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Basic Theories and Principles of Nonlinear
Beam Deformations

1.1 Introduction

The minimum weight criteria in the design of aircraft and aerospace vehicles,
coupled with the ever growing use of light polymer materials that can undergo
large displacements without exceeding their specified elastic limit, prompted
a renewed interest in the analysis of flexible structures that are subjected
to static and dynamic loads. Due to the geometry of their deformation, the
behavior of such structures is highly nonlinear and the solution of such prob-
lems becomes very complex. The solution complexity becomes immense when
flexible structural components have variable cross-sectional dimensions along
their length. Such members are often used to improve strength, weight and
deformation requirements, and in some cases, architects and planners are us-
ing variable cross-section members to improve the architectural aesthetics and
design of the structure.

In this chapter, the well known theory of elastica is discussed, as well as
the methods that are used for the solution of the elastica. In addition, the so-
lution of flexible members of uniform and variable cross-section is developed
in detail. This solution utilizes equivalent pseudolinear systems of constant
cross-section, as well as equivalent simplified nonlinear systems of constant
cross-section. This approach simplifies a great deal the solution of such com-
plex problems. See, for example, Fertis [2, 3, 5, 6], Fertis and Afonta [1], and
Fertis and Lee [4].

This chapter also includes, in a brief manner, important historical devel-
opments on the subject and the most commonly used methods for the static
and the dynamic analysis of flexible members.

1.2 Brief Historical Developments Regarding the Static
and the Dynamic Analysis of Flexible members

By looking into past developments on the subject, we observe that the static
analysis of flexible members was basically concentrated in the solution of
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simple elastica problems. By the term elastica, we mean the determination of
the exact shape of the deflection curve of a flexible member. This task was
carried out by using various types of analytical (closed-form) methods and
techniques, as well as various kinds of numerical methods of analysis, such as
the finite element method. Numerical procedures were also extensively used to
carry out the complicated mathematics when analytical methods were used.

The dynamic analysis of flexible members was primarily concentrated in
the computation of their free frequencies of vibration and their corresponding
mode shapes. The mode shapes were, one way or another, associated with large
amplitudes. In other words, since the free vibration of a flexible member is
taking place with respect to its static equilibrium position, we may have large
static amplitudes associated with the static equilibrium position and small
vibration amplitudes that take place about the static equilibrium position of
the flexible member. We may also have large vibration amplitudes that are
nonlinearly connected to the static equilibrium position of the member. This
gives some fair idea about the complexity of both static and dynamic problems
which are related with flexible member.

A brief history of the research work associated with the static and the
dynamic analysis of flexible members is discussed in this section. Since the
member, in general, can be subjected to both elastic and inelastic behavior,
both aspects of this problem are considered.

The deformed configuration for a uniform flexible cantilever beam loaded
with a concentrated load P at its free end is shown in Fig. 1.1a. The free-body
diagram of a segment of the beam of length xo is shown in Fig. 1.1b. Note the
difference in length between the projected length x in Fig. 1.1a, or Fig. 1.1b,
and the length xo along the length of the member. The importance of such
lengths, as well as the other items in the figure, are explained in detail later
in this chapter and in following chapters of the book.

The basic equation that relates curvature and bending moment in its gen-
eral sense was first derived by the brothers, Jacob and Johann Bernoulli, of the
well-known Bernoulli family of mathematicians. In their derivation, however,
the constant of proportionality was not correctly evaluated. Later on, by fol-
lowing a suggestion that was made by Daniel Bernoulli, L. Euler (1707–1783)
rederived the differential equation of the deflection curve and proceeded with
the solution of various problems of the elastica [7–10]. J.L. Lagrange (1736–
1813) was the next person to investigate the elastica by considering a uniform
cantilever strip with a vertical concentrated load at its free end [8, 10–12].
G.A.A. Plana (1781–1864), a nephew of Lagrange, also worked on the elastica
problem [13] by correcting an error that was made in Langrange’s investigation
of the elastica. Max Born also investigated the elastica by using variational
methods [14].

Since Bernoulli, many mathematicians, scientists, and engineers researched
this subject, and many publications may be found in the literature. The
methodologies used may be crudely categorized as either analytical (closed-
form), or based on finite element techniques. The analytical approaches are
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Fig. 1.1. (a) Large deformation of a cantilever beam of uniform cross section.
(b) Free-body diagram of a beam element

based on the Euler–Bernoulli law, while in the finite element method the pur-
pose is to develop a procedure that permits the solution of complex problems
in a straightforward manner.

The more widely used analytical methods include power series, com-
plete and incomplete elliptic integrals, numerical procedures using the fourth
order Runge–Kutta method, and the author’s method of the equivalent sys-
tems which utilizes equivalent pseudolinear systems and simplified nonlinear
equivalent systems.

In the power series method, the basic differential equation is expressed
with respect to xo, i.e.

dθ

dx0
=

M
E1I1f(x0)g(x0)

(1.1)

where f(xo) and g(xo) represent the variation of the moment of inertia I(xo)
and the modulus of elasticity E(xo), respectively, with respective reference
values I1 and E1, respectively. Note that for uniform members and linearly
elastic materials we have f(xo) = g(xo) = 1.00. Also note that θ is the angular
rotation along the deformed length of the member as shown in Fig. 1.1a.
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For constant E, Eq. (1.1) is usually expressed in terms of the shear force
Vx0 as follows:

EI1
d

dx0

{
f(x0)

dθ

dx0

}
= −Vx0 cos θ (1.2)

or, for members of uniform I,

EI
d2θ

dx2
0

= −Vx0 cos θ (1.3)

In order to apply the power series method, we express θ in Eqs. (1.2) and
(1.3) as a function of xo by using the following Maclaurin’s series:

θ (x0) = θ (c) + (x0 − c) θ′ (c) +
(x0 − c)2

2!
θ′′ (c) +

(x0 − c)3

3!
θ′′′ (c) + · · ·

(1.4)

where c is any arbitrary point along the arc length of the flexible member.
The difficulties associated with the utilization of power series is that for

variable stiffness members subjected to multistate loadings, θ depends on both
x and xo. The coordinates x and xo are defined as shown in Fig. 1.1.

The method of elliptic integrals so far is used for simple beams of uniform
E and I that are loaded only with concentrated loads. For a uniform beam
that is loaded with either a concentrated axial, or a concentrated lateral load,
the governing differential equation is of the form

d2θ

dx2
0

= KΓ (θ) (1.5)

where K is an arbitrary constant, and Γ(θ) is a linear combination of cos θ and
sinθ. The nonlinear differential equation given by Eq. (1.5) may be integrated
by using the elliptic integral method, which requires some certain knowledge
of elliptic integrals. The difficulty associated with this method is that it cannot
be applied to flexible members with distributed loads, or to flexible members
with variable stiffness.

In the fourth order Runge–Kutta method the nonlinear differential equa-
tions are given in terms of the rotation θ, as shown by Eqs. (1.2) and (1.3).
The difficulty associated with this method is that for multistate loadings the
expressions for the bending moment involve integral equations which are func-
tions of the large deformation. In such cases, the application of the Runge–
Kutta method becomes extremely difficult. However, if θ is only a function of
xo, then the method can be easily applied.

The method of the equivalent systems, which was developed initially by the
author and his collaborators in order to simplify the solution of complicated
linear statics and dynamics problems [5,6,15–30], was extended by the author
and his students during the past fifteen years for the solution of nonlinear
statics and dynamics problems [1–3, 5, 6, 31–51]. Both elastic and inelastic
ranges are considered, as well as the effects of axial compressive forces in both
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ranges. The solution of the nonlinear problem is given in the form of equivalent
pseudolinear systems, or simplified equivalent nonlinear systems, which permit
very accurately and rather conveniently the solution of extremely complicated
nonlinear problems. A great deal of this work is included in this text. Once the
pseudolinear system is derived, linear analysis may be used to solve it because
its static or dynamic response is identical, or very closely identical, to that of
the original complex nonlinear problem. For very complex nonlinear problems,
it was found convenient to derive first a simplified nonlinear equivalent system,
and then proceed with pseudolinear analysis. Much of this work is included
in this text in detail and with application to practical engineering problems.

We continue the discussion with the research by K.E. Bisshoppe and D.C.
Drucker [52]. These two researchers used the power series method to obtain a
solution for a uniform cantilever beam, which was loaded (1) by a concentrated
load at its free end, and (2) by a combined load consisting of a uniformly
distributed load in combination with a concentrated load at the free end of
the member. J.H. Lau [53] also investigated the flexible uniform cantilever
beam loaded with the combined loading, consisting of a uniformly distributed
load along its span and a concentrated load at its free end, by using the
power series method. He proved that superposition does not apply to large
deflection theory, and he plotted some load–deflection curves for engineering
applications. P. Seide [54] investigated the large deformation of an extensional
simply supported beam loaded by a bending moment at its end, and he found
that reasonable results are obtained by the linear theory for relatively large
rotations of the loaded end.

Y. Goto et al. [55] used elliptic integrals to derive a solution for plane elas-
tica with axial and shear deformations. H.H. Denman and R. Schmidt [56]
solved the problem of large deflection of thin elastica rods subjected to con-
centrated loads by using a Chebyshev approximation method. The finite dif-
ference method was used by T.M. Wang, S.L. Lee, and O.C. Zienkiewicz [57]
to investigate a uniform simply supported beam subjected (1) to a nonsym-
metrical concentrated load and (2) to a uniformly distributed load over a
portion of its span.

The Runge–Kutta and Gill method, in combination with Legendre Jacobi
forms of elliptic integrals of the first and second kind, was used by A. Ohtsuki
[58] to analyze a thin elastic simply supported beam under a symmetrical
three-point bending. The Runge–Kutta method was also used by B.N. Rao
and G.V. Rao [59] to investigate the large deflection of a cantilever beam
loaded by a tip rotational load. K.T. Sundara Raja Iyengar [60] used the power
series method to investigate the large deformation of a simply supported beam
under the action of a combined loading consisting of a uniformly distributed
load and a concentrated load at its center. At the supports he considered (1)
the reactions to be vertical, and (2) the reactions to be normal to the deformed
beam by including frictional forces. He did not obtain numerical results. He
only developed the equations.
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G. Lewis and F. Monasa [61] investigated the large deflection of a thin
cantilever beam made out of nonlinear materials of the Ludwick type, and
C. Truesdall [62] investigated a uniform cantilever beam loaded with a uni-
formly distributed vertical load. R. Frisch-Fay in his book Flexible Bars [63]
solved several elastica problems dealing with uniform cantilever beams, uni-
form bars on two supports and initially curved bars of uniform cross section,
under point loads. He used elliptic integrals, power series, the principle of elas-
tic similarity, as well as Kirchhoff’s dynamical analogy to solve such problems.

Researchers such as J.E. Boyd [64], H.J. Barton [65], F.H. Hammel, and
W.B. Morton [66], A.E. Seames and H.D. Conway [67], R. Leibold [68],
R. Parnes [69], and others also worked on such problems. In all the studies
described above, with the exception of the research performed by the author
and his collaborators, analytical approaches which include arbitrary stiffness
variations and arbitrary loadings, were not treated. This is attributed to the
difficulties involved in solving the nonlinear differential equations involved.
These subjects, by including elastic, inelastic, and vibration analysis, as well
as cyclic loadings, are treated in detail by the author, as stated earlier in this
section, and much of this work is included in this text and the references at
the end of the text.

Because of the difficulties involved in solving the nonlinear differential
equations, most of the early investigators turned their efforts to the utilization
of the finite element method to obtain solutions. However, in the utilization
of the finite element method, difficulties were developed, as stated earlier, re-
garding the representation of rigid body motions of oriented bodies subjected
to large deformations.

K.M. Hsiao and F.T. Hou [70] used the small deflection beam theory, by
including the axial force, to solve for the large rotation of frame problems by
assuming that the strains are small. The total stiffness matrix was formulated
by superimposing the bending, geometric, and linear beam stiffness matri-
ces. An incremental iterative method based on the Newton–Raphson method,
combined with a constant arc length control method, was used for the solution
of the nonlinear equilibrium equations.

Y. Tada and G. Lee [71] adopted nodal coordinates and direction cosines
of a tangent vector regarding the deformed configuration of elastic flexible
beams. The stiffness matrices were obtained by using the equations of equilib-
rium and Galerkin’s method. Their method was applied to a flexible cantilever
beam loaded at the free end. T.Y. Yang [72] proposed a matrix displacement
formulation for the analysis of elastica problems related to beams and frames.
A. Chajes [73] applied the linear and nonlinear incremental methods, as well as
the direct method, to investigate the geometrically nonlinear behavior of elas-
tic structures. The governing equations were derived for each method, and a
procedure outline was provided regarding the plotting of the load–deflection
curves. R.D. Wood and O.C. Zienkiewicz [74] used a continuum mechanics
approach with a Lagrangian coordinate system and isoparametric element
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for beams, frames, arches, and axisymmetric shells. The Newton–Raphson
method was used to solve the nonlinear equilibrium equations.

Some considerable research work was performed on nonlinear vibration of
beams. D.G. Fertis [2,3,5] and D.G. Fertis and A. Afonta [39,40] applied the
method of the equivalent systems to determine the free vibration of variable
stiffness flexible members. D.G. Fertis [2, 3], and D.G. Fertis and C.T. Lee
[38, 41, 48] developed a method to be used for the nonlinear vibration and
instabilities of elastically supported beams with axial restraints. They have
also provided solutions for the inelastic response of variable stiffness members
subjected to cyclic loadings. D.G. Fertis [49, 51] used equivalent systems to
determine the inelastic vibrations of prismatic and nonprismatic members as
well as the free vibration of flexible members.

