Accelerated observers in special relativity
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1 Some special relativity

Remember that in special relativity we have different notions of time due to
the fact that the speed of light ¢ is the same for all inertial observers. If we
consider two events A and B in spacetime, we can distinguish three different
‘intervals’ between these two events. If we introduce an inertial observer who
uses coordinates® {z#} = {ct,z,y, z}, the three intervals are the following:

e The elapsed coordinate time between the two intervals as measured by our
observer: At =tp —t4. This interval is, of course, coordinate (and hence
observer) dependent.

e The elapsed proper time as measured by another observer who travels
between the two events: A7 = 73 — 74. This proper time measures the
arc length of the curve which the other observer traverses in spacetime.
As such all inertial observers agree about Ar.

e The spacetime interval As, which is the spacetime distance between the
two events. It equals the proper time of an inertial observer who would
travel between the two events and as such would traverse a straight line
between the two events.

From now on we will consider two-dimensional spacetime for simplicity. The
Lorentz transformations between two inertial observers having a mutual velocity
v and using coordinates {a#} = {ct,z} and {x #} = {ct’, 2’} respectively, are
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with v = v(v) = 11 —. The explicit Lorentz-transformation reads
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Indeed, one can now check that the spacetime interval As between two events
has the same value for both observers:

(As)? = =2 (A)? + (Az)? = =2 (AV)? + (Az)? = (As')?. (3)

Having different notions of time, we can parametrize wordlines of objects in
spacetime with different parameters. We choose to parametrize wordlines with

1We will use the terms ’coordinates’, ’observers’ and ’frames’ interchangeably.



the proper time of the object for convenience. Imagine that the worldline of a
particle moving with constant velocity with respect to a frame {a#} = {ct,z}
is measured in that frame. This means that we can write this worldline as

2 (7) = (et(r), () @

where 7 is the proper time of the particle. Now we transform to the rest frame
of the particle, whose coordinate we denote as {a #} = {ct’,2’}. The spacetime
interval between two events is then

(As)? = —c*(At)? + (Ax)? = 2 (AY)?. (5)

After all, being in the rest frame of a particle means per definition that Az’ =0
between two events! Moreover, being in the rest frame of the particle also means
that ¢’ is just the proper time 7 of the particle. Hence

(As)? = —2(At)? + (Az)* = —*(AT)?%. (6)

Being a scalar equation, all inertial observers will agree upon this, which moti-
vates the definition

(As)? = —c*(AT)2. (7)

Now consider a particle moving along a general (i.e. possibly curved) trajectory,
viewed from an inertial frame {z#} = {ct,z}. The trajectory of the particle is

described by the wordline (ct(T), a:(r)) Then infinitesimally,

Mw:VMQL—quzd“ﬂ—fi — dt-v@) (8)
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Note that in v(u), the speed u = ‘fl—f does not need to be constant! The fact that

time dilation only depends on the velocity u(t), and not on the acceleration ‘é—?,

is called the clock hypothesis.
Now we will define the four-velocity of the particle:?

UH
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But using eqn.(8) and the chain rule, this four-velocity can also be written as
dt , dx dt
W:—,—:—L):(,) 10
ar @) = grlen) = (e (10)
The four-velocity is, by its definition, a four-vector. After all, we know that
under a Lorentz transformation one has

=t = AP (11)

and 7 is Lorentz-invariant. This means that the four-speed /U,U#* must also be
Lorentz-invariant. Let’s calculate this quantity in the rest frame of the particle
in question:

W:@@—»@W:w? (12)

2We denote four-vectors with capitals, and three-vectors with normal letters.



And just as a check: in general one has, from eqn.(10),

2/ 2 2 2 2 u? 27’ 2
U U =77 (=" +u”) =7 —c(l—c—2>:—c¥:—c. (13)
Note that this means that the four-velocity U* has only three independent
components, just as the three-velocity in Newtonian mechanics!

2 Acceleration in Newtonian relativity

Here we will discuss acceleration in Newtonian physics, for comparison with
relativistic acceleration later on. In Newtonian mechanics, we can introduce
an inertial observer who uses the coordinate frame {¢,z}. The trajectory of a
particle is then described in this frame by the wordline

2(r) = (1), 2(7)) - (14)

where 7 is the proper time of the particle. This description seems a bit redun-
dant; after all, in Newtonians spacetime time is absolute and we can always
set 7 = t. But let’s stay redundant, to make the comparison between special
relativity. Then we can introduce the four-velocity

where we defined u = %. It’s clear that this four-velocity has three independent
components, and that we cannot calculate a norm because we don’t have the
Minkowski metric at our disposal. Of course we could calculate the three-norm
of the velocity, v/u2, but this norm takes different values in differential inertial
frames. The acceleration, likewise, is defined as

