
2310H  Sequences and series 
 We want to use limit processes to extend our reach from the familiar to the unfamiliar, by 
approximating some exotic functions and numbers in terms of more familiar ones.  E.g. we will 
approximate irrational numbers like e and π, by simple rational numbers.  And we will 
approximate exotic functions like ex, ln(1+x), sin(x), and arctan(x), by polynomials.  Remember, 
to say some irrational number is a limit of rational numbers just means we can approximate the 
irrational number as closely as we like by rational numbers.  Also to say a function is a limit of 
polynomials means we can approximate the given function as closely as we like by polynomials.  
For this we must decide what it means for two functions to be near each other.  Does it mean all 
their values are uniformly near?  I.e. that there is not much distance between their graphs?”  Or 
does it mean there is not much area between their graphs?  Or something else?  We will discuss 
the various choices below. 
 
Definition:  If S is any set, a sequence with values in S is simply a function a:N-->S where N is 
the "natural numbers", i.e. the positive integers.  We denote the value a(n) by an and display the 
whole function as its sequence of values:  a1,a2,....,an,..... 
 
Remark:  It is not essential that the sequence begin with 1; it could begin with 0, or -4, or 1000. 
The important thing is that it begin somewhere and go on up to infinity.  I.e. it is only infinite in 
one direction, upwards. 
We often use letters to denote the values of a sequence that remind us of the nature of the 
elements of the set S.   
 
Example 1:  If S is the real numbers we might call the elements xn, and write the sequence as 
{xn} or x1,x2,x3,....,xn,.... 
 
Example 2: If the set S is the Euclidean plane R2, we might write {pn} or p1,p2,p3,....,pn,.... for 
a sequence of points in the plane. 
 
Example 3: If the set S is the set of continuous functions on the interval [a,b], we might write  
f1,f2,....,fn,.... or {fn} for the sequence of functions. 
 
In all three of our examples, we can add, subtract, and multiply our elements by real numbers.  
We want to define next a notion of "size" or "length" or "absolute value" for our elements. 
 
ex. 1: For real numbers define the absolute value of a number x to be |x| = its absolute value. 
 
ex.2. For a point p =(x,y) in the plane, define its absolute value to be the Euclidean distance from 
the origin, |p| = sqrt(x2+y2). 
 
ex. 3.  For a function f on [a,b] there are several natural choices, which yield different results.  
The one suited to our present purposes is called the "sup norm", which is the maximum of all the 
absolute values |f(x)|, i.e. ||f|| = the global maximum of the function |f|.  Thus ||f|| is the maximum of 
the absolute values |f(x)| of f evaluated at every point x in [a,b]. 



 
Thus ||f|| is the height of the highest point of the graph of the function y = |f(x)|, over the interval 
[a,b].  We know from a big theorem in my 2300H notes, that there exists such a maximum.  
These notions of length lead a notion of distance between two objects, and hence of a notion of 
"epsilon neighborhood" centered at one object: 
 
ex.1:  Given two real numbers x,y, their distance apart is |x-y|.  For e > 0, the e - neighborhood of 
x, is the open interval (x-e, x+e) of all real numbers closer to x than e. 
 

 
ex.2:  Given two points in the plane p1 = (x1,y1), and p2 = (x2,y2), their distance apart is |p1-
p2| = sqrt([x1-x2]2 + [y1-y2]2).   Given e > 0, the e - neighborhood of p, is the open disc of 
radius e, centered at p, of all real points in the plane closer to p than e, in the usual "Euclidean 
norm". 
 

 
Remark:  We get the same notion of convergence in the plane, but not exactly the same notion of 
distance, by saying that the distance between two points p1 = (x1,y1), and p2 = (x2,y2), is the 
maximum of |x1-x2|, or |y1-y2|.  I.e. by seeing how far apart their x and their y coordinates are, 
and taking the larger difference as the distance between the points. 
 
Then given e > 0, the e - neighborhood of p, would be the open square of radius e, centered at p, 
all real points in the plane closer to p than e, in the "maximum norm". 