S. Wionowsky-Krieger [75] was the first one to analyze the nonlinear free
vibration of hinged beams with an axial force. G. Prathap [76] worked on the
nonlinear vibration of beams with variable axial restraints, and G. Prathap
and T.K. Varadan [77] worked on the large amplitude vibration of tapered
clamped beams. They used the actual nonlinear equilibrium equations and the
exact nonlinear expression for the curvature. C. Mei and K. Decha-Umphai
[78] developed a finite element approach in order to evaluate the geometric
nonlinearities of large amplitude free- and forced-beam vibrations. C. Mei [79],
D.A. Evensen [80], and other researchers worked on nonlinear vibrations of
beams.

Analytical research work regarding the inelastic behavior of flexible struc-
tures is very limited. D.G. Fertis [2, 3, 49] and D.G. Fertis and C.T. Lee
[2–4,47,49] did considerable research work on the inelastic analysis of flexible
bars using simplified nonlinear equivalent systems, and they have studied the
general inelastic behavior of both prismatic and nonprismatic members. G.
Prathap and T.K. Varadan [81] examined the inelastic large deformation of a
uniform cantilever beam of rectangular cross section with a concentrated load
at its free end. The material of the beam was assumed to obey the stress–
strain law of the Ramberg–Osgood type. C.C. Lo and S.D. Gupta [82] also
worked on the same problem, but they used a logarithmic function of strains
for the regions where the material was stressed beyond its elastic limit.

F. Monasa [83] considered the effect of material nonlinearity on the re-
sponse of a thin cantilever bar with its material represented by a logarithmic
stress–strain function. Also J.G. Lewis and F. Monasa investigated the large
deflection of thin uniform cantilever beams of inelastic material loaded with a
concentrated load at the free end. Again the stress–strain law of the material
was represented by Ludwick relation.

In the space age we are living today, much more research and development
is needed on these subjects in order to meet the needs of our present and
future high technology developments. The need to solve practical nonlinear
problems is rapidly growing. Our structural needs are becoming more and
more nonlinear. I hope that the work in this text would be of help.
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The problem of inelastic vibration received considerable attention by many
researchers and practicing engineers. Bleich [86], and Bleich and Salvadory
[87], proposed an approach based on normal modes for the inelastic analysis
of beams under transient and impulsive loads. This approach is theoretically
sound, but it can be applied only to situations where the number of possible
plastic hinges is determined beforehand, and where the number of load rever-
sals is negligible. Baron et al. [88], and Berge and da Deppo [89], solved the
required equation of motion by using methods that are based on numerical in-
tegration. This, however, involved concentrated kink angles which are used to
correct for the amount by which the deflection of the member surpasses the ac-
tual elastic–plastic point. The methodology is simple, but the actual problem
may become very complicated because multiple correction angles and several
hinges may appear simultaneously. Lee and Symonds [90], have proposed the
method of rigid plastic approximation for the deflection of beams, which is
valid only for a single possible yield with no reversals. Toridis and Wen [91],
used lumped mass and flexibility models to determine the response of beams.

In all the models developed in the above references, the precise location of
the point of reversal of loading is very essential. A hysteretic model where the
location of the loading reversal point is not required and where the reversal is
automatically accounted for, was first suggested by Bonc [92] for a spring-mass
system, and it was later extended by Wen [93] and by Iyender and Dash [94].
In recent years Sues et al. [95] have provided a solution for a single degree of
freedom model for degrading inelastic model. This work was later extended
by Fertis [2, 3] and Fertis and Lee [38], and they developed a model that
adequately describes the dynamic structural response of variable and uniform
stiffness members subjected to dynamic cyclic loadings. In their work, the
material of the member can be stressed well beyond its elastic limit, thus
causing the modulus E to vary along the length of the member. The derived
differential equations take into consideration the restoring force behavior of
such members by using appropriate hysteretic restoring force models.

The above discussion, is not intended to provide a complete historical
treatment of the subject, and the author wishes to apologize for any uninten-
tional omission of the work of other investigators. It provides, however, some
insight regarding the state of the art and how the ideas regarding these very
important subjects have been initiated.

1.3 The Euler–Bernoulli Law of Linear and Nonlinear
Deformations for Structural Members

From what we know today, the first public work regarding the large deforma-
tion of flexible members was given by L. Euler (1707–1783) in 1744, and it
was continued in the appendix of his well known book Des Curvis Elastics [7].
According to Euler, when a member is subjected to bending, we cannot neglect
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the slope of the deflection curve in the expression of the curvature unless the
deflections are small. Euler has published about 75 substantial volumes, he
was a dominant figure during the 18th century, and his contributions to both
pure and applied mathematics made him worthy of inclusion in the short list
of giants of mathematics – Archimedes (287–212bc), I. Newton (1642–1727),
and C. Gauss (1777–1855).

We should point out, however, that the development of this theory took
place in the 18th century, and the credits for this work should be given to
Jacob Bernoulli (1654–1705), his younger brother Johann Bernoulli (1667–
1748), and Leonhard Euler (1707–1783). Both Bernoulli brothers have con-
tributed heavily in the mathematical sciences and related areas. They also
worked on the mathematical treatment of the Greek problems of isochrone,
brahistochrone, isoperimetric figures, and geodesies, which led to the devel-
opment of the new calculus known as the calculus of variations. Jacob also
introduced the word integral in suggesting the name calculus integrals. G.W.
Leibniz (1646–1716) used the name calculus summatorius for the inverse of
the calculus differentialis.

The Euler–Bernoulli law states that the bending moment M is proportional
to the change in the curvature produced by the action of the load. This law
may be written mathematically as follows:

1
r

=
dθ

dx0
=

M
EI

(1.6)

where r is the radius of curvature, θ is the slope at any point xo, where xo is
measured along the arc length of the member as shown in Fig. 1.1a, E is the
modulus of elasticity, and I is the cross-sectional moment of inertia.

Figure 1.1a depicts the large deformation configuration of a uniform flexi-
ble cantilever beam, and Fig. 1.1b illustrates the free-body diagram of a seg-
ment of the beam of length xo. Note the difference in length size between x
and xo in Fig. 1.1b. For small deformations we usually assume that x = xo.
For small deformations we can also assume that L = Lo in Fig. 1.1a, because
under this condition the horizontal displacement ∆ of the free end B of the
cantilever beam would be small.

In rectangular x, y coordinates, Eq. (1.6) may be written as

1
r

=
y′′[

1 + (y′)2
]3/2

= −M
EI

(1.7)

where

y′ =
dy
dx

(1.8)

y′′ =
d2y
dx2

(1.9)
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and y is the vertical deflection at any x. We also know that

y′ = tan θ or θ = tan−1 y′ (1.10)

Equation (1.7) is a second order nonlinear differential equation, and its exact
solution is very difficult to obtain. This equation shows that the deflections
are no longer a linear function of the bending moment, or of the load, which
means that the principle of superposition does not apply. The consequence
is that every case that involves large deformations must be solved separately,
since combinations of load types already solved cannot be superimposed. The
consequences become more immense when the stiffness EI of the flexible mem-
ber varies along the length of the member. We discuss this point of view in
greater detail, with examples, later in this chapter.

When the deformation of the member is considered to be small, y′ in
Eq. (1.7) is small compared to 1, and it is usually neglected. On this basis,
Eq. (1.7) is transformed into a second order linear differential equation of the
form

1
r

= y′′ = −M
EI

(1.11)

The great majority of practical applications are associated with small de-
formations and, consequently, reasonable results may be obtained by using
Eq. (1.11). For example, if y′ = 0.1 in Eq. (1.7), then the denominator of this
equation becomes [

1 + (0.1)2
]3/2

= 0.985 (1.12)

which suggests that we have an error of only 1.52% if Eq. (1.11) is used.

1.4 Integration of the Euler–Bernoulli Nonlinear
Differential Equation

Figure 1.2 depicts the large deformation configuration of a tapered flexible
cantilever beam loaded with a concentrated vertical load P at its free end. In
this figure, y is the vertical deflection of the member at any x, and θ is its
rotation at any x. We also have the relations

y′ =
dy
dx

(1.13)

y′′ =
d2y
dx

(1.14)

and
y′ = tan θ or θ = tan−1 y′ (1.15)

In rectangular x, y coordinates, the Euler–Bernoulli law for large defor-
mation produced by bending may be written as [2, 3] (see also Eq. (1.7):
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Fig. 1.2. (a) Tapered flexible cantilever beam loaded with a vertical concentrated
load P at the free end. (b) Infinitesimal beam element

y′′[
1 + (y′)2

]3/2
= − Mx

ExIx
(1.16)

where Mx is the bending moment produced by the loading on the beam. Ex is
the modulus of elasticity of its material, and Ix is its cross-sectional moment
of inertia.

Since the loading on the beam can be arbitrary and Ex and Ix can be
variable, we may rewrite Eq. (1.16) in a more general form as follows:

y′′[
1 + (y′)2

]3/2
= − Mx

E1I1f (x) g (x)
(1.17)

where f(x) is the moment of inertia function representing the variation of Ix
with I1 as a reference value, and g(x) is the modulus function representing
the variation of Ex with E1 as a reference value. If E and I are constant, then
g(x) = f(x) = 1.00.
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We integrate Eq. (1.17) by making changes in the variables. We let y′ = p
and then y′′ = p′. Thus, from Eq. (1.16), we obtain

p′

[1 + p2]3/2
= λ (x) (1.18)

where
λ (x) =

Mx

ExIx
(1.19)

Now we rewrite Eq. (1.18) as follows:

dp/dx

[1 + p2]3/2
= λ (x) (1.20)

By multiplying both sides of Eq. (1.20) by dx and integrating once, we find∫
dp

[1 + p2]3/2
=
∫

λ (x) dx (1.21)

We can integrate Eq. (1.21) by making the following substitutions:

p = tanθ (1.22)

dp = sec2 θdθ (1.23)

By using the beam element shown in Fig. 1.2b and applying the Pythagorean
theorem, we find

(ds)2 = (dx)2 + (dy)2 or ds =
[
(dx)2 + (dy)2

]1/2

(1.24)

ds
dx

=

[
1 +
(

dy
dx

)2
]1/2

=
[
1 + (tanθ)2

]1/2

=
[
1 + p2

]1/2

(1.25)

Thus,

cos θ =
dx
ds

=
1

[1 + p2]1/2
(1.26)

and from Eq. (1.22), we find

sinθ = pcos θ =
p

[1 + p2]1/2
(1.27)
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By substituting Eqs. (1.22) and (1.23) into Eq. (1.21) and also making use
of Eqs. (1.26) and (1.27), we find∫

sec2 θ dθ[
1 + sin2 θ

cos2 θ

]3/2
=
∫

λ (x) dx (1.28)

or, by performing trigonometric manipulations, Eq. (1.28) reduces to the fol-
lowing equation: ∫

cos θ dθ =
∫

λ (x) dx (1.29)

Integration of Eq. (1.29), yields

sinθ = ϕ (x) + C (1.30)

where the function ϕ(x) represents the integration of λ(x).
Equation (1.30) may be rewritten in terms of p and y′ by using Eq. (1.27).

Thus,
p

[1 + p2]1/2
= ϕ (x) + C (1.31)

y′[
1 + (y′)2

]1/2
= ϕ (x) + C (1.32)

where C is the constant of integration which can be determined from the
boundary conditions of the given problem. If we will solve Eq. (1.32) for y′(x),
we obtain the following equation:

y′ (x) =
ϕ (x) + C√

1 − [ϕ (x) + C]2
(1.33)

Integration of Eq. (1.33) yields the large deflection y(x) of the member. Thus,

y (x) =
∫ x

0

ϕ (η) + C√
1 − [ϕ (η) + C]2

dη (1.34)

This shows that when Mx/ExIx is known and it is integrable, then the
Euler–Bernoulli equation may be solved directly for y′(x) as illustrated in
the solution of many flexible beam problems in [2, 3]. In the same references,
utilization of pseudolinear equivalent systems is made, which simplify a great
deal the solution of such problems. A numerical integration may be also used
for Eq. (1.34), or Eq. (1.16), by using the Simpson’s rule discussed in the
following section of this text.
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1.5 Simpson’s One-Third Rule

Simpson’s one-third rule is one of the most commonly used numerical method
to approximate integration. It is used primarily for cases where exact inte-
gration is very difficult or impossible to obtain. Consider, for example, the
integral

δ =
∫ b

a

f (x) dx (1.35)

between the limits a and b. If we divide the integral between the lim-
its x=a and x=b into n equal parts, where n is an even number, and if
y0, y1, y2, . . . , yn−1, yn are the ordinates of the curve y = f(x), as shown in
Fig. 1.3, then, according to Simpson’s one-third rule we have

∫ b

a

f (x) dx =
λ

3
(y0 + 4y1 + 2y2 + 4y3 + · · · + 2yn−2 + 4yn−1 + yn) (1.36)

where
λ =

b − a
n

(1.37)

Simpson’s rule provides reasonably accurate results for practical applications.
Let it be assumed that it is required to determine the value δ of the integral

δ =
∫ L

0

x2dx (1.38)

We divide the length L into 10 equal segments, yielding λ = 0.1L. By applying
Simpson’s rule given by Eq. (1.36), and noting that y = f(x) = x2, we find

Fig. 1.3. Plot of a function y = f(x)
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δ =
0.1L

3

[
(1) (0)2 + (4) (0.1)2 + (2) (0.2)2 + (4) (0.3)2 + (2) (0.4)2

+ (4) (0.5)2 + (2) (0.6)2 + (4) (0.7)2 + (2) (0.8)2 + (4) (0.9)2 + (1) (1)2
]
L2

=
L3

3

Note that for λ = 0.1L, the values of f(x) are yo = (0)2, y1 = (0.1L)2,
y2 = (0.2L)2, and so on. In this case, the exact value of the integral is ob-
tained.

