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Drude model

® Drude model : Lorenz model (Harmonic oscillator model) without restoration force
(that is, free electrons which are not bound to a particular nucleus)

Linear Dielectric Response of Matter

Lorentz model (harmonic oscillator model)
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Charges in a material are treated as harmonic oscillators
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Conduc et |

The equation of motion of a free electron (not bound to a particular nucleus; C =0),
d2r - m, dr — dv -~ =
m,—=-Cr———-¢eE = m E+ m,yv=—eE

Lorentz model ,,('T'= ~+ relaxation time ~ 107* S)
(Harmonic oscillator model) /4

If C =0, itis called Drude model -~~~

The current density is defined .
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J=—-NeV with units of[ ¢ }

Substituting in the equation of motion we obtain '
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Assume that the applied electric field and the conduction current density are given by

Local approximation

E = E, exp(—i ot J=J exp(—iwt) <o _ _
o EXp(~iw1) o&Xp(~iwt) < to the current-field relation

Substituting into the equation of motion we obtain .
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Multiplying through by exp(+iwt):
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For static fields (a) = 0) we obtain .

B Ne? ) - B N &2
J :[ ¢ )E - 6E = o==Y = suatic conductivity
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For the general case of an oscillating applied field .

J=|—2 _|E = o, E o, = dynamic conductivity
1- (ioly)

For very low frequencies, (a)/ 7/)<< 1, the dynamic conductivity is purely real and

the electrons follow the electric field.

As the frequency of the applied field increases,the inertia of electrons introduces

a phase lag in the electron response to the field, andthe dynamic conductivity is complex.

For very high frequencies, (a)/ 7/)>> 1, the dynamic conductivity is purely imaginary
and the electron oscillations are 90° out of phasewith the applied field.



Propagation of EM Waves In

Maxwell's relations give us the fomgn for metals

- 10E 1 oJ
VIE=S—S+—5— oo P= 0, J %0

¢ ot gy’ o

But j=|—2 _|E
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Substituting in the wave equation we obtain :
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The wave equation is satisfied by electric fields of the form:
E = E, exp[i(l?-?—a)t)]




Consider the case where @ is small enough that k* is given by :
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In the metal, for a wave propagating in the z — direction

E = Eyexp(—k,z)exp|i(kyz—at)]= E, exp(—%)exp[i(kRz—wt)]
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The skin depth o is given by O = e - / 2 — /2500
k; O @ Hy ow

For copper thestatic conductivity o = 5.76x10" Q'm™ =5.76x10’
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Now consider again the general case'
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The plasma frequency is defined :
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The refractive index of the medium is given by
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‘ Plasma Frequency I

If the electrons in a plasma are displaced from a uniform background of
lons, electric fields will be built up in such a direction as to restore the
neutrality of the plasma by pulling the electrons back to their original
positions.

Because of their inertia, the electrons will overshoot and oscillate
around their equilibrium positions with a characteristic frequency
known as the plasma frequency.

E.=0,/¢,=Ne(dXx)/g, : electrostatic field by small charge separation 6 x

X = 0X, exp(—le,t) : small-amplitude oscillation
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n’=(ng+in)’ =1-——"
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n’ = 1—0)—2 by neglecting y, valid for high frequency (o >> )
For @ <w,, nis complex and radiation is attenuated.
For @ > w,, n isreal and radiation is not attenuated(transparent).
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The critical wavelengths A, below which the alkali metals become transparen,

and above which they are opague and highly reflecting

Metal . Lithium Sodium Potassium Rubidium Caesium
(Ae)obs - 2050 A 2100 A 3150 A 3600 A 4400 A
(Ao)eale 16500 A 2100 A 2900 A 3200 A 3800 A
N &

s 0-54 1-00 0-85 0-79 0-87

Born and Wolf, Optics, page 627.



Refractive index ng
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Figure 27-3  Angular frequency dependence
of the refractive index nx and the extinction
coefficient n; for copper. Values assumed are
w =163 X 105 and y = 4.1 X 1057
The crossover point of the carves coincides
with the plasma frequency.