 
 
There is a third natural notion of length and distance for points in the plane, called the “sum 
norm”, where the length of p = (x,y) = |x|+|y| is the sum of the absolute values of the coordinates.  
Then the distance from p1 = (x1,y1), to p2 = (x2,y2) is  |x1-x2|+|y1-y2|, and the e - nbhd of p, is 
a “diamond” of radius e, centered at p: 

 
 
ex.3:  The three definitions of “length” we discussed in the plane all have generalizations to 
“size” of functions.  The Euclidean norm generalizes to the "L2-norm" where a function has size 

= ( f 2 )1/ 2
a

b

! , the square root of the integral of its square.  If we think of a function as a “vector” 
with an infinite number of components, this definition yields a related definition of “dot product”  
f •g = f (x)g(x)dx

a

b

!  which allows one to  talk about the “angle” between two functions and 
perpendicularity of functions.  This particularly use in approximating functions by sines and 
cosines, called the theory of “Fourier series”. 
 The sum norm generalizes to | f |

a

b

! , the integral of the absolute value.  This was Matt's 
suggestion, and it is very useful in extending the notion of integrability of functions to more 
general functions than the ones Riemann’s definitions works for.  Convergence using this notion 
of length, the “L1-norm”, leads to the theory of “Lebesgue integration”. 
 
 For our purpose of approximating functions by polynomials, it is useful to choose the 
generalization of the "max norm" we defined above.  Thus the distance between two functions f,g 
in the max norm, is defined as  ||f-g|| = maximum of all differences  |f(x)-g(x)|, for all x in [a,b]. 
For given e>0, the resulting e - nbhd of f, is represented by a strip extending a distance e both 
above and below the graph of f.  I.e. a function g is within a distance e of f if and only if its graph 
lies entirely in that strip. 



 

 
 
 
Remarks:  All our notions of length satisfy these basic properties: 
 
(i) "triangle inequality"  |a+b| ≤ |a| + |b|,  |a-b| ≥ |a| - |b|. 
 
(ii)  homogeneity:  |ca| = |c||a|, where c is a real number. 
e.g.  ||cf|| = |c| ||f||, for a function f and a constant c. 
 
(iii) non degeneracy:  |a| = 0 if and only if a = 0. 
 
 
 Although all three norms in the plane give the same notion of convergence, this is not true 
for their generalizations to functions.  Here the sup norm is more restrictive than the L1 or L2 
norms.   
 
Exercise: If two continuous functions on [a,b] functions are everywhere within e of each other 
then their integrals are also within e(b-a) of each other hence also close.  [Hint: Recall the 
monotonicity property of integrals, that f(x) ≤ g(x) for all x in [a,b], implies f

a

b

!  ≤ g
a

b

! .] 
 
In particular a function which is everywhere close to zero, has integral which is also close to zero.  
I.e. if a function is small in the sup norm, it is also small in the L1 norm.  On the other hand a 
function can have integral very close to zero and yet can have some very large values.  Hence a 
function can be small in the L1 norm and yet be very large in the sup norm.  Here is one such: 

 



 
This function has sup norm equal to n, and yet has integral 1/(2n).  So the sup norm approaches 
infinity while the L1 norm approaches zero.  Thus convergence is different in these two norms. 
 
 Thus it is harder for functions to approximate other functions in the sup norm, which 
means that the limit function will retain more properties of the approximating functions.  This 
suits us since we are interested in approximating very good functions like sin and ex, which have 
the same good properties of continuity and differentiability as the approximating functions we 
will use, the polynomials.  (If on the other hand we wanted to define the notion of integral for 
functions with lots of discontinuities, we would use a norm like the integral norm which allows 
very continuous functions to approximate very discontinuous ones.) 
 
Definition:  A sequence {sn} in S, (where S is one of our three sets equipped with the 
appropriate distance), converges to an element s∞ of S, if and only if, for every e>0, there exists 
a positive integer N, such that whenever n ≥ N, then |sn-s∞| < e. 
 
Remark:  This means that no matter how small an e- neighborhood we describe around our limit 
point s∞, after a certain element sN, all the rest of the sequence lies in that neighborhood.  In 
particular if a sequence converges to s∞, and we form a new sequence by throwing away the first 
billion elements of our old sequence, the new sequence also converges to s∞.  Thus whether or 
not a sequence converges, and what the limit is, is unaffected by any given finite number of 
elements of the sequence.   
 In particular, if a sequence converges to s∞, then the new sequence formed by adding in a 
billion or so 1’s at the beginning of the sequence, still converges to the same limit.  Thus there is 
no reason to expect to able to guess the limit of a sequence just by looking at the first hundred 
trillion elements or so. 
 