As a second example, let it be assumed that it is required to find the value
δ of the integral

δ =
∫ L

0

x3dx (1.39)

Again, we subdivide the length L into 10 equal segments, yielding λ = 0.1L.
In this case, the Simpson’s one-third rule yields

δ =
0.1L

3

[
(1) (0)3 + (4) (0.1)3 + (2) (0.2)3 + (4) (0.3)2 + (2) (0.4)3

+ (4) (0.5)3 + (2) (0.6)3 + (4) (0.7)3 + (2) (0.8)3 + (4) (0.9)3 + (1) (1)3
]
L3

=
0.75L4

3
=

L4

4

The exact value of the integral is obtained again in this case.
More complicated integrals may be also evaluated in a similar manner, as

shown later in this text. For example, let it be assumed that it is required to
determine the length L of a flexible bar given by the integral

L =
∫ 840

0

[
1 + (y′)2

]1/2

dx (1.40)

where

y′ (x) =
G (x){

1 − [G (x)]2
}1/2

(1.41)

and
G (x) = 1.111 (10)−6 x2 − 0.783922 (1.42)

Equation (1.40) is an extremely important equation in nonlinear mechanics
for the analysis of flexible bars subjected to large deformations [2,3]. It relates
the length L of the bar with the slope y′ at points along its deformed shape.

For illustration purposes, we use here n=10, and from Eq. (1.37) we obtain

λ =
840 − 0

10
= 84

From Eq. (1.40), we note that
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f (x) =
[
1 + (y′)2

]1/2

(1.43)

The values of f(x) at x = 0, 84, 168, . . ., 840 are designated as
yo, y1, y2, . . ., y10, respectively, and they are obtained by using Eq. (1.43)
in conjunction with Eqs. (1.42) and (1.41). For example, for x=0, we have

G (0) = −0.783922

y′ (0) =
−0.783922√

1 − (−0.783922)2
= −1.262641

y0 = f (0) =
√

1 + (−1.262641)2 = 1.610671

For x=84 in., we have

G (84) = 1.111 (10)6 (84)2 − 0.783922 = 0.776083

y′ (84) =
−0.776083√

1 − (−0.776083)2
= −1.230645

y1 = f (84) =
√

1 + (−1.230645)2 = 1.585713

In a similar manner, the remaining points y2, y3, . . ., y10, can be deter-
mined. On this basis, Eq. (1.36) yields

L =
84
3

[1.610671 + (4) (1.585713) + (2) (1.518561) + (4) (1.426963)

+ (2) (1.328753) + (4) (1.236242) + (2) (1.156021) + (4) (1.090986)
+ (2) (1.042370) + (4) (1.011280) + 1]

=
84
3

(38.106817) = 1, 067 in.

It should be realized that the value obtained for L is an approximate one, but
better accuracy can be obtained by using larger values for the parameter n
in Eq. (1.37). For practical applications, however, the design engineer usually
has a fair idea about their accuracy requirements, and satisfactory and safe
designs can be obtained by using approximate solutions.

1.6 The Elastica Theory

The exact shape of the deflection curve of a flexible member is called the
elastica. The most popular elastica problem is the solution of the flexible
uniform cantilever beam loaded with a concentrated load P at the free end,
as shown in Fig. 1.1a.

The large deformation configuration of this cantilever beam caused by the
vertical load P is shown in Fig. 1.2a. Note that the end point B moved to
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point C during the large displacement of point B. The beam is assumed to
be inextensible and, consequently, the arc length AC of the deflection curve
is equal to the initial length AB. We also assumed that the vertical load P
remained vertical during the deformation of the member.

The expression for the bending moment Mx at any 0 ≤ x ≤ Lo may be
obtained by using the free-body diagram in Fig. 1.1b and applying statics, i.e.,

Mx = −Px (1.44)

In rectangular coordinates, the Euler–Bernoulli equation is given by
Eq. (1.16), That is,

y′′[
1 + (y′)2

]3/2
= − Mx

ExIx
(1.45)

where Ex is the modulus of elasticity along the length of the member, and
Ix is the moment of inertia at cross sections along its length. By substituting
Eq. (1.44) into Eq. (1.45) and assuming that E and I are uniform, we obtain

y′′[
1 + (y′)2

]3/2
=

Px
EI

(1.46)

Equation (1.45) may be also expressed in terms of the arc length xo by using
Eq. (1.6). That is

Ex0Ix0

dθ

dx0
= −Mx (1.47)

By using Eq. (1.44) and assuming that E and I are constant along the length
of the member, we find

dθ

dx0
=

Px
EI

(1.48)

By differentiating Eq. (1.48) once with respect to xo, we obtain

d2θ

dx2
0

=
P
EI

cos θ (1.49)

By assuming that
ExIx = E1I1g (x0) f (x0) (1.50)

where g(xo) represents the variation of Ex with respect to a reference value
E1, and f(xo) represents the variation of Ix, with respect to a reference value
I1, we can differentiate Eq. (1.47) once to obtain

d
dx0

{
E1I1g (x0) f (x0)

dθ

dx0

}
= −Vx0 cos θ (1.51)

For members of uniform cross section and of linearly elastic material, we
have g(xo) = f(xo) = 1.0.
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Equations (1.46) and (1.49) are nonlinear second order differential equa-
tions and exact solutions of these two equations are not presently available.
Elliptic integral solutions are often used by investigators (see, e.g., Frisch-
Fay [63]), but they are very complicated. This problem, as well as many other
flexible beam problems, is discussed in detail in later sections of this chapter
and other chapters of the book, where convenient methods of analysis are
developed by the author and his collaborators to simplify the solution of such
very complicated problems.

The integration of Eq. (1.46) may be carried out as discussed in Section 1.4.
By using Eqs. (1.19) and (1.44), we write λ(x) as follows:

λ (x) = −Mx

EI
=

Px
EI

(1.52)

Thus,

ϕ (x) =
∫

λ (x) dx =
Px2

2EI
(1.53)

On this basis, Eq. (1.32) yields

y′[
1 + (y′)2

]1/2
= ϕ (x) + C

or, by substituting for ϕ(x) using Eq. (1.53), we obtain

y′[
1 + (y′)2

]1/2
=

Px2

2EI
+ C (1.54)

where C is the constant of integration which can be determined by applying
the boundary condition of zero y′ at x = Lo = (L−∆). By using this boundary
condition in Eq. (1.54), we find

C = −P (L − ∆)2

2EI
(1.55)

By substituting Eq. (1.55) into Eq. (1.54), we obtain

y′[
1 + (y′)2

]1/2
= G (x) (1.56)

where
G (x) =

P
2EI

[
x2 − (L − ∆)2

]
(1.57)

Thus, by solving Eq. (1.56) for y′, we obtain
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y′ (x) =
G (x){

1 − [G (x)]2
}1/2

(1.58)

The same expression could be obtained directly from Eq. (1.33) by substitut-
ing for ϕ(x) and C, which are the expressions given by Eqs. (1.53) and (1.55),
respectively.

The large deflection y at any 0 ≤ x ≤ Lo may now be obtained by integrat-
ing once Eq. (1.58) and satisfying the boundary condition of zero deflection
at x = Lo for the evaluation of the constant of integration. It should be noted,
however, that G(x) in Eq. (1.57) is a function of the unknown horizontal dis-
placement ∆ of the free end of the beam. The value of ∆ may be determined
from the equation

L =
∫ L0

0

[
1 + (y′)2

]1/2

dx (1.59)

by using a trial-and-error procedure. That is, we assume a value of ∆ in
Eq. (1.58) and then carry out the integration in Eq. (1.59) to determine the
length L of the member. The procedure may be repeated for various values of
∆ until the correct length L is obtained. This procedure is explained in detail
in the numerical examples at the end of this section, as well as in many other
sections of this text.

The integration in Eq. (1.59) becomes in many cases more convenient if
we introduce the variable

ξ =
x

L − ∆
(1.60)

dξ =
dx

L − ∆
(1.61)

On this basis, Eq. (1.59) may be written as

L = (L − ∆)
∫ 1

0

{
1 + [y′ (ξ)]2

}1/2

dξ (1.62)

or, by using Eqs. (1.57) and (1.58) and the variable ξ, we can write Eq. (1.62)
as follows:

L = (L − ∆)
∫ 1

0

1{
1 − [G (ξ)]2

}1/2
dξ (1.63)

where

G (ξ) =
P (L − ∆)2

2EI
(
ξ2 − 1

)
(1.64)

It should be pointed out again here that Eqs. (1.45) and (1.47) are second
order nonlinear differential equations which describe the exact shape of the
deflection curve of the flexible beam. In conventional applications these equa-
tions are linearized by neglecting the square of the slope (y′)2 in Eq. (1.45)
as being small compared to unity. This assumption is permissible, as stated
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earlier, provided that the deflections are very small when they are compared
with the length of the beam. For flexible bars, where deflections are large
when they are compared with the length of the member, this assumption is
not permissible, and Eq. (1.45), or Eq. (1.47), must be used in its entirety.
This means that the deflections are no longer a linear function of the bend-
ing moment, or of the load, and consequently the principle of superposition
does not apply. Therefore, every case involving large deformations has to be
solved independently, since combinations of load types already solved cannot
be superimposed. The situation yields much greater consequences when the
stiffness EI of the member is also variable.

Example 1.1 For the uniform flexible cantilever beam in Fig. 1.1a, deter-
mine the rotation θB and the horizontal displacement ∆ of its free end
B. Assume that P = 0.4 kip (1.78 kN), L = 1,000 in. (25.4 m), and EI =
180 × 103 kip in.2 (516.54 × 103 Nm2).

Solution: In order to obtain a solution to this problem we can use Eqs. (1.57),
(1.58), and (1.54). From Eq. (1.57), by substituting the appropriate values for
the stiffness EI of the member and its length L, we find

G (x) =
0.4

(2) (180) (10)3
[
x2 − (1,000 − ∆)2

]

= 1.111 (10)−6
[
x2 − (1,000 − ∆)2

] (1.65)

The horizontal displacement ∆ of the free end of the member may be evaluated
by applying a trial-and-error procedure using Eq. (1.59).

The trial-and-error procedure may be initiated by assuming values of ∆
until we find the one that satisfies Eq. (1.59). For example, if we assume
∆ = 160 in. (4.064 m), Eq. (1.65) yields

G (x) = 1.111 (10)−6 x2 − 0.783922 (1.66)

By using the assumed value for ∆, we find L0 = 1,000 − 160 = 840 in.
(21.336 m). Therefore,

y′ (x) =
G (x){

1 − [G (x)]2
}1/2

(1.67)

L =
∫ 840

0

[
1 + (y′)2

]1/2

dx (1.68)

where G(x) is as shown by Eq. (1.66).
The integration of Eq. (1.68) may be carried out numerically with sufficient

accuracy by using Simpson’s rule, as shown in Section 1.5, or by using other
known numerical procedures. The Simpson’s One-Third rule will be used here.
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According to this rule, the integral of Eq. (1.68) may be evaluated from the
general equation given by Eqs. (1.36) and (1.37). We rewrite these equation
as shown below∫ b

a

f (x) dx =
λ

3
(y0 + 4y1 + 2y2 + 4y3 + · · · + 2yn−2 + 4yn−1 + yn) (1.69)

where
λ =

b − a
n

(1.70)

y0, y1, y2, . . ., yn are the ordinates of the curve y = f(x), and n is the number
of equal parts we use between the limits x = a and x = b.

For illustrative purposes, we use n = 10, and from Eq. (1.70) we obtain

λ =
840 − 0

10
= 84

From Eq. (1.68), we note that

f (x) =
[
1 + (y′)2

]1/2

(1.71)

The values of f(x) at x = 0, 84, 168, . . ., 840 are designated as y0, y1, y2, ...,
y10, respectively, and they are obtained by using Eq. (1.71) in conjunction
with Eqs. (1.66) and (1.67). For example, for x = 0, we have

G (0) = −0.783922

y′ (0) =
−0.783922√

1 − (−0.783922)2
= −1.262641

y0 = f (0) =
√

1 + (−1.262641)2 = 1.610671

For x = 84

G (84) = 1.111 (10)−6 (84)2 − 0.783922 = −0.776083

y′ (84) =
−0.776083√

1 − (−0.776083)2
= −1.230645

y1 = f (84) =
√

1 + (−1.230645)2 = 1.585713

In a similar manner the remaining points y2, y3, ..., y10 can be determined.
On this basis, Eq. (1.69) yields

L =
84
3

[1.610671 + (4) (1.585713) + (2) (1.518561) + (4) (1.426963)

+ (2) (1.328753) + (4) (1.236242) + (2) (1.156021) + (4) (1.090986)
+ (2) (1.042370) + (4) (1.011280) + 1]

=
84
3

(38.106817) = 1, 067 in. (27.10 m)
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Since the actual length L = 1,000 in. (25.4 m), the procedure may be re-
peated with a new value for ∆. With computer assistance, the correct value
of ∆ was found to be 183.10 in. (4.65 m).

