̃ ∈ HG

θθ† = −θ†θ = −2θ0(i′θ1 + j′θ2 + k′θ3) (60)

Remark 5 Note that every quaternion commutes with a grassmann quaternion,

ie aθ = θa, a ∈ H, θ ∈ HG.

θ is the equivalent of d in the grassmanian part of M̂ . Obviously it is a grass-

mann function of grassmann coordinates θ0, θ1, θ2, θ3. Expanding θ in polynomial

series, we have to stop at the power 1, because the square of a grassmann vari-

able is zero. Moreover the constant corresponding to the power 0 has to be zero,

because θ is grassmanian. So, it is proportional to the coordinates. We set the

proportionality constants respectively to 1, i′, j′, k′.
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If we take two grassmanian arrays, f and g, we interpret the product fg† as

the product g†f , yet inverting the factors order in the products of components.

Expanding tr (M̂ †M̂) we obtain

tr (M̂ †M̂) = tr
(
dνd∗µ∇†µ∇ν

)
=
∑
a

√
hR(xa). (61)

To calculate tr (M̂ †M̂M̂ †M̂) we write first M2 and M †2.

M2 = θ∂g + θψ + θdµ{∇µ, ψ}+ dµ∇µd
ν∇ν

M †2 = ∂†gθ
† + ψ†θ† + {ψ†,∇†α}d∗αθ† +∇†αd∗α∇

†
βd
∗β (62)

Here ψ is a matrix with entries in HG. If M has the form (59), then it is normal

and satisfies tr (M †MM †M) = tr (M2M †2). We calculate its value starting from

the following product

tr (θdµ{∇µ, ψ}{ψ†,∇†α}d∗αθ†) = tr (θθ†dµ{∇µ, ψ}{ψ†,∇†α}d∗α). (63)

Remember that operator tr acts as a sum over vertices. Now every vertex is labeled

by a couple (θ, xi) and then

tr (θθ†(∗ ∗ ∗)) =

(∫
dθ†dθ θθ†

)
tr (∗ ∗ ∗) = tr (∗ ∗ ∗)

Hence

tr (θdµ{∇µ, ψ}{ψ†,∇†α}d∗αθ†) = tr (dµ{∇µ, ψ}{ψ†,∇†α}d∗α)

= tr (d∗αdµ[∇µ,∇†α]ψψ†)

=
∑
a

√
hR(xa)ψ†ψ (64)

In this way
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tr (M̂M̂ †M̂M̂ †) = tr
(
ψ†dµ{∇µ, ψ}+ {ψ†,∇†α}d∗αψ

)
+

+
∑
a

√
hR(xa)ψ†ψ + SGB (65)

We have seen that every family distinguishes itself by the choice of complex unity.

In this way we can write ψ = ψ0 + iψ1 + jψ2 + kψ3, where ψ0 takes contributes

from all the three families (we decompose it in ψ0 = φ1 + φ2 + φ3, where φi

is the real component of the corresponding family). Using the correspondence

(1, i, j, k)↔ i(σ0, σ1, σ1, σ2) with σ0 = −i1, the first term becomes

i tr

(
ψ†l (iσ

l)†
(
σsdµs{

G

∇µ, ψi(iσ
i)}+ {Aµ, ψ}

))
(66)

�===�

i tr

(
ψ†l (iσ

l)†

(
σsdµs{

G

∇µ, ψi(iσ
i)}+

3∑
q,q′=1

{Aqµ, (φq′ + iψq′)}

))
(67)

where in the covariant derivative we have included only the gravitational (track)

contribution, while Aµ is intended to have null track. Moreover i1 = i, i2 = j and

i3 = k.

In the second line we have divided the 72 generators Aµ in three families of 24

generators. When they act on spinorial fields which belong to their own family,

they behave exactly as the 24 generators of SU(5). Conversely, when a generator

Aq acts on a q′-field (with q 6= q′), it mimics the application of some generator Aq
′

followed by a rotation in SU(2)GRAV ITY which sends the family q′ in the remaining

family q′′.

Concentrate now yourself on the derivative term

i tr

 ψ†0 − iψ
†
1 −ψ

†
2 − iψ

†
3

ψ†2 − iψ
†
3 ψ†0 + iψ†1

σidµi
G

∇µ

 ψ0 + iψ1 ψ2 + iψ3

−ψ2 + iψ3 ψ0 − iψ1

 . (68)

31



If we define the two components spinor

ψ̂ =

 ψ0 + iψ1

ψ2 + iψ3

 = ψ̂1 + ψ̂2 + ψ̂3

ψ̂1 =

 φ1 + iψ1

0

 ; ψ̂2 =

 φ2

ψ2

 ; ψ̂3 =

 φ3

iψ3


it becomes

i ψ̂† σidµi {
G

∇µ, ψ̂}+ c.c. (69)

This is the Weyl action, although with a new interpretation of spinorial compo-

nents. Adding the other terms

tr (M̂ †M̂M̂ †M̂) =

=

∫ (
i ψ̂† σidµi {

G

∇µ, ψ̂}+
∑
q,q′

ψ̂{Aqµ, ψ̂q′}+
√
hR(x)

∑
q

ψ̂†qψ̂q

)
dx+ c.c.