Remark:  Because all our notions of length satisfy the triangle inequality, it follows that the sum 
of two convergent sequences converges to the sum of the limits, and homogeneity implies that 
multiplying the elements of a sequence by a constant multiplies the limit by that constant.  Non 
degeneracy implies that the limit of a sequence is unique, i.e. the same sequence cannot converge 
to two different limits.  Of course these are intuitive properties we might expect.  And they are 
indeed true. 
 
Lemma:  A convergent sequence is bounded.  I.e. if {sn} converges, then there is some positive 



number K such that for all n, |sn| ≤ K. 
proof:  By definition of convergence, if {sn} converges to s, then given say e = 1, there is an N 
such that all elements after sN are within a distance 1 of s, so that for all n ≥N, we have |sn| ≤ |s| 
+ 1.  Hence if we let K be the maximum of the numbers |s1|, |s2|,...,|sN-1|, |sN|+1, then for all n, 
we have |sn| ≤ K. QED. 
 
Remark: The converse does not hold, since the sequence  
1,-1,1,-1,1,-1,.... is bounded but not convergent. 
 
 There is a class of bounded which does always converge, namely bounded and monotone 
sequences.  These converge almost by definition of the real numbers.  To see it, recall the 
following axiom, which is satisfied by the real numbers, either by assumption, or by proving 
directly that it holds for the set of infinite decimals. 
Completeness axiom:  A non empty set of real numbers which has an upper bound has a least 
upper bound.  I.e. if some number is  ≥ than all numbers in the non empty set S, then there is 
some smallest number which is still ≥ all numbers in S. 
 
Corollary:  A weakly monotone sequence converges if and only if it is bounded. 
Proof:  We know a convergent sequence is bounded.  Conversely, if the sequence is both 
bounded and monotone, say monotone increasing, then let K be the least upper bound of the 
sequence.  I.e. let K be the smallest number such that for all n, we have sn ≤ K.  Then we claim 
the sequence {sn} converges to K.  Let e>0 be given.  Then since K is the smallest number which 
is ≥ all elements of the sequence, the number K-e must be less than some element of the 
sequence.  Suppose sN > K-e.  Then for all n≥N, we have sN ≤ sn , by monotonicity.  But since 
K is an upper bound of the entire sequence we also have  K-e < sn ≤ K < K+e, for all n≥N.  
Hence the sequence {sn} converges to K. QED. 
 
Remark:  Notice this gives a way to tell a sequence is convergent without finding the limit.  Just 
find any upper bound for a weakly increasing sequence and you know the sequence converges 
even if you cannot determine what is the least upper bound, i.e. the limit.   
 
Example:  The sequence {1/n} for n a positive integer, thus converges to something, since it is 
monotone decreasing and bounded below by 0.  But to see it actually converges to 0, we must 
show that 0 is the greatest lower bound of the sequence.  If there were a positive number e>0 
smaller than all fractions 1/n, then the reciprocal 1/e would be larger than all the positive integers 
n.  So we can show that 1/n converges to 0, by showing equivalently that the sequence {n} is 
unbounded above.   
 This is obvious if you believe that the real numbers are represented by infinite decimals, 
as we assumed in this course.  If you are in a more axiomatic course where all you know is that 
the reals obey the completeness axiom above, then you can prove this as follows: if the integers 
are bounded above, then they have a least upper bound say K.  Then K-1 is not an upper bound 
so there is a positive integer N such that N>K-1.  But then N+1 > K, contradicts the assumption 
that K is an upper bound of all integers.  QED. 
 



 
This idea can be generalized as follows. 
Definition:  A sequence {sn} is called Cauchy, if and only if for every e>0, there is some N, 
such that, for all n,m≥N, we have |sn-sm| < e. 
 
Exercise: Any convergent sequence is Cauchy. 
 
Remark: In our three examples, the converse is true, i.e. in the real numbers, in the plane, and in 
the space of continuous functions on [a,b] with the sup norm, any Cauchy sequence converges to 
an element of the same space. 
 
 Intuitively to say a sequence is Cauchy, means the elements of the sequence are bunching 
up, but they might not converge unless there actually is a point of our space at the place where 
they are bunching.  For example, if our space were the real numbers, except for zero, then the 
sequence {1/n} would still be Cauchy, but would not converge in our space simply because we 
had removed the previous limit.  Since lots of sequences of rational numbers have irrational limits, 
Cauchy sequences of rationals would not always converge in the space of rationals.  E.g. the 
sequence 3, 3.1, 3.14, 3.141, 3.1415, 1.14159,.... of rationals, which converges to π, (if the 
decimals are chosen appropriately), would be Cauchy in the rationals, but would not converge in 
the space of rationals.  I.e. some space have “holes” in them, and a sequence could head towards a 
hole in the space, and be Cauchy, but not have a limit in the space, just because the limit is 
missing from the space. 
 