With known ∆, the value of y′ and rotation θB at the free end B of
the member may be obtained by using Eqs. (1.65), (1.67), and (1.10). From
Eq. (1.65), we obtain

G (0) = 1.111 (10)−6
[
0 − (1,000 − 183.10)2

]
= −0.741399

and from Eq. (1.67), we find

y′ (0) =
−0.741399√

1 − (−0.741399)2
=

−0.741399
0.671065

= −1.104810

Therefore, from Eq. (1.10), we find

θB = tan−1 y′ (0) = 47.85◦

Also, Eq. (1.67), in conjunction with Eq. (1.65), can be used to determine the
values of y′(x), and consequently those of θ, at other points x. This procedure
is explained in detail in later parts of this text.

The values of θB and ∆ were also determined by using elliptic integrals.
The results obtained are θB = 47.44◦, and ∆ = 181.67 in. (4.61 m).

1.7 Moment and Stiffness Dependence on the Geometry
of the Deformation of Flexible Members

To comprehend the various methods and methodologies developed in this
text, as well as their application to practical engineering problems, we should
realize first that the expressions for the bending moment Mx and the moment
of inertia Ix of the flexible member are generally nonlinear functions of the
large deformation of the member. These two quantities may be expressed as
a function of x and xo as follows:

Mx = M (x, x0) (1.72)

Ix = I1f (x, x0) (1.73)

where x is the abscissa of center line points of the deformed configuration of
the member, xo is the arc length of the deformed segment, I1 is the reference
moment of inertia, and f(x, xo) is a function representing the variation of Ix.
For visual observation see, for example, Fig. 1.1. On this basis, the Euler–
Bernoulli law given by Eq. (1.16) becomes a nonlinear integral differential
equation that is extremely difficult to solve.
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To reduce the complexity of such types of problems, we express the arc
length xo(x) of the flexible member in terms of its horizontal displacement
∆(x), where 0 ≤ x ≤ (L−∆). See Fig. 1.1a or Fig. 1.2a. This is accomplished
as follows:

x0 (x) = x + ∆(x) (1.74)

We also know, as shown from the discussion of Sect. 1.4, that the expression
xo(x) is an integral function of the deformation and it can be expressed as

x0 (x) =
∫ x

0

{
1 + [y′ (x)]2

}1/2

dx (1.75)

The derivation of Eq. (1.74) can be initiated by considering a segment dxo

before and after deformation, as shown in Fig. 1.4. By using the Pythagorean
theorem we write

[dx0]
2 = [dx]2 + [dy]2 (1.76)

If we assume that
dx0 = dx + d∆(x) (1.77)

and then substitute into Eq. (1.76), we obtain

[dx + d∆ (x)]2 = [dx]2 + [dy]2 (1.78)

or

dx + d∆ (x) =
{

1 + [y′ (x)]2
}1/2

dx (1.79)

Fig. 1.4. (a) Undeformed configuration of an arc length segment dxo. (b) Deformed
configuration of dxo
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Integration of Eq. (1.79) with respect to x, yields the expression

x + ∆ (x) =
∫ x

0

{
1 + [y′ (x)]2

}1/2

dx (1.80)

This expression provides the same results as Eqs. (1.74) and (1.75).
If we consider flexible members where one of their end supports is per-

mitted to move in the horizontal direction, such as cantilever beams, simply
supported beams, etc., approximate expressions for the variation of ∆(x) may
be written and used to facilitate the solution of the nonlinear flexible beam
problems. The cases of ∆(x) that have been investigated by the author and his
collaborators and are proven to provide accurate results, are as follows [2, 3]

∆ (x) = constant = ∆ (1.81)

∆ (x) = ∆
x
L0

(1.82)

∆ (x) = ∆
√

x
L0

(1.83)

∆ (x) = ∆ sin
πx
2L0

(1.84)

where ∆ is the horizontal displacement of the movable end, and Lo = (L−∆).
The plots of the variations of ∆(x) given by Eqs. (1.81)–(1.84) are shown in
Fig. 1.5. We can see from this figure that ∆ is an upper limit. Even using
Eq. (1.81) which is an upper limit, we obtain reasonably accurate results with
error less than 3%. This shows that the variation of the bending moment
Mx, and, consequently, the deformation of the member, are largely dependent

Fig. 1.5. Graphs of various cases of ∆(x)
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upon the boundary condition of ∆(x) at the moving end of the member, and it
is rather insensitive to the variation of ∆(x) between the ends of the member.
This is particularly true when the deformations are very large.

The variable moment of inertia Ix of a flexible member, as stated earlier, is
a nonlinear function of the deformation. For tapered members that are loaded
with concentrated loads only, the variation of the depth h(x) of the member
may be approximated by the expression

h (x) = (n − 1)
[

1
n − 1

+
x

L − ∆

]
h (1.85)

where x is the abscissa of points of the centroidal axis of the member in its
deformed configuration, n represents the taper, h is a reference height, and L is
the undeformed length of he member. The error of 3% or less associated with
the use of Eq. (1.85) is considered small for practical applications. Under this
assumption, the solution of flexible members loaded with concentrated loads
only, will not require the utilization of integral equations or the use of Eqs.
(1.81)–(1.84). This point of view is amply illustrated later.

The following examples illustrate the application of the preceding theory.

Example 1.2 For the tapered flexible cantilever beam shown in Fig. (1.6), de-
rive its exact integral nonlinear differential equation. Also suggest reasonable
approximate ways to simplify the complexity of the problem. Assume that the
modulus of elasticity Ex is constant and equal to E.

Solution: The Euler–Bernoulli nonlinear differential equation is

y′′[
1 + (y′)2

]3/2
= − Mx

E1I1f (x) g (x)
(1.86)

Fig. 1.6. Tapered flexible cantilever beam loaded with a vertical concentrated load
P at the free end
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where f(x) is the moment of inertia function with moment of inertia I1 as
a reference value, and g(x) represents the variation of Ex with respect to a
reference value E1. In this case we assume that the modulus of elasticity is
constant and equal to E, thus making g(x) = 1.

By selecting the moment of inertia IB at the free end B of the tapered
beam as the reference value, the variation of the moment of inertia Ix at any
0 ≤ x ≤ (L − ∆), where ∆ is the horizontal displacement of the free end B,
see Fig. 1.6, is written as follows:

Ix =
bh3

12
[f (x0)]

= IB

[
1 +

(n − 1)
L

x0

]3
= IBf (x)

(1.87)

where

IB =
bh3

12
(1.88)

x0 =
∫ x

0

{
1 + [y′ (x)]2

}1/2

dx (1.89)

f (x) =
[
1 +

(n − 1)
L

x0

]3
(1.90)

and b is the constant width of the tapered member.
From Fig. 1.6 we observe that the bending moment Mx at any x from the

free end C, is given by the expression

Mx = −Px (1.91)

By substituting Eqs. (1.87) and (1.91) into Eq. (1.86) and noting that g(x)=1,
we find

y′′[
1 + (y′)2

]3/2
=

P
EIB

x{
1 + (n−1)

L

∫ x

0

[
1 + (y′ (x))2

]1/2

dx
}3 (1.92)

Equation (1.92) is the exact integral nonlinear differential equation repre-
senting the given problem and its solution in general, is very complicated.
Therefore, reasonable approximation must be used to simplify the problem.
A reasonable simplification would be to use the approximate expression for
h(x) given by Eq. (1.85). On this basis, by using Eq. (1.85) and applying the
well known expression bh3(x)/12 for beam with rectangular cross section,
we find

Ix =
bh3

12

[
1 + (n − 1)

x
L − ∆

]3
= I1f (x) (1.93)
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where

I1 = IB =
bh3

12
(1.94)

and

f (x) =
[
1 + (n − 1)

x
L − ∆

]3
(1.95)

On this basis, by substituting Eqs. (1.91), (1.94) and (1.95) into Eq. (1.86),
we obtain

y′′[
1 + (y′)2

]3/2
=

P(L − ∆)3

EIB
x

[(n − 1) x + (L − ∆)]3
(1.96)

Equation (1.96) is the simplified nonlinear differential equation represent-
ing the tapered cantilever beam in Fig. 1.6. This equation, as shown later in
the text, is far easier to solve compared to Eq. (1.92), and provides accurate
results.

Example 1.3 For the uniform flexible cantilever beam loaded with a uniformly
distributed load wo as shown in Fig. 1.7, determine its exact integral nonlinear
differential equation. Also suggest reasonable approximate ways to simplify
the complexity of the problem. Assume that the modulus of elasticity Ex is
constant and equal to E.

Solution: The large deformation configuration of the member is depicted
in Fig. 1.7. The bending moment Mx at any distance 0 ≤ x ≤ Lo, where
Lo = L − ∆, is

Mx = −w0x0
x
2

(1.97)

Fig. 1.7. Uniform cantilever beam loaded with a uniformly distributed load wo over
its entire span
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From Eq. (1.75) we have

x0 =
∫ x

0

{
1 + [y′ (x)]2

}1/2

dx (1.98)

By substituting Eq. (1.98) into Eq. (1.97), we have

Mx = −w0x
2

∫ x

0

{
1 + [y′ (x)]2

}1/2

dx (1.99)

By substituting Eq. (1.99) into the Euler–Bernoulli equation given by
Eq. (1.86) and realizing that the stiffness EI of the flexible member is con-
stant, we find

y′′[
1 + (y′)2

]3/2
=

w0x
2EI

∫ x

0

{
1 + [y′ (x)]2

}1/2

dx (1.100)

Equation (1.100) is the exact nonlinear integral differential equation for the
cantilever beam in Fig. 1.7, and its solution is again very difficult.

We can simplify, however, the solution of Eq. (1.100) by assuming that xo

in Eq. (1.97) is given by Eq. (1.74). We rewrite this equation for convenience:

x0 (x) = x + ∆(x) (1.101)

Reasonable expressions to use for the horizontal displacement ∆(x) in
Eq. (1.101), are given by Eqs. (1.81)–(1.84). If we decide to use Eq. (1.81),
where the horizontal displacement ∆ of the free end B of the flexible member
is assumed to remain constant, then Eq. (1.101) yields

x0 (x) = x + ∆ (1.102)

By substituting Eq. (1.102) into Eq. (1.97), we find

Mx = −w0x
2

(x + ∆) (1.103)

and the Euler–Bernoulli nonlinear differential equation yields,

y′′[
1 + (y′)2

]3/2
=

w0x
2EI

(L − ∆) (1.104)

The solution of Eq. (1.104) is by far the most convenient to use when it is
compared to Eq. (1.100)

If we make the assumption that ∆(x) is given by Eq. (1.82), then
Eq. (1.101) yields

x0 (x) = x +
∆x
L0

(1.105)
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and the expression for the bending moment given by Eq. (1.97), becomes

Mx = −w0x
2

(
x +

∆x
L0

)
(1.106)

Therefore, by substitution, the Euler–Bernoulli equation yields

y′′[
1 + (y′)2

]3/2
=

w0x
2EI

(
x +

∆x
L0

)
(1.107)

Again, the nonlinear differential equation given by Eq. (1.107) is much
simpler to solve, compared to the integral nonlinear differential equation given
by Eq. (1.100). Similar simplifications are obtained by using Eq. (1.83) or
Eq. (1.84) for the function ∆(x).

1.8 General Theory of the Equivalent Systems for Linear
and Nonlinear Deformations

In the preceding sections it was shown that the solution of the Euler–Bernoulli
differential equation becomes extremely difficult when the deformation of the
member under consideration is large, and when the stiffness variation and
loading conditions along its length vary arbitrarily. For flexible members, that
is members which are subjected to large deformation, even simple cases of
loading and constant stiffness will complicate a great deal the solution of the
flexible problem.

In this section the theory of the equivalent systems, as it was developed by
the author and his collaborators [2, 3, 5, 6, 15, 18], will be developed here for
both linear and nonlinear problems. The emphasis, however, is concentrated
in the solution of nonlinear problems, because this is the purpose of this text.
For more information on linear systems the reader may consult the work of
the author in [6, 84], as well as in other references at the end of this book.

The theory of the equivalent systems is general, and it applies to many
structural problems which incorporate arbitrary variations of loading and mo-
ment of inertia along the length of a member, as well as variations of the
modulus of elasticity of its material. The modulus of elasticity variations that
are extensively examined in later sections of this book are the ones produced
by large loadings that cause the material of the member to be stressed beyond
its elastic limit and all the way to failure. In such cases, the modulus E will
vary along the length of the member.

The purpose of the theory of the equivalent systems is to provide a much
simpler mathematical model, in terms of pseudolinear equivalent systems and
simplified nonlinear equivalent systems, that can be used to solve the ex-
tremely complicated nonlinear problem with well known simple methods of
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linear analysis. The pseudolinear equivalent system will always have a uniform
stiffness EI throughout its equivalent length, and its loading will be different
from the one acting on the original system. In other words, the length and
loading of the pseudolinear equivalent system will be different, but its response
will be identical to that of the original system.

1.8.1 Nonlinear Theory of the Equivalent Systems: Derivation
of Pseudolinear Equivalent Systems

The derivation of pseudolinear equivalent systems of constant stiffness EI may
be initiated by employing the Euler–Bernoulli law of deformations given by
Eqs. (1.7) and (1.16). We rewrite Eq. (1.16) as follows:

y′′[
1 + (y′)2

]3/2
= − Mx

ExIx
(1.108)

where the bending moment Mx, the modulus of elasticity Ex and the moment
of inertia Ix are assumed to vary in any arbitrary manner.