This expression includes only the LEFT contribution and we have to sum the

RIGHT one to obtain the Dirac action. In this way we include all the contents of

standard model as elements in the generalized U(6,H) algebra. Terms which mix

families can be used to calculate values in CKM and PMNS matrices. Masses for

fermionic fields arise, as usual, from non null expectation values of Aµ(xai , x
b
j) with

a 6= b in ∇µ.

We obtain a contribute to Hilbert-Einstein action also from
∫
d4x
√
hRψ̄ψ,

due to a non null expectation value of
∑

q ψ̄qψq. It contains in fact the chiral

condensate, whose non null vacuum value breaks the chiral flavour symmetry of

QCD Lagrangian.

Note that known fermionic fields fill up a matrix ψ with null track. However,

only if tr ψ 6= 0 our action has an extra invariance under
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Aµ → d−1
µ θψ

ψ →
←−
∂ gd

µAµ. (70)

Here
←−
∂ g is a ∂g which acts backwards. This means we have the same number of

fermions and bosons, so that the vacuum energies erase each other.

Invariance (70) predicts the existence of a new colored fermionic sextuplet

which sits on diagonal in ψ. We call it “gravitino”, stressing that this particle

must have spin 1/2 and so it is different from gravitino with spin 3/2 predicted by

most supersymmetric theories.

7 The vector superfield

The invariance (70) suggests a connection with super-symmetric theories. We can

think to arrange right and left fields in a two components array

ψ =

 ψL

ψR

 θ =

 θL

θR

 .

Note that now we have θθ 6= 0 while θm = 0 for m > 2.

We extend the generators of supersymmetric algebra by substituting iσµ with

dµ, noting that dµ = iσµ in a flat space.

Q = ∂g + dµ∇µθ
†

Q† = ∂†g + θ∇†νd∗ν

In the same manner we generalize the definition of vector superfield. In Wess-

Zumino gauge it assumes the form

V = θθ†V̂
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V̂ = dµAµ + θψ − θ†ψ† − 1

2
θθ†D.

The field-strength superfield is then

W = ψ† + θD +
1

2
θdνd∗µ[∇µ,∇ν ] + θθdµ∇µψ

If we ignore the commutator and the non dynamical field D, we have

W = ψ† + θM †M + θθMψ

It’s easy to see that the usual term W 2 of supersymmetric theories generates the

same terms we have found in tr (M̂ †M̂) − tr (M̂ †M̂M̂ †M̂). This can mean that

our theory includes supersymmetry, with the known fermionic fields which take

the role of gauginos. In this way the right up quarks are gauginos for gluons, while

right electrons are gauginos for W bosons.

8 Inflation

Our final action is

S = tr

(
MM †

2πG
− 1

2
MM †MM †

)
This is also an action for an U(n,H) gauge theory with coupling constant 1/G in

a mono-vertex space-time. In these theories the scaling of coupling constant can

be calculated exactly in the limit of large n. In several cases the coupling constant

changes its sign for big values of scale: this has considerable consequences for the

first times after Big Bang, when a measurement of G has sense only at very high

energies (very small distances). What said suggests that such measurement can

return a negative value of G, which implies a repulsive force of gravity. In turn,

repulsive gravity implies an accelerate expansion for the universe.

Because the entries of M are probability amplitudes, we would be it was di-

mensionless. However, when we pass from M to ∇, we need a scale ∆ to define
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the matrix ∂. This justify the inclusion of ∆−1 inside M . If we extract this factor,

the Hilbert Einstein action becomes

∆4

2πG∆2
tr (MM †) =

∆2

2πG
tr (MM †)

where we have also added the correct volume form ∆4. This seems a more natural

formulation when M represents probability amplitudes. In this way we can take

∆ very small but not zero. The most natural choice is ∆2 ∼ G.

In this case, what does it mean that G is negative? Negative G implies neg-

ative ∆2 = ds2. In lorentzian spaces ∆2 = dt2 − ds2 < 0. For purely temporal

intervals we’ll have dt2 < 0, so the time becomes imaginary. An imaginary time

is indistinguishable from space. This hypothesis of a “spatial” time had already

been espoused by Hawking as a solution for eliminate the singularity in the Big

Bang [5].