None of our examples have holes in them, as stated by the next theorem. 
 
Theorem: In all three of our examples, the real numbers, in the plane, and in the space of 
continuous functions on [a,b] with the sup norm, every Cauchy sequence {si} converges to some 
limit in the given space. 
proof:  This is a real theorem, on the level of an analysis course so we will only sketch the proof.  
You may take this theorem for granted.   
Example (i) For those interested, we do the case of real numbers first: define for each n, an = the 
greatest lower bound of the elements si in the sequence such that i ≥ n.  Define bn = least upper 
bound of those elements si with i ≥ n.  Then {an} is a weakly increasing sequence and {bn} is a 
weakly decreasing sequence, since the Cauchyness of the sequence {si} implies that |an-bn| 
converges to zero.  Thus both sequences {an} and {bn} converge by the previous corollary, in 
fact to the same limit K, which is also the limit of the sequence {si}. 
 
Example (ii)  For a Cauchy sequence of points {pn} = {(xn,yn)}, in the plane, one can check 
that both sequences {xn} and {yn} are also Cauchy sequences of real numbers, since |pn| ≥ both 
|xn|, |yn|.  Hence {xn} converges to some x, and {yn} converges to some y, and then {pn} 
converges to (x,y). 
 
Example (iii)  If {fn} is a Cauchy sequence of functions on [a,b], then for each x in [a,b], the 
definition of the sup norm, forces the sequence of real numbers {fn(x)} to be Cauchy, hence 



convergent to some number we call f(x).  This defines a function f, which we claim is continuous, 
and is the limit of the sequence {fn}.    
 To see this, let e>0 be given.  We must find N such that for all n≥N, we have ||f-fn| < e.  
But we know the sequence {fn} is Cauchy in the sup norm, so for some N, we have ||fn-fm|| < e/3 
for all n,m ≥ N.  Since for all x, f(x) is the limit of the fn(x), it follows that for all x and all n ≥N, 
we have |f(x)-fn(x))| ≤ 2e/3.  I.e. given x, there is some m > N such that |fm(x)-f(x)| < e/3.  Since 
for all n≥N, we have |fn(x)-fm(x)| < e/3, it follows that for all n ≥ N, |f(x)-fn(x)| ≤ |f(x)-
fm(x)|+|fm(x)-fn(x)| < 2e/3.  Thus for all x, and all n ≥ N, we have |f(x)-fn(x)| < e.  I.e. {fn} 
converges to f in the sup norm. 
 
Finally we claim the limit function f is continuous on [a,b], hence lies in the space we are working 
in.  To prove this, let z be any point of [a,b].  To show f is continuous there, let e>0 be given and 
try to find d>0 such that for all x closer to z than d, we have |f(x)-f(z)| < e.  This is a classic e/3 
proof.  I.e. choose N such that for all n,m ≥ N, we have ||fn-fm|| < e/3.  Then we saw above that 
also for all n≥N, we have ||f(x)-fn(x)|| < e/3.  Now fN is continuous by hypothesis, so there is a 
d>0 such that for all z closer to x than d, we have |fN(z)-fN(x)|<e/3.  Then just note that  
|f(z)-f(x)| = |f(z)-fN(z)+fN(z)-fN(x)+fN(x)-f(x)|  
 
≤ |f(z)-fN(z)| + |fN(z)-fN(x)| + |fN(x)-f(x)| < e/3 + e/3 + e/3 = e.   
 
I.e. |f(z)-fN(z)| < e/3 because fN is closer than e/3 to f at every point of [a,b].  And |fN(x)-f(x)| < 
e/3 for the same reason.  Then |fN(z)-fN(x)| < e/3 because fN is continuous at x, and d was chosen 
to make this true for fN since |z-x| < d.  QED. 
 
Remark:  Of course this is fairly easy for me now at my age, but I actually gave the e/3 proof of 
part (iii) above, on a differential equations exam sophomore year in college, to impress my 
teacher, who had omitted it from the course lectures.  (Teachers notice it when you answer more 
than 100% of what they ask.) 
 
 Exercise:  (i) If a sequence of functions {fn} converges to f in the sup norm on [a,b], then the 

integrals also converge, i.e. the sequence of real numbers { f na

b

! } converges to the real number 

f
a

b

! . 