Dielectric constant of metal : Drude model

g(w)=¢, +ic, =n’
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Dielectric constant at o = o,
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ldeal case : metal as a free-electron gas

Dielectric constant of a free electron gas

* no decay (infinite relaxation time)
* NO interband transitions

2

a)]?
>e(w) = 1—?

T—>0
-0

&(w)




Plasma waves (plasmons)

What is a plasmon ?
« Compare electron gas in a metal and real gas of molecules

« Metals are expected to allow for electron density waves: plasmons

Bulk plasmon

. I\/Ietals_gllow for EM wave propagation above the plasma frequency

They become transparent!

Surface plasmon

Z
E ;
Dielectric /\ /\/\/-\ Strong local field

Metal = LTI ERE ==
@
H

Note: SP is a TM wave!

« Sometimes called a surface plasmon-polariton (strong coupling to EM field)



Plasmo

—ns

Plasma oscillation = density fluctuation of free electrons

+ + +
Plasmons in the bulk oscillate at o, determined by

the free electron density and effecti THass
drude
\; me,

-
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— Plasmons confined to surface_s that can interact
with light to form propagating “surface plasmon
polaritons (SPP)”

drude 1 N82
= = - . @ article = A
= Confinement effects resuit In re%hiaﬁs SPP modes
In nanoparticles



Dispersion relation for EM waves in electron gas (bulk plasmons)

Determination of dispersion relation for bulk plasmons

* The wave equation is given by:

* Investigate solutions of the form:
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» Dielectric constant: ¢, =1-—
0

 Dispersion relation:

@ = w(k)

Note1: Solutions lie above light line
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No allowed propagating modes
(imaginary k)
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Note2: Metals: ho, =~ 10 eV; Semiconductors ho, < 0.5 eV (depending on dopant conc.)



Dispersion relation of surface-plasmon
for dielectric-metal boundaries

E;LE: SN, dielectric (2,20)

. R s e w
Hy i i; ;i “ i’ : i*i i metal (g,<0)




Dispersion relation for surface plasmon polaritons

Solve Maxwell's equations with boundary conditions
« We are looking for solutions that look like:

Dielectric  &d /{ /\ /\ /\ i I

Metal g~ o = X
m H
TM wave
- Mathematically: 5., |H,=(0. H}..d,O)EXPf(kaﬂLA’ z—ot)
Eﬂ, =(E.0,E ; expi(k x+k z—ot)
2 <0 H :(0 H””,U]E‘{p (kx+k,,z—ot)
‘E :(‘E-‘r.'r??G?"E‘_-'m)E.KpEr("[’%'J.md":-_F‘1 —({Jf)

+ Maxwell's Equations in medium i (i = metal or dielectric):
cH OFE

V.gE=0 V-H=0 VxE=—pu,—
Ot "o

* At the boundary (continuity of the tangential E,, H,, and the normal D,):
Exm = Exd Hym = Hyd ngzm = 8dEzd



Dispersion relation for surface plasmon polaritons

» Start with curl equation for H in medium i
oE,

ot =)
where H. = (0,Hlj,f,{))e};pi(kﬂ.xw’fﬂ.: —a)r]
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 E,, across boundary is continuous: Exm = Exd |
« H,, across boundary is continuous: Hym = Hyd A &
I i ::> zm_ _ zd
' ith: zm — zd
Combine with: E—Hym = . Hyd ( gm gd
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Dispersion relation for surface plasmon polaritons

Relations between k vectors

» Condition for SP’'s to exist: k, —

» Relation for k, (Continuity E;, H,) © £, =k,
A

true at any boundary

2
@

- Forany EM wave: k° =g, (_j =k’ +k’
c

» Both in the metal and dielectric: £, =k, = \/5}.( ‘

@ | E,E,
=)k =— [
k., c\é&,t+éE,

Z 1 IJE‘{:-Z&il Ear — ]_
Example }
l k e =-1

Z :
Example \ Alr

wherek =k =k

SP Dispersion Relation




Dispersion relation for surface plasmon polaritons
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For a bound SP mode:
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Plot of the dispersion relation

* Plot of the dielectric constants: < 1 Dielectric
d

* Plot of the dispersion relation:
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Surface plasmon dispersion relation
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