9 Classical solutions

We rewrite our action in the form

S =
1

2
tr (MM †)− 1

4g
tr (MM †MM †)

where we have defined g = ∆2

2πG
. We diagonalize M with a transformation in

U(n,H) and define M ii ≡ ϕ(xi), ϕ(x) = a(x) +~b(x). The lagrangian becomes:

L =
1

2

[
a(xi)

2 + |~b(xi)|2
]
− 1

4g

[
a(xi)

4 + |~b(xi)|2 + 2a(xi)
2|~b(xi)|2

]
The motion equations are

ga(x)− a(x)3 − a(x)|~b(x)|2 = 0

g~b(x)−~b(x)|~b(x)|2 − a(x)2~b(x) = 0
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There are two solutions:

(1) a(x) = ~b(x) = 0

(2) a(x)2 + |~b(x)|2 = MM † = g

The first one corresponds to the vacuum (all non-gravitational fields equal to zero)

plus a solution of Einstein equations in the vacuum:

ψ = Aµ = 0 R(x) = 0

The solution MM † = g corresponds to a vacuum expectation value for MM †

equal to g. M contains a factor A, so that an expectation value for MM † corre-

sponds to an expectation value for AA. This means that

AAAA =< AA > AA+ quantum perturbations

< AA > gives a mass for A. More precisely, for A ∈ U(n,H)/U(m,H)n/m,

m2
A ∼

< MM † >

∆2
=

g

∆2
=

1

2πG

So the fieldsA ∈ U(n,H)/U(m,H)n/m have a mass in the order of Planck massmP .

Moreover, in the primordial universe, when kBT ≈ mp, all the fields behave like

null mass fields. In that time the symmetry was then U(n,H) and no arrangement

exists. Our conclusion is that Quantum Gravity cannot be treated as a quantum

field theory in an ordinary space. In what follows we explain how overcome this

trouble.

10 Feynman diagrams

To quantizing M we make the expansion M → ∂+ δM , where ∂ acts as a discrete

derivation according to the numeration of space time vertices.
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∂ijf(xj) =
f(xj+1)− f(xj−1)

2

This trick can work only in a discrete space-time, for which a bijection with N

always exists. From now we indicate the perturbation δM simply with M , obtain-

ing

MM † = −∂∂ + ∂M † −M∂ +MM †

When applied to something else, the first two terms create only superficial terms.

So, ignoring these ones, we have

MM †MM † = −M∂2M † −M∂(MM †) +MM †∂M † +MM †MM †

Inverting the derivative in the second term and using the cyclicity of the track

MM †MM † = −M∂2M † +MM †∂M +MM †∂M † +MM †MM †

The kinetic part of the lagrangian becomes

LK =
1

4g

(
2gMM † +M∂2M †)

The potential part is

LV =
1

4g

(
MM †∂M +MM †∂M † +MM †MM †) .

We obtain a propagator for M :

PM =
4g

(2g − p2)

We calculate the superficial degree of divergence, by treating this theory as a one-

dimensional quantum field theory. This can be done because tr is simply a sum

over vertices and a bijection always exists from Λ4 to N. Obviously this is only
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an approximate way to doing calculations, substituting the sum in N with a one-

dimensional integral. Conversely, if our intent is to recover a theory on continuous

space, we should use first the bijection from N to N4 and take after the limit

∆→ 0.

For this reason, p isn’t a real momentum, although we’ll call it with this name,

but it is only a parameter for the Fourier expansion. In the same manner 2g isn’t

a real mass.

Every internal line I in the Feynmann graphs carries a p−2 for the propagator

and an integration dp. Summing we have a p−1. Every vertex with three legs

(v) or four legs (V ), carries a Dirac function ∼ p−1, but the vertex v carries an

extra factor p. Moreover we have to consider another Delta function for the overall

conservation of momentum. Summing all

div = −I − V − v + v − 1 = −I − V − 1

Indicating with E the external legs, we have

2I + E = 3v + 4V

div =
1

2
E − 3V − 3

2
v − 1

Feynmann diagrams with loops have I ≥ 2 and then EMAX = 4V + 3v − 4.

Divergence is negative (the diagram converges) if E < 6V + 3v + 2.

Note however that always E ≤ EMAX = 4V + 3v − 4 < 6V + 3v + 2 and then

all diagrams converge.

11 Quantum Entanglement and Dark Matter

The elements ofM which do not reside in or near the diagonal, describe connections

between points that are not necessarily adjacent to each other, in the common

sense. These connections construct discontinuous paths as in figure 1 and can be

considered as quantum perturbations of the ordered space-time.
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Such components permit us to describe the quantum entanglement effect, as it

could be shown in detail in a complete coverage that goes beyond the purpose of

the present paper.

It is remarkable that in this framework the discontinuity of paths is only ap-

parent, and it is a consequence of imposing an arrangement to the space-time

points. These discontinuous paths can be considered as continuous paths which

cross wormholes. The trait of path inside a wormhole is described by a component

of M far away from diagonal. The information seems to travel faster than light,

but in reality it only takes a byway.