(ii) In fact the indefinite integrals Gn = f na

x

! , which are functions on [a,b], also converge to the 

function G = f
a

x

! , in the sup norm. 
 
Infinite series 
Next we want to discuss “infinite sums” i.e. “convergent series”. 
Let {an} be any infinite sequence, and form another sequence of “partial sums” of the original 
sequence:  s1 = a1, s2 = a1+a2, s3 = a1+a2+a3,..., 
sn= a1+a2+...+an,...... 



 

Definition:  Then we say “the series  ai
i=1

!

"  converges to the limit a∞”, or that “ ai
i=1

!

" = a∞”, or 

that “a∞ is the sum of the series ai
i=1

!

" ”, if and only if the sequence {sn} of partial sums 

converges to a∞.  I.e. if and only if, for every e>0, there is a positive integer N, such that, for all 
n≥N, we have  

| ai
i=1

n

!  - a∞| < e. 

 
The analog of the result about monotone sequences converging says in this setting: 
 

Theorem:  If {an} is any sequence of non negative numbers, the series ai
i=1

!

"  converges if and 

only if the partial sums are bounded, i.e. if and only if there is some number K such that for all n, 

ai
i=1

n

!  ≤ K. 

 

Corollary:  If 0<r<1, and a is any positive real number, then the series arn
n=1

!

"  converges. 

proof:  We need only show that the partial sums are bounded above.  But simple multiplication 

shows that ai
i=1

n

!  = [a - arn+1]/(1-r).  Since the denominator is positive, and 0<r<1, the numerator 

is less than a, which shows the partial sums are bounded above by a/(1-r).  Thus convergence 
follows. 
 
Remark: We know the series actually converges to the least upper bound of its partial sums, 
which one can show is also equal to a/(1-r).  But we will prove a stronger result, as done in class. 
 

Theorem:  If a is any real number and r is any real number with |r| < 1, then the series arn
n=1

!

"  

converges to a/(1-r). 

proof:  By the proof of the previous result, |a/(1-r) - ai
i=1

n

! | =  

|arn+1/(1-r)|, so it suffices to show this goes to zero as n goes to infinity.  It suffices to show the 
numerator goes to zero, hence that |rn| = |r|n goes to zero, hence that rn -->0 when 0<r<1.  
Equivalently it suffices to show the reciprocal goes to infinity as n goes to infinity, so assume 
that s>1, and then we claim that sn-->infinity as n goes to infinity.  Choose h>0 so that s > 1+h 
>1.  Then it suffices to show that (1+h)n goes to infinity, but by the binomial theorem, (1+h)n > 
1+nh, which goes to infinity, because n does, as we proved above.  QED. 
 
The previous example is the famous “geometric series.”  It is very useful to have even one 



example of a convergent series because of the following. 
 

Theorem:  If ai
i=1

!

"  and bi
i=1

!

"  are two series of non negative real numbers, and if ai ≤ bi for all i, 

then the convergence of bi
i=1

!

"  implies the convergence of ai
i=1

!

" , and hence the non convergence of 

ai
i=1

!

" implies the non convergence of bi
i=1

!

" . 

proof:  This follows from an earlier result (two theorems ago) because when the partial sums of 
one positive series are bounded, so are those of a smaller positive series.  QED. 
 
 
Next we state a version of this for our other examples. 

Theorem:  If si
i=1

!

"  is any series of elements from any of our three examples, and if the series of 

real numbers |si |
i=1

!

"  converges, then the original series si
i=1

!

"  also converges. 

proof:  It suffices by the big theorem above, to show that the sequence of partial sums { si
i=1

n

! } is 

Cauchy.  I.e. given e>0 we must show that there is an N such that for n>m ≥ N, we have | si
i=m

n

! | < 

e.  But | si
i=m

n

! | ≤ |si |
i=m

n

! , and since the series  |si |
i=1

!

"   converges, the sequence of partial sums 

{ |si |
i=1

n

! } is Cauchy.  Thus we can find N such that for n,m≥N we have |si |
i=m

n

!  < e.  QED. 

 
Finally this leads to the famous Weierstrass “M - test” which for many purposes reduces the 
sup norm  convergence of functions to the convergence of positive numbers. 
 
Corollary:  If {fn} is a sequence of continuous functions on [a,b], and if there exists a 
convergent series of positive numbers {Mn} such that for all x in [a,b] we have  |fn(x)| ≤ Mn, 

then the series fn
i=1

!