The trajectory of an accelerated particle with constant acceleration a for which
2(0) = u(0) = 0, as measured in the frame {¢,z}, can be found by solving
Newton’s second law:
d’x d’z  f 1 5
m— — —==-—=a — z(t) = -at”. 17
/= dt? dt? m ®) 2 (17)
Note that a has the same value for all inertial observers! Also, if two accelerating
observers would hold tight a thread between them of fixed length, they must
have the very same acceleration a in order for the thread not to break. In
special relativity, this turns out to be different. Finally, in a spacetime diagram
we would write this trajectory as (taking ¢ > 0)

=y 2= 2, (19

i.e. the spacetime trajectory would be t(z) ~ /.



3 Acceleration in special relativity

Now we go back to Einstein’s relativity.

3.1 Using coordinate time parameterisation

Again, we define

aut au® qu?t
Al = = (7, 7> ) 1
dr dr ' dr (19)
But if we differentiate eqn.(12) with respect to the proper time, we see that
d p A
E(UMU ) =20,4" =0, (20)

i.e. the four-velocity and four-acceleration are orthogonal everywhere! From
the definitions (19) and (10), we can also see that

d dt d .
At = — (vc, W) = (’yc, vu) = 7(%7 Yu + ’ya) (21)
with u = 'fi—f and a = % the coordinate velocity and acceleration of the particle

as measured in {ct,x}, respectively. Be aware: the dot indicates differentiation
with respect to coordinate time t. There are two things to note here. First,
the four-acceleration depends on both u and a. Second, note that u(t) is not
constant necessarily, and hence =y is not constant necessarily. Explicitly,
. dy U@

Now suppose we're in an inertial (!) frame {ct’,2'}, in which our accelerating
particle is at rest in some instantaneous moment. To phrase it differently: only
for one specific moment, our inertial frame coincides with the rest frame of the
accelerating particle.® This means that the accelerating particle crosses the
origin ' = 0 at some specific value for the coordinate time ¢'. We could call
this specific coordinate time t,. In this frame, the four-acceleration at that very
moment ¢/ then equals

A, 0) =(ve, 4u ++'d) = (0.d), (23)

because v/ (.) = 0 and hence y(u’) = 1 and v/ = 0 (see eqn.22). Now, A'* and
AF are related by a Lorentz-transformation,

At = 7(70, Au + 7a> = A", A , (24)

where the unusual prime is because we called the ’our accelerated particle
is at rest at some moment in time’-frame {ct’,z’}. Performing the Lorentz-
transformation, we find

/
A = (%, 7a’> = 7(10, Fu +’ya> . (25)

30r to phrase it even ’differently differently’: we can even define a whole group of inertial
observers, each having a different velocity, whose wordlines/time-axes are tangent to the
wordlines of the accelerated particle at every moment in time ¢’.




From the 0-components of this equation, and plugging in eqn.(22), we read off

/ /!
vie=ur s —» AL o2 0 =48, (26)
c c c

This is how the three-acceleration a is perceived by our ’our accelerated particle
is at rest at some moment in time’-observer {ct’, 2’} and inertial observer {ct, z}.

Now we consider constant acceleration.
This means that the acceleration, as mea-
sured in the rest frame of the accelerating
particle, is constant. We called this con-
stant acceleration a’, and to emphasize we
now take it to be constant we will put

du’
a/ = @ = . (27)
This means that
A A =a?. (28)

Figure 1: The wordline of the
In the frame {ct, z} the acceleration a is most  accelerated particle in the frame
certainly not constant; from eqn.(26) we see {ct,r}.
that 2.3
B w2y 3/2
a:fy?’a:(l—c—Z) a. (29)
So, to find the trajectory z(t) of the acceleration particle we can solve for this
differential equation by separation of variables with the boundary condition
u(t=0)=0:

_du 1 u?\3/2 _ act 30
a_a_< _672) o = u_,/c2+a2t2' ( )

Integrating it once more, such that z(¢ = 0) = 0, we find

a(t) = 2(\/02 T a? - c) - g( 148 1) . (31)

c2

Now a non-relativistic check: if « is so small that the resulting velocity does not
approach the speed of light ¢, i.e. at << ¢, we can make the approximation

2 a’t?

1

2
This is just eqn.(17), where in this non-relativistic limit ¢’ = « is the same as
a. The wordline of the particle is sketched in fig.1.