The curvature of the member represented by the left-hand side of
Eq. (1.108) is geometrical in nature, and it requires that the parameters
Mx, E, and I on the right-hand side of the same equation to be also asso-
ciated with the deformed configuration of the member. When the loading
on the member is distributed and/or the cross-sectional moment of inertia
is variable, the expressions for these parameters are in general nonlinear
integral equations of the deformation and contain functions of horizontal
displacement. That is, the bending moment Mx, depth hx of the member, and
moment of inertia Ix are all functions of both x and xo. This is easily observed
by examining the deformed configuration of the doubly tapered cantilever
beam in Fig. 1.8. Therefore, the bending moment Mx has to be defined with
respect to the deformed segment. On the other hand, the total load acting
on an undeformed segment of a member does not change after the segment is
deformed.

The variable stiffness ExIx, as discussed earlier, may be expressed as

ExIx = E1I1g (x) f (x) (1.109)

where g(x) represents the variation of Ex with respect to a reference value E1,
and f(x) represents the variation of Ix with respect to a reference value I1. If
the member has a constant modulus of elasticity E and a constant moment
of inertia I throughout its length, then g(x) = f(x) =1.00, and ExIx = EI. In
this case, the constant stiffness EI becomes the reference stiffness value E1I1

By substituting Eq. (1.109) into Eq. (1.108), we have

y′′[
1 + (y′)2

]3/2
= − 1

E1I1
Mx

g (x) f (x)
(1.110)
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Fig. 1.8. Doubly tapered cantilever beam loaded with a uniformly distributed
load wo

If we integrate, hypothetically, Eq. (1.110) twice, the expression for the large
transverse displacement y may be written schematically as

y (x) =
1

E1I1

∫ {
−
∫ [

1 + (y′)2
]3/2 Mxdx

g (x) f (x)

}
dx + C1

∫
dx + C2 (1.111)

where C1 and C2 are the constants of integration which can be determined
by using the boundary conditions of the member.

If we consider a member that has a constant stiffness E1I1 and with an
identical length and reference system of axes with the one used for Eq. (1.111),
then we can write the expression for its large deflection ye as follows:

ye =
1

E1I1

∫ {
−
∫ [

1 + (y′
e)

2
]3/2

Medx
}

dx + C′
1

∫
dx + C′

2 (1.112)

In Eq. (1.112), Me is the bending moment at any cross section x, and C′
1 and

C′
2 are the constants of integration.

On this basis, the deflection curves expressed by y and ye in Eqs. (1.111)
and (1.112), respectively, will be identical if

C1 = C′
1 and C2 = C′

2 (1.113)

∫ {
−
∫ [

1 + (y′)2
]3/2 Medx

f (x) g (x)

}
dx =

∫ {
−
∫ [

1 + (y′
e)

2
]3/2

Medx
}

dx

(1.114)

The conditions imposed by Eq. (1.113) are easily satisfied if the two members
have the same arc length and boundary conditions. Equation (1.114) will be
satisfied if ye

′ = y′ and

Me =
Mx

f (x) g (x)
(1.115)
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By following this way of thinking and examining Eq. (1.114), we conclude
that the identity given by Eq. (1.114) will be satisfied when

[
1 + (y′

e)
2
]3/2

Me =
[
1 + (y′)2

]3/2 Mx

f (x) g (x)
(1.116)

When the deformation of the members is small, then the angular rota-
tions (y′)2 and (ye

′)2 may be neglected as being small compared to 1, and
Eq. (1.116) reduces to Eq. (1.115). Thus, for small deflections, the moment di-
agram Me of the equivalent system of constant stiffness E1I1 can be obtained
from Eq. (1.115). Its equivalent shear force Ve and equivalent loading we can
be obtained from Eq. (1.115) by differentiation. That is,

Ve =
d
dx

(Me) =
d
dx

[
Mx

f (x) g (x)

]
(1.117)

we = − d
dx

(Ve) cos θ = − d2

dx2

[
Mx

f (x) g (x)

]
cos θ (1.118)

where cos θ ≈ 1 when the rotations θ of the member are small. The equivalent
constant stiffness system in this case is linear, and linear small deflection
theory can be used for its solution.

When the deflections and rotations are large, (y′)2 and (ye
′)2 in Eqs.

(1.110) and (1.116) cannot be neglected. By examining these two equations
we observe that the moment Me

′ of the equivalent pseudolinear system of
constant stiffness E1I1 should be obtained from the equation

Me
′ =
[
1 + (y′)2

]3/2

Me =
[
1 + (y′)2

]3/2 Mx

f (x) g (x)
=

ze

f (x) g (x)
Mx (1.119)

where

ze =
[
1 + (y′)2

]3/2

(1.120)

Also we note that θ = tan−1(y′) represents the slope of the initial nonlinear
system.

By solving Eq. (1.110) for y′′, we obtain

y′′ = − 1
E1I1

[
1 + (y′)2

]3/2 Mx

f (x) g (x)
(1.121)

By substituting Eqs. (1.115) and (1.120) in Eq. (1.121) we find

y′′ =
Me

′

E1I1
(1.122)

Equation (1.122) is a pseudolinear differential equation and represents the
pseudolinear equivalent system of constant stiffness E1I1. Therefore, it can be
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treated and solved as a linear differential equation once the moment diagram
Me

′ of the pseudolinear equivalent system is known.
The shear force Ve

′ and loading we
′ of the equivalent constant stiffness

pseudolinear system may be determined from the expressions

Ve
′ =

d
dx
(
Me

′) =
d
dx

[
1 + (y′)2

]3/2

Me =
d
dx

[
ze

f (x) g (x)

]
Mx (1.123)

we
′ = − d

dx
(
Ve

′) cos θ =
d2

dx2

[
1 + (y′)2

]3/2

Me cos θ

= − d2

dx2

[
ze

f (x) g (x)

]
Mx cos θ

(1.124)

When the equivalent constant stiffness pseudolinear system is obtained,
elementary linear deflection theory and methods can be used to solve it. This
is appropriate, because the deflections and rotations obtained by solving the
pseudolinear system are identical to those of the original nonlinear system.

It should be also noted at this point that the equivalent moment diagram
Me given by Eq. (1.115), represents the moment Me at any point x of a non-
linear equivalent system of length L equal to that of the original nonlinear
system and of constant stiffness E1I1. This proves that we can also obtain
equivalent simplified nonlinear systems by using Eq. (1.115). Consequently,
the linearization of the initial variable stiffness flexible member, is obtained

by multiplying Me by the expression
[
1 + (y′)2

]3/2

, as shown in Eq. (1.119).
This is an extremely important observation, because, as it is shown later in
this text, many complicated nonlinear problems with complex loadings and
stiffness variations can be solved conveniently by obtaining first a simpler non-
linear equivalent system of constant stiffness E1I1 and then use it to proceed
with pseudolinear analysis to obtain a pseudolinear equivalent system. This
approach is amply illustrated in later parts of the text. Note also that Ve and
we in Eqs. (1.117) and (1.118), respectively, give the shear force and loading,
respectively, of the nonlinear equivalent system of constant stiffness E1I1.

We can simplify a great deal the mathematics regarding the computation
of Ve

′ and we
′, or Ve and we, by approximating the shape of the moment dia-

gram represented by Eq. (1.119), or the one represented by Eq. (1.115), with a
few straight lines judiciously selected. This approximation simplifies to a large
extent the derivation of pseudolinear and simplified nonlinear equivalent sys-
tems of constant stiffness. On this basis, the loading on the pseudolinear, or
the equivalent linear system, will always consist of concentrated loads. This
approach is amply illustrated in the following example.

Example 1.4 Determine a pseudolinear equivalent system for the uniform flex-
ible cantilever beam of Example 1.1. By using the pseudolinear system deter-
mine the deflection and rotation at the free end. Show also how deflections and
rotations can be determined at other points along the length of the member.



34 1 Basic Theories and Principles of Nonlinear Beam Deformations

Solution: In Example 1.1, it was found that the horizontal displacement ∆
of the flexible cantilever beam in Fig. 1.1a is 183.10 in. (4.65 m). The function
G(x), in terms of ∆, is given by Eq. (1.65). By substituting the value of ∆
into this equation, we find

G (x) = 1.111 (10)−6
[
x2 − (1,000 − 183.10)2

]
= 1.111 (10)−6 [x2 − 667, 325.61

] (1.125)

From Eq. (1.67), the expression for y′(x) is

y′ (x) =
G (x){

1 − [G (x)]2
}1/2

(1.126)

and from Eq. (1.119), the moment diagram M′
e of the pseudolinear equivalent

system can be determined from the expression

M′
e = zeMx =

[
1 + (y′)2

]3/2
Mx (1.127)

where Mx, is the bending moment at any location x of the original system.
The values of y′ can be determined by using Eqs. (1.125) and (1.126). Note
that g(x) = f(x) = 1,EI = 180× 103 kip in.2(516.54 × 103 N m2),P = 0.4 kip
(1.78 kN) and L = 1,000 in. (25.4 m).

The bending moment Mx at any x between zero and Lo = L − ∆ = 816.9
in. (20.75 m), may be obtained from the equation

Mx = −Px = 0.4x (1.128)

Table 1.1 provides the calculated values of G(x), y′(x), ze,Mx and M′
e at

various positions x between zero and 816.9 in. (20.75 m). By using the values
of Me

′ in the last column of Table 1.1, we plot the moment diagram M′
e of

the pseudolinear system as shown in Fig. 1.9a. We approximate the shape of
Me

′ by four straight lines as shown in the same figure. The juncture points
of these four straight lines may be located on above, or below the Me

′ curve,
represented by the solid line in Fig. 1.9a. The purpose here is to approximate
the shape of the Me

′ curve so that the areas added to this diagram and the
areas subtracted from this diagram approximately balance each other. This
can be done judiciously without any computations, because the accuracy of
the calculated rotations and deflections depends mostly upon retaining the
general shape of the Me

′ curve during its approximation with straight lines,
but they are not very sensitive as to how accurately this approximation is
performed. Even with moderately large errors in the approximation of Me

′, we
obtain, for practical purposes, reasonable values for deflections and rotations.
The reason for this is that, mathematically you get from moment to rotation
and then to deflection by integration. When an appreciable error is introduced
in the moment diagram curve, it reduces substantially by the time it gets to
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Table 1.1. Values of G(x), y′(x), ze, Mx and Me
′(x) at various locations 0 ≤ x ≤

816.9 in.(1 in. = 0.0254 m, 1 kip in. = 113 N m, 1 kip = 4.448 kN)

(1)
x
(in.)

(2)
G(x)
Eq. (1.125)

(3)
y′(x)
Eq. (1.126)

(4)
ze

Eq. (1.120)

(5)
Mx

(kip in.)
Eq. (1.128)

(6)
Me

′

(kip in.)
Eq. (1.127)

0 −0.7414 −1.1049 3.3095 0 0
100.0 −0.7303 −1.0689 3.1361 −40.00 −125.44
200.0 −0.6970 −0.9720 2.7121 −80.00 −216.97
300.0 −0.6414 −0.8360 2.2144 −120.00 −265.73
400.0 −0.5636 −0.6822 1.7739 −160.00 −283.82
500.0 −0.4636 −0.5232 1.4375 −200.00 −287.50
600.0 −0.3414 −0.3632 1.2043 −240.00 −289.03
700.0 −0.1970 −0.2009 1.0611 −280.00 −297.12
800.0 −0.0304 −0.0304 1.0014 −320.00 −320.45
816.9 0 0 1.000 −326.76 −326.76

rotation and deflection. This point was extensively investigated by the author
and his students.

By applying statics, the shear force diagram is plotted as shown in
Fig. 1.9b. For example,

V1 =
−170 − 0

136.9
= −1.2418 kip (5.5235 kN)

V2 =
−280 − (−170)

200
= −0.55 kip (2.4464 kN)

and so on. The equivalent pseudolinear system has length Lo = L − ∆ =
816.9 in. (20.75 m), and the loading is as shown in Fig. 1.9c. The loading is
obtained by using Fig. 1.9b and applying statics. For example,

P1 = 1.2418 kip (5.5235 kN) (downward)
P2 = 1.2418 − 0.55 = 0.6918 kip (3.0771 kN) (upward)

and so on.
The pseudolinear system in Fig. 1.9c is, for practical purposes, an excellent

approximation of the original nonlinear system. Linear methods of analysis,
or available formulas from handbooks, may be used to solve the pseudolinear
system for rotations and deflections. For example, the deflection and rotation
at the free end B of the original system in Fig. 1.1a, may be determined by
using the pseudolinear system in Fig. 1.9c and calculating its rotation and
deflection at B′ by using handbook formulas, or known methods of basic
mechanics, such as the moment–area method. Superposition is permissible,
because the pseudolinear system is linear.