Figure 1: Discontinuous paths. The connection between x3 and x4 is done by a

component of M far away from diagonal.

Imagine now a gravitational source with mass MS which emits some gravitons

with energy ∼ EPLANCK , directed to an orbiting body with mass MB at distance

r. In this case (respect such gravitons) the fields M(xa, xb) with a 6= b would

behave as they had null mass. This implies the probable existence of connections

(practicable by such gravitons) between every couple of vertices in the path from

the source to the orbiting body. This means that if r = ∆j, j ∈ N, the graviton

could reach the orbiting body by traveling a shorter path ∆j′, j > j′ ∈ N. The

question is: what is the average gravitational force perceived by the orbiting body?

The probability for a graviton to reach a distance r passing through m vertices

is

Pm = (1− a)m−1a with

∞∑
m=1

Pm = 1
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where a = 1/j. These are the probabilities for extracting one determined object in

a box with j objects at the m-th attempt. In this way the effective length traveled

by the graviton will be ∆m.

We use these probabilities to compute the average gravitational force in a

semiclassical approximation.

< F > = G
MBMS

∆2

a

1− a

∫ ∞
1

(1− a)m

m2
dm

= G
MBMS

∆2

a

1− a
[log(1− a)]

∫ −∞
log(1−a)

ex

x2
dx (71)

The last integral gives

∫ −∞
log(1−a)

ex

x2
dx = −Ei(log(1− a)) +

1− a
log(1− a)

We expand 〈F 〉 near a = 0 (which implies j >> 1), obtaining

a

(1− a)
[log(1− a)]

∫ −∞
log(1−a)

ex

x2
dx ≈ a+ a2(log(a) + γ) +O(a3).

Here γ is the Eulero-Mascheroni constant. The dominant contribution is then

< F > ≈ G
MBMS

∆2
· a · (1 + a log(a) + aγ)

≈ G

∆

MBMS

r

(
1− ∆

r

(
log
( r

∆

)
− γ
))

(72)

If the massive object orbits at a fix distance r, its centrifugal force has to be

equal to the gravitational force. This gives

< F >≈ G

∆

MBMS

r

(
1− ∆

r

(
log
( r

∆

)
− γ
))

=
MBv

2

r

v2 =
GMBMS

∆

(
1− ∆

r

(
log
( r

∆

)
− γ
))
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We see that, varying the radius, the velocity remains more or less constant (It

increases slightly with r). Can this explain the rotation curves of galaxies without

introducing dark matter?

Surely not all gravitons have energy > EPLANCK ; at the same time we have to

consider that G scales for small distances (hence for small m in (71)). It’s possible

that these factors reduces the extremely high value of r/∆.

12 Lorentzian theory

After a Wick rotation the generators iσj in SU(2)BOOSTS become i(iσj) = −σj.
To realize the same thing in H we have to introduce another unity which takes

the role of the i situated ahead σ. It sufficient to define I such that

I2 = −1 I† = −I

[I, i] = [I, j] = [I, k] = 0

In total we have seven imaginary unities I, i, j, k, Ii, Ij, Ik, so that a generic

number is

n = a+ bI + ci+ dj + ek + fIi+ gIj + hIk = q + Ip

a, b, c, d, e, f, g, h ∈ R q, p ∈ H

We call the numbers with this form “extended quaternions” and indicate their

ring with HE. It’s easy to see that the six imaginary unities i, j, k, Ii, Ij, Ik of an

extended quaternion satisfies the Lorentz algebra.

A vector in a Lorentzian space-time can be considered as an extended quater-

nion with the form

V = a+ fIi+ gIj + hIk

|V |2 = V †V = a2 − f 2 − g2 − h2
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Note that extended quaternions are very different from split-octonions. Extended

quaternions maintain in fact associativity. However they are not a division ring,

because (as in lorentzian space-times) exist elements different from zero with null

norm.

13 Conclusion

In this work we have applied the framework developed in [1] to describe the con-

tents of our universe, ie forces and matter.

Doing this, we have discovered an unexpected road toward unification, which

shows similarities with Loop Gravity, String Theory and Georgi - Glashow model.

For the first time a natural symmetry justifies the existence of three particles fam-

ilies, not one more, not one less. Moreover a new version of supersymmetry seems

to couple gauge fields with all known fermions, without necessity of imagining new

particles never seen by experiments.

Clearly this fact closes the door to dark matter. To compensate this big ab-

sence, AFT proposes an explanation to galaxy rotation curves which doesn’t make

use of dark matter.

We don’t say that this theory is exact. However there are several good signals

which must be taken into account. We hope that a future teamwork can verify

this theory in detail, deepening all its implications.
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