3.2 Newton’s law ... relativistically

Could we have found eqn.(31) in another way? Yes, we could: by Newton’s

law. Newton’s law relativistically states that for a particle with worldline z(t),
__ dzx du

velocity u(t) = 7 and acceleration a = ¢,

dp
aff. (33)



But now p = y(u)mu! Note that p and f are three-vectors. If we now again
impose a constant proper acceleration « (upon all inertial observers agree), then

7d(7(u)mu) =ma — 7d(’y(u)u) =a — d( Y ) = adt. (34)
dt dt ) W)\ 2
-(2)
Again we find, after integration, that
u(t) = (35)

()
V(U):m:\/l+(?)2. (36)
1={%

and also

3.3 Using proper time parameterisation

Could we have found eqn.(31) in yet another way? Again: yes, we could. Re-
member that in the rest frame of the accelerating particle,

U'r = (c, o) : (37)

And because ULAl” =0, we can solve for A’

Al = (o, a) 7 (38)

such that 4, A" = o?. Now we have the following three coupled (differential)

. Iz
equations for A* = d;/T and VH#:

SO (VIR ==,
—A VY 4 AV =0,
—(A")2 4+ (A2 = Q2. (39)
To solve them for A* and V*#, we rewrite the first equation as
@

(V02 = (SV1)? = a? = (A1) - (4")? (40)

Hence we find %VO =+4A' and %Vl = +A°. Using the very definition of A*,

— =4-V!, —=4-V" (41)

So,

This equation is suplemented by

AVO = AV (VO — (V)P =2 (43)



One solution to these equations is*

t(r) = gsinh(%ﬂ7 x(r) = CE cosh(%r), (44)

where (7 = 0) = 0 and z(r = 0) = % Note that we found the wordline of
the particle in terms of its proper time 7, as opposed to the trajectory (31).
Of course, these two solutions should be consistent with each-other, as one can
check they are. Namely, the elapsed proper time of the accelerated particle is

T/f/wdt. (45)

We can perform this integral, because we have our expression for u(t), namely
eqn.(30)! So,plugging eqn.(30) into the integrand we get (see also (36))

[ u?(t) a?c2t? 1
L= 2 \/1 s+ a2t2) - 2 (46)
1+ (C‘—t)

Performing the integration finally gives, as expected,

c . _p,0t
= —sinh™ " (— 47
T asm (C), (47)

which can be compared to eqn.(44).

The transformation law for the three-acceleration can also be obtained from the
usual velocity transformation law of special relativity. Let’s recall its derivation.
Again, we have two observers using coordinates {ct, x} and {ct’, 2’} respectively,
which both parametrize the trajectory of a particle by its proper time 7. Both
descriptions of the trajectory are related by the Lorentz transformation (2). The
observers have a mutual constant speed v! Now, our particle has a speed u as
measured by the observer with coordinates {ct, z}:

dx

i 4
T (48)
What is the velocity v" as measured by the frame {ct’,2’'}? Well,
dx’
Y u, (49)

and by eqn.(2) and remembering that dv = 0,

dixl_ 'y<d:177vdt) B (%’tjf ) u—w
Wi -gar)  (1-3%) -8

So we obtain®

4Using cosh? —sinh? = 1.
5And also by the product rule du’ = v~ 2du.



Now we can go further, and consider the acceleration of the particle in both
frames. In the frame {ct,x} the three-acceleration is simply a = %. In the
frame {ct’, 2’} this becomes, due to (51),

’ 2
a = aw 7 du = T .. (52)

dt’ B fy(dt — C%dm) ( — %)

If we now again set instantaneously v = u in this transformation law, then we
see again that
d(yu)

dt -’
i.e. the transformation-law for how accelerations are perceived by different
inertial observers.

a =~%a= (53)

3.4 Rindler coordinates: motivation

The motion described by eqns.(44) is called hyperbolic motion, and for a good
reason; the coordinates of the accelerated particle as measured in the inertial
frame {ct,z} obey

C4

(0 = (et = 5. (54)
The left hand side of this equation is Lorentz-invariant, and the right hand side
also, as it should be; after all, « is the proper acceleration of the particle. The
question now is: how can we use the coordinates (44) to define an accelerating

coordinate system which undergoes constant proper acceleration o?

ct x=ct

2

tr =constant

=

=

Figure 2: How the accelerating coordinate grid is defined. Note that for tgp =
constant the velocity v is the same at every point xr. Taken (and adjusted)
from (J. Kogut).