In order to use the moment–area method, we divide the Me
′ diagram in

Fig. 1.9a by the constant stiffness EI = 180× 103 kip in.2(516.54× 103 N m2)
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Fig. 1.9. (a) Moment diagram Me
′ of the pseudolinear system with its shape ap-

proximated with four straight lines. (b) Shear force diagram. (c) Equivalent pseudo-
linear system of length Lo = L − ∆ = 816.9 in. (1 in. = 0.0254 m, 1 kip in. =
113 N m, 1 kip = 4.448 kN)

to obtain the Me
′/EI diagram. The deflection δB′ at the free end B′ of the

pseudolinear system is equal to the first moment of the Me
′/EI diagram be-

tween A and B′, taken about B′. By using the straight-line approximation of
Me

′ shown by the dashed lines in Fig. 1.9a, dividing it by EI and then taking
its first moment about B′, we find

δB′ =
1
EI

[
1
2
(170)(136.9)

(
2
3

)
(136.9) + (170)(200)(236.9)

+
1
2
(110)(200)(270.2333) + (280)(360)(516.9) +

1
2
(10)(360)(576.9)

+(290)(120)(756.9) +
1
2
(40)(120)(776.9)

]

=
1
EI

[98, 170, 244]
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or
δB′ =

1
180(10)3

[98, 170, 244] = 545.39 in. (13.85 m)

Also, by using the moment–area method, yB′ ′ at the free end of the pseudo-
linear system would be equal to the total Me

′/EI area between points A and
B′. Thus, by using again Fig. 1.9a, we obtain

yB′ ′ =
1
EI

[
1
2
(170)(136.9) + (170)(200) +

1
2
(110)(200) + (280)(360)

+
1
2
(10)(360) + (290)(120) +

1
2
(40)(120)

]

=
1
EI

[196, 436.5]

or
yB′ ′ =

1
180(10)3

[196, 436.5] = 1.0913

Thus,
θB′ = tan−1 (yB

′) = 47.50◦

The calculated values δB′ and θB′ that were obtained by using the pseudo-
linear system in Fig. 1.9c are very accurate, at least for practical applications,
and they are closely identical to the analogous exact values at the end B that
can be obtained by solving directly the original member in Fig. 1.1a. In fact,
the direct solution was obtained by integrating directly the Euler–Bernoulli
equation given by Eq. (1.46). On this basis we found that the deflection and
rotation at the end B of the nonlinear member in Fig. 1.1a, are δB = 523.27 in.
(13.29 m) and θB = 47.86◦. If we can assume that these last two values are
the exact values, then the error by using the pseudolinear system would be
4.22% for the deflection and 0.75% for the rotation. However, if it is required,
the accuracy can be improved if we will approximate the moment diagram of
the pseudolinear system, shown in Fig. (1.9a), with more straight lines. The
purpose in using the pseudolinear system is to simplify the solution of com-
plicated nonlinear problems with complicated loading conditions and moment
of inertia variations. This point of view is clearly demonstrated throughout
this text.

By using direct integration, Table 1.2 has been prepared which shows
the variation of δB,∆B, and θB at the free end B of the flexible beam
for the indicated values of the concentrated vertical load P at the free end
B. The second column of the table gives the values of δB that were obtained by
neglecting y′ and proceeding with linear analysis. If we compare these values
with the analogous ones shown in the third column of the table, we note that
the error by using linear analysis becomes unreasonably huge as the load P
increases, and such linear procedures should not be used for flexible members.

By using nonlinear analysis, the large deflection configurations of the
flexible member for values of the load P = 1, 3, and 10 kip, are shown plotted
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Table 1.2. Values of δB, ∆B, and θB for various values of P and comparisons with
linear theory (1 in. = 0.0254 m, 1 kip = 4.448 kN)

load P linear analysis nonlinear analysis
(kips) δB (in.) δB (in.) ∆B (in.) θB (deg.)

0.2 370.37 328.61 67.36 28.90
0.4 740.74 523.27 183.10 47.86
0.6 1,111.11 629.00 281.29 59.42
0.8 1,481.48 691.58 356.71 66.87
1.0 – 732.14 414.95 71.95
2.0 – 821.37 577.22 83.23
2.5 – 841.64 621.12 85.48
3.0 – 856.20 653.84 86.92
5.0 – 888.86 731.69 89.00

10.0 – 921.40 810.27 89.61

Fig. 1.10. Large deflection curves for P = 1, 3, and 10 kip (1 kip = 4.448 kN, 1 in. =
0.0254 m)

in Fig. 1.10. Note that for P = 10 kip (44.48 kN), the member is practically
hanging in the vertical direction.

Deflections and Rotations at Any x Between Zero and Lo

We can also use the pseudolinear system in Fig. 1.9c to determine the vertical
deflection y and rotation y′ at any 0 ≤ x ≤ Lo. Since this system is now linear,
we can use any linear method of analysis, or existing handbook formulas to
do it. For this problem, the moment–area method and handbook formulas are
convenient to use. Since the pseudolinear system is linear, superposition can be
used. That is, if you prefer, you can solve the pseudolinear system in Fig. 1.9c
for each concentrated vertical load separately and superimpose the results.
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It should be pointed out, however, that the length Lo of the pseudolinear
system is not equal to the length L of the original system, and the same applies
for the values of x and xo. The pseudolinear system provides the values y and
y′ at any 0 ≤ x ≤ Lo, but for each x there corresponds a value of 0 ≤ xo ≤ L,
where L is the length of the original member, which can be determined from
Eq. (1.75). We rewrite this equation below:

x0(x) =
∫ x

0

{
1 + [y′]2

}1/2

dx (1.129)

The Simpson’s rule given by Eq. (1.36) in Sect. 1.5 can be used for this purpose.
Let it be assumed, for example, that we used the pseudolinear system in

Fig. 1.9c, we then applied the moment–area method, and we determined the
values of y and y′ at x = 100 in. (2.54 m), and we want to know the value of
xo of the original system in Fig. 1.1a that corresponds to x = 100 in. (2.54 m).
We can do this by using Simpson’s One-Third rule.

If we use this rule and assume n = 10, then Eq. (1.70) yields

λ =
100 − 0

10
= 10 (1.130)

By examining Eq. (1.29), we note that the function f(x) to be used in
Eq. (1.69), is

f(x) =
{

1 + [y′(x)]2
}1/2

dx (1.131)

The values of f(x) at x = 0, 10, 20, . . . , 100, are designed as yo, y1, . . . , y10,
respectively, and they are determined by using Eq. (1.131) in conjunction with
Eqs. (1.65) and (1.67), which are as follows:

G(x) = 1.111(10)−6[x2 − 667, 325.61] (1.132)

y′(x) =
G(x)

{1 − [G(x)]2}1/2
(1.133)

For example, at x = 0, we have

G0 = −0.783922

y′(0) =
−0.783922√

1 − (−0.783922)2
= −1.262641

y0 = f(0) =
√

1 + (−1.262641)2 = 1.610671

At x = 10 in. (0.254 m), we have

G(10) = 1.111(10)−6[102 − 667, 325.61] = −0.741288

y′(10) =
−0.741288√

1 − (−0.741288)2
=

−0.741288
0.671188

= −1.104442

y1 = f(10) =
√

1 + (−1.104442)2 = 1.489896
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In a similar manner, the remaining values of y2, y3, . . . , y10, are determined.
By substituting into Eq. (1.69), we find

x0 =
10
3

[1.610671 + (4)(1.489896) + (2)(1.489079) + (4)(1.487724)

+(2)(1.485832) + (4)(1.483413) + (2)(1.480479)
+(4)(1.477039) + (2)(1.473105) + (4)(1.468699) + 1.463833]

=
10
3

[44.558578] = 148.53 in. (3.77 m)

Therefore, we can conclude that when we calculate the deflection or the rota-
tion of the equivalent pseudolinear system at x = 100 in. (2.54 m), the corre-
sponding position xo on the original nonlinear system is 148.53 in. (3.77 m). In
other words, there is a complete mathematical correspondence between x and
xo which defines the nature of the pseudolinear equivalent system. It should
be also pointed out that the deflection curve of the equivalent pseudolinear
system is identical to the one of the original nonlinear system.

1.8.2 Nonlinear Theory of the Equivalent Systems: Derivation
of Simplified Nonlinear Equivalent Systems

It was stated earlier that the large deformations of flexible members are no
longer a linear function of the bending moment or of the applied load and,
consequently, the principle of superposition is not applicable. This restriction
creates enormous difficulties when we try to solve beam problems with more
elaborate loading conditions. The solution becomes even more complicated
when the moment of inertia of a flexible member varies arbitrarily along its
length. The flexible cantilever beam in Fig. 1.11, loaded as shown, illustrates a
mild case of an elaborate combined loading condition coupled with a variable
depth along the length of the member. A reasonable solution to such types of
problems can be obtained if a simpler equivalent mathematical model is first
obtained that accurately (or exactly) represents the initial complicated math-
ematical problem. This may be accomplished by reducing the initial nonlinear
problem into a simpler equivalent nonlinear problem that can be solved more

Fig. 1.11. Tapered flexible cantilever beam loaded as shown



1.8 General Theory of the Equivalent Systems 41

conveniently by using either pseudolinear analysis as discussed earlier, or by
utilizing available solutions (or solution methodologies) of nonlinear analysis.

The derivation of constant stiffness nonlinear equivalent systems, can be
carried out by using Eq. (1.108) and substituting for the variable stiffness ExIx
the expression given by Eq. (1.109), yielding

y′′

[1 + (y′)2]3/2
= − 1

E1I1
Mx

g(x)f(x)
(1.134)

or
y′′

[1 + (y′)2]3/2
= − Me

E1I1
(1.135)

where
Me =

Mx

g(x)f(x)
(1.136)

Equation (1.135) is the nonlinear differential equation of an equivalent sys-
tem of constant stiffness E1I1, whose bending moment Me at any cross sec-
tion is given by Eq. (1.136). Therefore, the variable stiffness nonlinear system
represented by Eq. (1.134), and the one of constant stiffness represented by
Eq. (1.135), will have identical deflection curves. Therefore, we can conclude
that Eq. (1.135) may be used to solve the variable stiffness problem by ap-
plying nonlinear analysis. In order to make the solution easier, the shape of
the Me diagram represented by Eq. (1.136) may be approximated with a few
straight lines. This procedure will produce a simpler constant stiffness equiv-
alent nonlinear system that is always loaded with a few concentrated loads as
it was accomplished earlier for the pseudolinear system.

The following example illustrates the application of the theory and
methodology.

Example 1.5 The tapered flexible cantilever beam in Fig. 1.12a is loaded with
a distributed triangular load wo = 0.01 kip in.−1(1, 751.27N m−1), and a
concentrated vertical load P = 1 kip (4.448 kN) at its free end. At the free
end B the stiffness EIB = 180 × 103 kip in.2(516, 551N m2). Determine a
simplified nonlinear equivalent system of constant stiffness EIB. The width of
the member is constant and equal to b, and the modulus of elasticity E is
constant.

Solution: The depth hx at any distance x from the free end B of the member
is given by the equation

hx = h
(
1 +

x
2L

)
(1.137)

Therefore, for rectangular cross sections, the moment of inertia Ix at any
distance x from the end B of the member is

Ix =
bh3

x

12
=

bh3

12

[
1 +

x
2L

]3
= IBf(x) (1.138)
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Fig. 1.12. (a) Original tapered cantilever beam loaded as shown. (b) Moment dia-
gram Me of the simplified nonlinear equivalent system of constant stiffness EIB.
(c) Simplified nonlinear equivalent system (1 in. = 0.0254 m, 1 kip = 4, 448 N,
1kip in. = 113 N m)

where hx is given by Eq. (1.137) and

IB =
bh3

12
(1.139)

f(x) =
[
1 +

x
2L

]3
(1.140)

The moment diagram Me of the simplified nonlinear equivalent system of
constant stiffness EIB, can be obtained by using Eq. (1.136). In this equation
the modulus function g(x) is constant and equal to one. In the same equation,
the moment Mx at any distance x from the free end B of the member, can be
determined by using the original member in Fig. 1.12a and applying statics.
For convenience, Table (1.3) has been prepared, where the first column of the
table shows the selected values of x, the second column gives the corresponding
values of f(x) using Eq. (1.140), the third column gives the values of Mx which
are determined by applying statics, and the last column of the table gives
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Table 1.3. Values of f(x), Mx and Me for the indicated values of x (1 in. =
0.0254 m, 1 kip in. = 113 N m)

(1) (2) (3) (4)

x (in) f(x) Mx (kip-in) Me = Mx
f(x)

(kip in.)

0 1 0 0
100 1.1576 −101.67 −87.83
200 1.3310 −213.33 −160.28
300 1.5209 −345.00 −226.84
400 1.7280 −506.67 −293.21
500 1.9531 −708.33 −362.67
600 2.1970 −960.00 −436.96
700 2.4604 −1, 271.67 −516.85
800 2.7440 −1, 653.33 −602.44
900 3.0486 −2, 115.00 −693.76
1,000 3.3750 −2, 666.67 −790.12

the values of Me at the selected values of x, which are obtained by using
Eq. (1.136).

The Me diagram is plotted as shown by the solid line in Fig. 1.12b. A very
reasonable approximation of this diagram would be the straight dahed line BD
drawn as shown in the same figure. By using the straight line approximation
and applying statics, we obtain the simplified nonlinear equivalent system of
uniform stiffness EIB shown in Fig. 1.12c. This system is a great deal simpler
when we compare it to the original system in Fig. 1.12a. To solve the simplified
nonlinear system we can use the pseudolinear analysis discussed earlier in this
section Example 1.4. We can also do it by direct integration of the Euler–
Bernoulli equation given by Eq. (1.135), or by using tables which are prepared
using elliptic integral solution and are available in the literature [85].

In [85, p. 516], a table is provided by the author that can be used to
determine the horizontal, vertical, and rotational displacements at the free
end of a uniform flexible cantilever beam, loaded by a vertical concentrated
load P at the free end. The solution is based on elliptic integrals, and provides
reliable answers for practical applications. By using this table we find that at
the free end of the simplified nonlinear equivalent system shown in Fig. 1.12c,
we have, θB = 65.46o, vertical displacement δB = 679.78 in. (17.27 m), and
horizontal displacement ∆B = 342.11 in. (8.69 m).