Let’s name these coordinates first: we call them Rindler coordinates. Now
we give a qualitative description about how to set up our accelerating coordi-
nate grid, which we will call {z;} = {ctr,zr}. In the frame of the accelerating
observer one has, of course, tg = 7. She also defines her own position to be



constant,’ xp = 0. Along her acceleration, xp remains 0. Let’s shoot our ac-
celerating observer away with respect to an inertial frame {2#} = {ct,z}. At
tr = 0, the accelerating observer sets {z%;} = {z#}. Now, along her way she
synchronizes her clock with those of that particular inertial observer which has,
at that very moment, the same velocity as she does. Pictorially, for every value
of her proper time, one can draw a tangent line to her wordline; this tangent line
defines the time-axis of an inertial observer who has, at that specific moment,
the same velocity as she does. The accelerated motion can be seen as a succes-
sion of increasing velocities, and her accelerating frame is just the succession of
the corresponding inertial frames.” For every constant value of ¢, the velocities
at every xp-value are the same. From this it should be clear that the coordinate
lines tp = constant are straight lines, while the coordinate lines xr = constant
will be curved.

To derive the transformation mathematically, we go back to eqns.(44). We
can define the rest frame of the wordline (54) as follows: the time axis is pro-
portional to the tangent vector of the curve, i.e. the four-vector U*,

dx#

Ur(r) dr

= (cosh(%r),csin(%r) ) (U U* = =c?). (55)

If we choose a vector orthogonal to this U, we get a spacelike vector S#. That’s
easily constructed in two spacetime dimensions:

$"(7) = (sinh (37) ,cosh (27)). (56)
c c
You can check that S,U* =0 and S,5* =1, i.e. S¥ is a unit spacelike vector.
So S* defines the spatial direction for our accelerating observer. If we now
consider the wordline

() = a¥(r) + LS* (1), (57)

for some constant L, then this worldline £#(7) corresponds to a second accel-
erating observer ahead of the first accelerating observer z#(7), in such a way
that they both are separated a constant (!) distance L as measured by the first
observer. Notice also that the 7-parameter is the proper time of this first ob-
server, and not of the second one (except, of course, when S#(7) = 0)! The
worldline coordinates &#(7), like z#(7), obey a hyperbolic equation similar to

eqn.(54), namely ) ) 2 0 Lan2
() - ()" = (£Le) (55)

Because eqn.(54) defines a particle with proper acceleration « as measured from
the inertial frame {a*}, it follows that an inertial observer having the same
velocity as the accelerating observer {£#} a certain moment ¢, measures that
this accelerating observer undergoes a constant proper acceleration of

4

o Y such that (51)2— (50)2 = . (59)

= 41 + % 9 (a,)2

6Later on we will find that another constant is more convenient.
"This is how the coordinate transformation (63) at which we will arrive is derived in chapter
3 of Gerard ’t Hooft’s Introduction to General Relativity.



So we see that, to maintain a constant distance L from each-other (as measured
by the first observer), both accelerating observers must have different accelera-
tions, namely a and «o'. This is very different from the Newtonian case, where
two observers must have the same acceleration in order to maintain a fixed
distance between each other. The reason for this difference, of course, is the
relativistic effect of time dilation.

Now, the events with spacetime coordinates

2

CE (sinh (%7'), cosh (%T)) (60)
and 9
(CE + L) (sinh (%T), cosh (%T)) (61)

with respect to the inertial frame {«#} are simultaneous for the accelerating
observer moving along the wordline (44). So now we construct the Rindler
coordinates, which will be denoted as {z/;}, with respect to the inertial frame

{a}:

2

t
ct = (CE + xR> sinh(a?R) ,
c? atp
x = (EJr:cR) cosh(?). (62)

One sees that the spatial origin £ = 0 indeed describes the wordline of an accel-
erated particle/observer; eqn.(62) is the proper frame attached to this observer.
Also, the Rindler origin (ctr,zgr) = (0,0) corresponds to (ct,z) = (0, %) The
corresponding inverse coordinate transformations of eqns.(62) are

2

. c 1 (m+ct>

ctp = —1In

R~ 9a x—ct/)’
2

xR:\/xQ—CQtQ—CE. (63)

We perform three checks on these coordinates. First, a Newtonian one:® if the
velocity #8 << 1, then (62) becomes

ot = ctp + (gtR)xR—l—... ,
C

1 1 2
§a2t2R+f(%tR> TR+ ... (64)

c2+
r=—
o 2

which reduces to the well-known Newtonian transformation to an accelerated
frame?

t=1tg,

2 1 55
= — 4+ —a“t*. 65

2 3
8We use the Taylor approximations cosh (z) = 1 + %L +...andsinh(z) =z + % +....
9Strictly speaking, this also imposes a condition on xg, but we don’t consider this con-

straint.