In order to compare results, the original system in Fig. 1.12a was solved
by the author and his students by deriving its Euler–Bernoulli nonlinear dif-
ferential equation based on xo = x + ∆, where ∆ is the horizontal displace-
ment of its free end B. Then this equation was integrated twice to determine
the vertical deflection at the free end B. The two constants of integration
were determined by using the boundary conditions of zero rotation and zero
deflection at the fixed end, and the required integrations were carried out by
using Simpson’s rule. The result obtained was δB = 701.0 in. (17.81 m), giving
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a difference of 3.02%. The same problem was also solved by using the Runge–
Kutta method, yielding θB = 67.54◦, a difference of 3.08%, and δB = 708.00
in. (17.99 m), a difference of 4.0%. We note that all these approaches provided
reliable results, but the use of simplified nonlinear equivalent systems is by
far the simplest method to use.

Other cases of such problems can be treated in a similar manner. We should
always remember that even with very crude approximations of the moment
diagram with straight line segments, we will always obtain a reasonable solu-
tion to the problem for practical applications. Some caution, however, should
be taken to retain the general shape of the moment diagram during its approx-
imation with straight line segments. The approximations shown in Figs. 1.9a
and 1.12b are considered to be excellent, and good accuracy, for practical
applications, could be obtained using even fewer straight line segments in
Fig. 1.9a.

1.8.3 Linear Theory of the Equivalent Systems

When the deformations of a member in bending are small, the y′ in Eq. (1.110)
is small when it is compared to one and it can be neglected for practical
applications. On this basis, Eq. (1.110) reduces to the following second order
differential equation:

y′′ = − 1
E1I1

Mx

f(x)g(x)
(1.141)

Also, from Eq. (1.120), we find ze = 1.0, and from Eq. (1.119) we find

M′
e = Me =

Mx

f(x)g(x)
(1.142)

Therefore, Eq. (1.141) can be written as

y′′ = − Me

E1I1
(1.143)

where in this equation the moment Me is given by Eq. (1.142).
Equation (1.142) provides the bending moment of a linear equivalent sys-

tem of constant stiffness E1I1 at any location x of the member. With known
Me, the equivalent shear force Ve and the equivalent loading we of the constant
stiffness equivalent system can be obtained from Eq. (1.142) by differentiation.
That is,

Ve =
d
dx

(Me) =
d
dx

[
Mx

f(x)g(x)

]
(1.144)

we = − d
dx

(Ve) cos θ = − d2

dx2

[
Mx

f(x)g(x)

]
cos θ (1.145)
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where cos θ ≈ 1 when the rotations are small. For more information on this
subject you may refer to the work of the author and his collaborators given
in the references at the end of this book.

The following examples illustrate the application of the theory.

Example 1.6 A tapered cantilever beam of rectangular cross section is loaded
by a vertical load P at the free end B, as shown in Fig. 1.13a. The depth hx

of the member, for convenience, is selected to be

hx =
(

3L − 2x
L

)1/3

h (1.146)

If the deformations of the member are assumed to be small, determine an exact
equivalent system of constant stiffness EIB. Also determine an approximate

Fig. 1.13. (a) Tapered cantilever beam loaded as shown. (b) Exact equivalent
system of constant stiffness EIB. (c) Shear force diagram of the equivalent system.
(d) Moment diagram Me of the equivalent system
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equivalent system loaded with vertical concentrated loads. The modulus of
elasticity E and the width b of the member are constant.

Solution: For the assumed variation of hx, the moment of inertia Ix of the
member is

Ix =
bh3

x

12
=

3L − 2x
L

bh3

12
= IBf(x) (1.147)

where

f(x) =
3L − 2x

L
(1.148)

IB =
bh3

12
(1.149)

At any x from the fixed end of the member, the bending moment Mx is

Mx = −P(L − x) (1.150)

From Eq. (1.142), by substituting for f(x) which is given by Eq. (1.148) and
noting that the function g(x) = 1, we find that the bending moment Me of
the equivalent system of constant stiffness EIB is

Me =
Mx

f(x)
= −PL(L − x)

3L − 2x
(1.151)

where Mx is given by Eq. (1.150).
By differentiating Me once, we find the shear force Ve of the equivalent

system, which is

Ve =
dMe

dx
=

PL2

(3L − 2x)2
(1.152)

Also, by differentiating Ve once, we obtain the loading we of the equivalent
system of constant stiffness EIB. That is

we =
dVe

dx
=

4PL2

(3L − 2x)3
(1.153)

Equations (1.151), (1.152), and (1.153) are plotted as shown in Figs. 1.13d,
1.13c, and 1.13b, respectively. Figure 1.13b illustrates the exact equivalent
system of constant stiffness EIB, loaded as shown, which produces a deflection
curve that is identical to the deflection curve produced by the original system
in Fig. 1.13a.

We proceed now with the second part of the problem which requires to
determine an approximate equivalent system of constant stiffness EIB which
will be loaded with vertical concentrated loads.

An accurate approximation may be obtained by approximating the shape
of Me in Fig. 1.13d with a few straight-line segments, as it was done earlier
for the nonlinear analysis. In order to get numerical results, we assume that
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P = 10 kip (44,480 N) and L = 300 in. (7.62 m). On this basis, Eq. (1.151)
yields

Me = −1, 500(300 − x)
450 − x

(1.154)

Equation (1.154), which represents the exact variation of the moment Me

of the equivalent system of constant stiffness EIB, is plotted as shown by
the solid line in Fig. 1.14a. In this figure, the shape of Me is approximated
with two straight-line segments as shown by the dashed line. By using statics
we plot the shear force diagram as shown in Fig. 1.14b, and the simplified
equivalent system of constant stiffness EIB shown in Fig. 1.14c. If we solve
the approximate equivalent system in Fig. 1.14c, we will find out that its
deflections and rotations are closely identical to those of the original system in

Fig. 1.14. (a) Me diagram with its shape approximated with two straight-line seg-
ments. (b) Shear force diagram Ve. (c) Approximate equivalent system of constant
stiffness EIB loaded with two concentrated loads as shown (1 in. = 0.0254 m, 1 kip =
4, 448 N, 1 kip in. = 112.9848 N m)
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Fig. 1.13a and to those of the exact equivalent system in Fig. 1.13b. However,
the solution of the approximate equivalent system in Fig. 1.14c is very simple
when it is compared to the solution of the systems in Fig. 1.13a and 1.13b.

By using the approximate equivalent system in Fig. 1.14c and applying
the moment–area method, we find that the deflection δB at the free end B is
105, 022.44/EIB, and the rotation θB at the same end is 999.975/EIB radians.
The units of E and IB are kip in.−2 and in.4, respectively. Compared to the
exact solution, the error by using the two straight-line approximation for Me,
would be less than 1.5% for the deflection, and much less for the rotation.
However, if required, we can improve the accuracy by using more straight-line
segments for the approximation of Me.

Example 1.7 A simply supported rectangular stepped beam of variable cross
section, is loaded as shown in Fig. 1.15a. By approximating the shape of the
Me diagram with straight-line segments, determine an approximate equivalent
system of uniform stiffness EII, where II, is the moment of inertia of the
member at its end B. The width b of the member and its modulus E are
constant.

Solution: At various locations x, where x is measured from the left support A,
the values of Mx, f(x), and Me are calculated and they are shown in Table 1.4.
The moment diagram Mx of the original system in Fig. 1.15a, is plotted in
Fig. 1.15c using the values of Mx in Table 1.4. The variation f(x) of the moment
of inertia Ix in terms of I1, where I1 is the moment of inertia at the end B, is
plotted as shown in Fig. 1.15b.

By using the values of Me = Mx/f(x) shown in the last column of Ta-
ble 1.4, the moment diagram Me of the equivalent system of constant stiffness
EI1 is shown plotted by the solid line in Fig. 1.16a. The shape of the Me dia-
gram is now approximated with four straight-line segments as shown by the
dashed line in the same figure. By applying statics, using the approximated Me

diagram, we plot the equivalent shear force diagram shown in Fig. 1.16b. By

Table 1.4. Calculated values of Mx, f(x), and Me at various locations x from the
left support A (1 ft = 0.3048 m, 1 kip ft = 1, 355.75 N m)

x Mx Me = Mx/f(x)
(ft) (kip ft) f(x) (kip ft)

0 0 17.560 0
5 37.5 13.820 2.71

10 50.0 10.650 4.69
10 50.0 2.745 18.22
12 48.0 2.300 20.85
14 42.0 1.908 22.00
15 37.5 1.728 21.70
18 18.0 1.260 14.27
20 0 1.000 0
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Fig. 1.15. (a) Simply supported stepped beam of variable stiffness. (b) Moment
of inertia variation. (c) Moment diagram Mx of the initial system in Fig. 1.15a.
(1 ft = 0.3048 m, 1 kip ft−1 = 14, 593 N m−1, 1 kip ft = 1, 355.75 N m)

using this shear force diagram and applying static, we obtain the approximate
equivalent system of constant stiffness EI1 shown in Fig. 1.16c.

Note that in addition to the concentrated vertical loads, a concentrated
moment equal to 12.72 kip ft (18.22− 5.5 = 12.72) (16,990.74 N m) must also
act at point C of the equivalent system in Fig. 1.16c. This is justified because in
this case there is an abrupt change of the bending moment Me at point C. This
means that a step in the original system in Fig. 1.15a requires a concentrated
moment at the analogous point of the uniform stiffness equivalent system, in
order to compensate for the elimination of the step.

By using the equivalent system in Fig. 1.16, deflections and rotations can
be determined by using linear methods of analysis or handbook formulas.



50 1 Basic Theories and Principles of Nonlinear Beam Deformations

Fig. 1.16. (a) Moment diagram Me with its shape approximated with four straight-
line segments. (b) Equivalent shear force diagram. (c) Equivalent system of constant
stiffness EI1(1 ft = 0.3048 m, 1 kip ft = 1, 335.75 N m)

These rotations and deflections will be closely identical with the ones at cor-
responding points of the original system in Fig. 1.15a.

Example 1.8 The depth dx and the moment of inertia variation Ix of the elas-
tically supported beam in Fig. 1.17a, are

dx = (
L + 3x

L
)1/3d1 (1.155)

Ix =
L + 3x

L
I1 = f(x)I1 (1.156)
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Fig. 1.17. (a) Original variable stiffness member. (b) Me diagram with its shape
approximated with five straight-line segments. (c) Equivalent shear force dia-
gram. (d) Equivalent system of constant stiffness EI1(1 ft = 0.3048 m, 1 kip =
4, 448.222 N, 1 kip in. = 113 N m, 1 in. = 0.0254 m, 1 lb in−1 = 175.118 N m−1)
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where d1 is the depth of the member at support A, I1 = bd3
1/12 (where b is

the constant width of the member), is the moment of inertia at support A,
and x is measured from support A. The modulus of elasticity E of the member
is constant, the stiffnesss EI1 = 90×106 kip in.2, and at support A the spring
stiffness kA = 400 kip in−1 (70,050.74 kN). Determine the equivalent system
of constant stiffness EI1. The length L = 200 in. (5.08 m).

Solution: If xA is the elastic reaction from the spring at support A, then by
considering the free body diagram of the beam and taking moments about
the end point B, we obtain∑

MB = −200XA + (100)(200)(100) = 0

XA = 10 kip in. 44, 482.22

The values of f(x), Mx, and Me = Mx/f(x) are calculated at various positions
x from support A, and they are as shown in Table 1.5.

The values of Me given in the last column of Table 1.5 are used to plot
the Me diagram shown by the solid line in Fig. 1.17b. The shape of Me is
then approximated in the usual way with five straight-line segments as shown
in the same figure. Note the values of the approximated Me at the juncture
points of the straight-line segments. Using these values of the approximated
Me and applying statics, we determine the equivalent shear force diagram
shown in Fig. 1.17c. From the equivalent shear force diagram in Fig. 1.17c, by
using statics, we determine the equivalent system of constant stiffness EI1,
shown in Fig. 1.17d.

There is however, an additional boundary condition at support A that
must be satisfied. At this support, the vertical displacement δA of the spring
of stiffness kA in Fig. 1.17a, must be equal to the vertical displacement δAe of
the spring of stiffness kAe of the equivalent system in Fig. 1.17d. We know that

δA =
XA

kA
(1.157)

Table 1.5. Values of f(x), Mx, and Me at various positions x from support A
(1 in. = 0.0254 m, 1 kip in. = 113 N m)

x (in.) f(x) Mx Me = Mx/f(x)
(kip in.) (kip in.)

0 1.000 0 0
25 1.375 218.8 159.0
50 1.750 375.0 214.0
75 2.125 468.0 221.0

100 2.500 500.0 220.0
125 2.875 468.0 163.0
150 3.250 375.0 115.0
175 3.625 218.8 60.4
200 4.000 0 0
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and
δAe =

XAe

kAe

(1.158)

Thus, from Eqs. (1.157) and (1.158), for δA = δAe , we must have

XA

kA
=

XAe

kAe

(1.159)

Thus, Eq. (1.159) yields

kAe = kA
XAe

XA
(1.160)

By using again statics, the elastic reaction XAe of the equivalent spring
at support A of the equivalent system in Fig. 1.17d, was found to be equal to
8.67 kip (38,566.085 N). On this basis, Eq. (1.160) yields

kAe = (400)
8.67
10

= 346.8 kip in.−1(60.731 × 106 N m−1)

Now the derivation of the equivalent system of constant stiffness EI1 is
completed and shown in Fig. 1.17d. The elastic line of this system will be
practically identical to the one of the original system in Fig. 1.17a. The only
approximation we have introduced is the approximation of the Me diagram
with five straight-line segments as shown in Fig. 1.17b. If you observe this
diagram closely, you note that its general shape is well retained and, therefore,
the error we introduce to the actual deflections and rotations is very small.
Even a two- or a three-line approximation would give very reasonable results
for practical applications.