Second, if we plug in the wordline-coordinates of the accelerating observer it-
self into (63), we expect the spatial coordinate 2 to be constant and the time
coordinate tg to be the proper time 7. Well, using the defining condition (54),
one sees indeed that zp = 0 for the worldine {«*(7)} of the accelerating ob-
server. The time coordinate tp = 0 can be checked by using the definition of the
hyperbolic geometric functions and calculating « + ¢t and x — ¢t via eqn.(44),

z(7) £ ct(r) = geim/e (66)

From this one can easily deduce that tg(7) = 7. The last check on eqns.(63) is
that the coordinate line ¢(x) with ¢z = constant describes a straight line in the
coordinate frame {ct,z}, while the lines ¢(x) with zz = constant are curved,;
this can also be easily checked. These checks motivate that the coordinate frame
(63) attached to our accelerated observer has the right form.

Now the Minkowski line-element changes form if we transform to the coordinate
{zg}: ,
ds* = —c2dt* + da* = —(1 + aj—f) Adt% + da%, . (67)

This is exactly the form which would be expected from the equivalence principle,
if we compare this expression with that of the Schwarzschild line-element. As a
last result, we look at how outgoing light rays propagate in both frames. In our
inertial frame {z*}, that’s easy; if we shoot a light ray from the point x = xy,
then this light ray traces the curve

x(t)=ct+xz9, or z(t)—ct=uxg. (68)
If we want to describe this curve in the Rindler coordinates, we have to use

eqn.(62):
2

r—ct= (C— —|—xR>67°‘tR/C =x0. (69)
«a
Differentiating this expression with respect to tg and solving for (éf—}’:, we get
deR arR
TR _ (4 7) : 70
dtR ( + C ¢ ( )

from which we see that according to the accelerating observer the speed of light
depends on the position xr the light ray has in the accelerating frame. In the
accelerating frame, the speed of light exceeds ¢ for xg > 0, i.e. when the light
ray is ahead of the observer. On the other hand, if the light ray is behind the
observer, i.e. xp < 0, then the speed of light is perceived to be smaller than c.
The accelerating observer measures the speed of light to be ¢ only at the origin
xg = 0, as expected. If xp = fg, then the light ray has stopped according
to the accelerating observer.1® The result (70) can also be obtained by putting
ds = 0 in the interval (67). The fact that an accelerating observer will eventually
measure that the speed of light becomes zero can be compared to a stationary
observer outside of a black hole, who measures that the speed of light becomes
zero at the horizon. Let’s see this comparison a bit more in detail.

1ONote: if the acceleration equals the Earth’s gravitational acceleration, a = 9, 8m/s2, then
this distance g equals roughly 1016 kilometer, or roughly one light-year!



3.5 Horizons

Let’s consider the following setup. In the inertial frame {z*} we have a planet
at distance x = D from the origin. Also, at t = 0, a rocket accelerates with
constant proper acceleration « from the origin (ct,z) = (0,0). The curve this
rocket follows is described by (see eqn.(31))

x(t)z%( 1+(%t)2—1). (71)

Somebody on the accelerating rocket measures the distance from his/her rocket
D—x(t)
. . ’Y(t) .
this expression, we obtain

G - (p+2) N (72)

~(t) 1+< t>2 «

Now, if we send tg — oo, this also means that t — oo according to eqn.(63).
So we can conclude that eventually our accelerating observer will measure that
the distance between her and the planet becomes

to the planet as

due to length contraction. But if we plug eqn.(36) into

o[

lim ~——— 2 = -2 (73)

So the planet is now behind (because of the minus-sign) the rocket at a distance
—% ... but this result does not depend on the initial distance D! So after a very
long time tr the planet will stop receding away from the rocket and ’freeze’ at
a distance xg = —%. In fact, all objects which initially lie ahead of the rocket

will eventually ’freeze’ at the distance xp = —%! The horizon also manifests
itself because of the validity of eqn.(63); the coordinates {5} are only defined
for the wedge bounded by x = +ct and © = —ct (otherwise the arguments of
the square root and/or logarithm become negative):

—ct<x<ct. (74)

The horizon also agrees with our findings after eqn.(70) that the speed of light
becomes zero for the accelerating observer at xp = —%. And lastly, the horizon

also follows from eqn.(67): for zp = 7%7 we have gog = 0, similarly to the
vanishing of ggg at the Schwarzschild event horizon r = 2(§2M in the usual
spherical coordinates. The Rindler horizon can be seen in figure 1 as the dotted
line. If we focus on the (ctr,xr) > (0,0) quadrant, we see that above the dotted
line even a light signal will never receive the accelerated observer. So all points
above this dotted line are causally disconnected from the accelerated observer.

This is exactly what a horizon constitutes.
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