By using the equivalent system in Fig. 1.17d and applying the conjugate
beam method, we find that the vertical deflection at the distance x = 70
in. (0.778 m) from support A is 0.02542 in. (0.000646 m). The exact value is
0.02535 in. (0.000644 m), yielding an error of 0.28%. For practical purposes
this error is considered to be negligible. In many cases, much higher errors
are permissible for practical applications.

Example 1.9 A statically indeterminate tapered beam made out of steel is
loaded as shown in Fig. 1.18a. The width b of the member is 6 in. (0.1524 m),
and the depth h = 10 in. (0.254 m). By applying the method of the equivalent
systems, determine the vertical reaction at support A. The constant modulus
of elasticity E = 30 × 106 psi (206.84 × 109 Pa).

Solution: The variation of the depth hx at any distance x from support A is

hx = h(1 +
x
L

) (1.161)

and the expression for the variation of the moment of inertia Ix is

Ix =
bh3

x

12
= IA(1 +

x
L

)3 (1.162)
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Fig. 1.18. (a) Tapered statically indeterminate steel beam. (b) Tapered cantilever
beam loaded with the distributed loading and the redundant reaction RA at the free
end A (1 ft = 0.3048 m, 1 kip ft−1 = 14, 593.18 Nm−1)

or
Ix = IAf(x) (1.163)

where

IA =
bh3

12
is the moment of inertia at the left support A, and

f(x) = (1 +
x
L

)3 (1.164)

represents the variation of the moment of inertia Ix.
Since the beam is statically indeterminate, the reaction RA at the support

A is taken as the redundant quantity. On this basis, we now have a cantilever
beam loaded with the distributed load w and the reaction RA as shown in
Fig. 1.18b. The linear method of the equivalent systems may be applied here by
using the cantilever beam in Fig. 1.18b and deriving two equivalent systems–
one by using only RA as the applied loading, and a second one by using only
the distributed load w as the applied load.

The procedure is illustrated in Table 1.6. The first column of the table
includes selected values of x, the second column gives the values of f(x) at
these points, the third column gives the values of Mx produced only by the
application of RA, and the fourth column shows the values of the moment Me

of the equivalent system of constant stiffness EIA produced by the application
of RA. The fifth column of the table gives the values of Mx produced only by
the application of the distributed load w, and the last column of the table gives
the values of the moment Me of the equivalent system of constant stiffness
EIA produced by the application of the load w. The reader may verify the
values in the table in order to become familiar with the methodology.
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Table 1.6. Values of f(x), Mx, and Me caused independently by the reaction RA

and loading w, for the cantilever beam in Fig. 1.18b (1 ft = 0.3048m, 1 kip ft =
1, 355.75 N m, 1 kip ft−1 = 14, 593.18 N m−1)

(1) (2) (3) (4) (5) (6)
x (ft) f(x) Mx due Me due Mx due Me due

to RA to RA to w to w
(kip ft) (kip ft) (kip ft) (kip ft)

0 1.0000 0 0 0 0
5 1.5880 5 RA 3.1486 RA −25 −15.7431
10 2.3704 10 RA 4.2187 RA −100 −42.1870
15 3.3750 15 RA 4.4444 RA −225 −66.6667
20 4.6296 20 RA 4.3200 RA −400 −86.4006
25 6.1620 25 RA 4.0571 RA −625 −101.4281
30 8.0000 30 RA 3.7500 RA −900 −112.5000

By using the values of Me in the fourth column of Table 1.6, the equivalent
moment diagram Me for the reaction RA is plotted as shown in Fig. 1.19a. The
approximation of its shape with four straight-line segments leads to the equiv-
alent system for RA shown in Fig. 1.19c. In a similar manner, by using the
values of Me in the last column of the table, the equivalent moment diagram
Me for the distributed load w is shown plotted in Fig. 1.20a. The approxi-
mation of its shape with three straight-line segments leads to the equivalent
system for w shown in Fig. 1.20c.

If we use the equivalent systems in Figs. 1.19c and 1.20c and determine
each time the vertical displacements δA

′ and δA
′′, respectively, the vertical

reaction RA at the support A of the original system in Fig. 1.18a may be
determined by satisfying the boundary condition

δA = δA
′ + δA

′′ = 0 (1.165)

where δA is the deflection at A of the original system, which is zero.
The deflection δA

′ may be determined by applying the moment–area
method. It can be accomplished by using the approximated Me in Fig. 1.19a,
dividing it by EIA, and taking the first moment of the Me/EIA area between
points A and B, about point A. On this basis, we find

δA
′ =
[
1
2
(3RA)(4)

(
2
3

)
(4) + (3RA)(6)(7)

+
1
2
(1.4RA)(6)(8) + (4.4RA)(10)(15)

+
1
2
(0.65RA)(10)(23.3333) + (3.75RA)(10)(25)

]
(25)3

=
1

EIA
[16RA + 126RA + 33.6RA + 600RA + 75.8332RA + 937.5RA] (12)3

=
1, 848.93RA

EIA
(12)3
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Fig. 1.19. Equivalent system for RA. (a) Me diagram with its shape approximated
with four straight-line segments. (b) Equivalent shear-force diagram. (c) Equivalent
system of constant stiffness EIA(1 ft = 0.3048 m)

In a similar manner, by using the approximated Me diagram in Fig. 1.120a,
dividing it by EIA, and taking its first moment about A, we find

δA
′′ = − 1

EIA

[
1
2
(25)(7)

(
2
3

)
(7) + (25)(12)(13) +

1
2
(60)(12)(15)

+(85)(11)(24.5) +
1
2
(27.5)(11)(26.3333)

]
(12)3

= −35, 271.11
EIA

(12)3
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Fig. 1.20. Equivalent system for distributed load w. (a) Me diagram with its
shape approximated with three straight-line segments. (b) Equivalent shear-force
diagram. (c) Equivalent system of constant stiffness EIA(1 ft = 0.3048 m, 1 kip ft =
1, 355.75 N m, 1 kip = 4, 448 N)

By substituting the values of δA
′ and δA

′′ into Eq. (1.165) and solving for RA,
we find

1, 848.93RA

EIA
(12)3 − 35.271.11

EIA
= 0

or
RA = 19.08 kip (84.85 × 103 N)
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The value of RA obtained here by using the indicated approximations for
Me should be very accurate–well within one percent. Better accuracy may be
obtained by using more straight lines to approximate Me.

Very reasonable results may be obtained even with crude approximations
of the shape of Me. For example, the approximation of the Me diagram in
Fig. 1.20a with one straight line AC, yields

δ′′A =
1

EIA

[
1
2
(120)(30)(20)

]
(12)3

= −36,000
EIA

(12)3

If it is compared to the value obtained earlier by using three straight-line
segments, we find that the difference in δA

′′ is only 2.07%, and the difference
in RA would be 2.04%. Similar accuracy may be obtained if we approximate
the Me in Fig. 1.19a with two or three straight-line segments instead of four.

Other problems of this nature may be solved in a similar manner. See
also [2, 3, 5, 6, 84] at the end of this text.

Problems

1.1 By using Simpson’s One-Third rule, evaluate the integrals

δ =
∫ 20

0

(x + 1)2dx, δ =
∫ 20

0

(x − 5)2dx,

δ =
∫ 100

0

√
x

2
dx, δ =

∫ 100

0

(
√

x
2

)3dx

1.2 Repeat Example 1.1 by assuming that P = 0.6 kip (2.67 kN) and compare
the results.
Answer : ∆B = 281.29 in. (7.145 m), θB = 59.42◦.

1.3 Repeat Example 1.1 by assuming that P = 1.4 kip (6.23 kN) and compare
the results.
Answer : ∆B = 557.22 in. (14.66 m), θB = 83.23◦.

1.4 Repeat Example 1.2 by assuming that the beam in Fig. 1.6 has a uniform
cross section throughout its length and compare the results.

1.5 Repeat Example (1.3) by assuming that ∆(x) is given, (a) by Eq. (1.83),
and (b) by Eq. (1.84). Compare the results.

1.6 For the uniform flexible beam shown in Fig. 1.1a, determine a pseudolin-
ear system of constant stiffness EI. Assume that P = 0.6 kip (2.67 kN),
L = 1,000 in. (25.4 m), and EI = 180 × 103 kip n2(516.54 × 103 N m2).
By using the pseudolinear system, determine the rotation and vertical
deflection at the free end B. Also determine the horizontal displacement
of the free end B.
Answer : δB = 629.0 in. (15.98 m), ∆B = 281.29 in. (7.145 m), and
θB = 59.42◦.
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1.7 By using the pseudolinear system derived in Problem 1.6, determine the
rotations and vertical displacements at x = 100 in. (2.54 m) and x = 300
in. (7.62 m). Also determine what values of xo, in the original system,
correspond to the indicated values of x.

1.8 Repeat Problem 1.6 by assuming that P = 1 kip (4.448 kN) and compare
the results.

1.9 The tapered cantilever beam in Fig. 1.6 is loaded with a concentrated load
P = 2.5 kip (11.12 kN) at the free end. By using a pseudolinear equiv-
alent system of constant stiffness, determine the vertical and horizontal
displacements δB and ∆B, respectively, at the free end B of the beam,
as well as the rotation θB at the same end. The length L = 1,000 in.
(25.4 m), EIB = 180,000 kip in2(516.54 × 103 N m2), and taper n = 1.5.
Answer : δB = 720.82 in. (18.31 m), ∆B = 436.60 in. (11.10 m), and
θB = 78.44◦.

1.10 Repeat Problem 1.9 by assuming that P = 1.5 kip (6.67 kN), and compare
the results.
Answer : δB = 622.75 in. (15.82 m), ∆B = 298.0 in. (7.145 m), and
θB = 65.86◦.

1.11 Repeat Problem 1.9 by assuming that taper n = 2 and P = 1 kip
(4.448 kN). Compare the results.
Answer : δB = 334.47 in. (8.50 m), ∆B = 78.42 in. (1.99 m), and
θB = 36.14◦.

1.12 Solve Problem 1.9 by using a simplified nonlinear equivalent system of
constant stiffness EIB that is loaded with one equivalent concentrated
load Pe at the free end B of the beam. Apply pseudolinear analysis to
solve the simplified nonlinear equivalent system. Compare the results.

1.13 Solve Problem 1.9 with P = 2.0 kip (8.889 kN).
1.14 Solve Problem 1.9 with P = 1 kip (4.448 kN), and n = 1.80.

Answer : δB = 401.23 in. (10.19 m), ∆B = 113.26 in. (2.88 m), and
θB = 42.39◦.

1.15 Solve the problem in Example 1.5 by assuming that P = 1.5 kip (6.672 kN)
and wo = 0.02 kips in.−1(3, 502.54N m−1).

1.16 The uniform flexible cantilever beam in Fig. P1.16 is loaded by two con-
centrated loads located as shown in the figure. Determine a simplified
nonlinear equivalent system of constant stiffness that is loaded with only

Fig. P1.16.
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one concentrated equivalent vertical load at its free end C. The modulus
of elasticity E = 30 × 106 psi (206.84 × 106 kPa).

1.17 By using the simplified nonlinear equivalent system obtained in Problem
1.16 and applying pseudolinear analysis, determine the vertical deflection
δC, the horizontal displacement ∆C, and rotation θC, at its free end C.
Answer : δC = 68.84 in. (1.7485 m), ∆C = 29.51 in. (0.7496 m), and
θC = 60◦ (1.0462 rad).

1.18 Repeat the problem in Example 1.6 by assuming that the length L = 600
in. (15.24 m) and compare the results.

1.19 Repeat the problem in Example 1.7 by assuming that w = 2 kips ft−1

(29, 186.36N m−1), and compare the results.
1.20 By using the constant stiffness equivalent system obtained in Example 1.7,

determine the rotation θC and vertical displacement δC at midspan C of
the member.

1.21 By using the constant stiffness equivalent system obtained in Example 1.8,
determine its deflection and rotation at midspan.

1.22 Repeat the problem in Example 1.8 by assuming that w = 200 lb in.−1

(35, 026N m−1).
1.23 Repeat the problem in Example 1.9 by assuming that w = 4 kips ft−1

(58, 372.72N m−1).
1.24 Repeat the problem in Example 1.8 by approximating the Me diagram

(a) with three straight-line segments, and (b) with only two straight-line
segments appropriately selected. In each case, solve for the deflection and
rotation at midspan and compare the results.

1.25 The variable stiffness steel beams in Fig. P1.25 are loaded as shown.
The cross section of each member is rectangular with width b = 8 in.

Fig. P1.25.
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(0.2032 m) and depth h1 = 16 in. (0.4064 m). By applying the linear
theory of equivalent systems, determine in each case an equivalent system
of uniform stiffness EIA, where E = 30 × 106 psi (206.84 × 109 Pa) is the
constant modulus of elasticity, and IA is the moment of inertia at the
free end A. By using in each case the equivalent system, determine the
vertical deflections at points A and C.
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