"  converges in the sup norm to a continuous limit function f = fn
i=1

!

" . 

 
Approximation of transcendental functions by polynomialsFinally let’s apply these results 
to study series of polynomials converging to some of our favorite transcendental functions: ln, 
arctan, sin, ex. 
 
Claim:  ex:  The series 1 + x + x2/2! + x3/3! + x4/4! + ...... converges to ex, in the sup norm on 
any closed bounded interval. 
 
sin(x): The series x - x3/3! + x5/5! -x7/7! + - ........ converges to sin(x), in the sup norm on any 



closed bounded interval. 
 
ln(1+x): The series x - x2/2 + x3/3 - x4/4 + x5/5 - x6/6 ±.......... converges to ln(1+x), in the sup 
norm on any closed interval strictly contained in the interval (-1,1).  
 
arctan(x): The series  x - x3/3 + x5/5 - x7/7 ±...... converges to arctan(x), in the sup norm on any 
closed interval strictly contained in the interval (-1,1).  
 
To do this we just use the M test to show convergence, then prove that the derivative series also 
converge term by term to the derivative of the sum, then use uniqueness of these derivatives to 
equate the series with the known functions. 
 
We can do two of these examples just by integrating term by term, as justified in our exercises 
above. 
 
Example:  ln(1+x):  
Consider the formal geometric series expansion of  1/(1+x)  
 
= 1 - x + x2 - x3 + x4 - + .......  
 
In any interval [-r,r] where 0<r<1, the norms of these functions are bounded above by the terms 
of the series  1+r + r2 + r3 +.... which we know is convergent.  Hence also 1 - x + x2 - x3 + x4 - + 
....... converges to some continuous function g(x).  But since the partial sum 
 
  1 - x + x2 - x3 + .......+(-1)nxn =  [1/(1+x)   -  (-1)nxn/(1+x)], it follows from the fact that rn-->0, 
when 0<r<1, as n --> infinity, that the limit of this series is 1/(1+x).  Consequently, on any 
interval [-r,r] with 0<r<1, the series of indefinite integrals (starting at 0) also converges to the 
indefinite integral of the limit.   
 
So the series x - x2/2 + x3/3 - x4/4 + x5/5 - x6/6 ±....... converges also in the sup norm on [-r,r], to 

dt
1+ t0

x

!  = ln(1+x). 

 
Example: arctan(x): We proceed exactly as above, starting from the series 1 - x2 + x4 - x6 + - 
....., to show this geometric series converges to 1/(1+x2), and hence that the series of indefinite 
integrals, starting from 0, namely the series  x - x3/3 + x5/5 - x7/7 ±...... converges to 

dt
1+ t 20

x

!  = 

arctan(x), in the sup norm on any closed interval strictly contained in the interval (-1,1). 
 
We do the series for ex almost the same way. 
Example: ex:  Consider the series 1 + x + x2/2! + x3/3! + x4/4! + ..... We claim this converges on 
any interval [-r,r] at all.  To see this, note that on this interval, the term  xn/n!  is bounded in 
absolute value by  rn/n!, so it suffices to show the series  1+r + r2/2 + r3/3! +..... is bounded 



above.  Just choose N > r.  Note that certainly the first N terms are bounded since there are only 
a finite number of them, so it suffices to show the rest of the terms are bounded.  So we want to 
show the series  
rN/N! + rN+1/(N+1)! + .... is bounded.   First factor out rN/N! from all the terms, which leaves  
1 + r/(N+1)  + r2/(N+1)(N+2) +....... 
 
Now note that this series is smaller than the geometric series  
1 + r/N  + r2/N2 + r3/N3 +.... which converges because 0 < (r/N) < 1. 
 
Hence the original series 1 + x + x2/2! + x3/3! + x4/4! + ..... converges to some continuous 
function f, in the sup norm on any interval of form [-r,r] at all.  Hence the series of indefinite 
integrals, starting at 0, which in fact is just the same series, converges to the indefinite integral of 
f.  Since the series equals its own indefinite integral series, the limits are also the same, so f(x) = 
f (t )dt

0

x

! , for all x.  But the right side has derivative f(x), so the left side does too, i.e. f'(x) = f(x), 

for all x.  Since also f(0) = 1, by looking at the series, we conclude again that f(x) = ex for all x, and 
that the convergence is true in the sup norm on any closed bounded interval. 
 
We may already know that any differentiable function f with f’=f and f(0) = 1, is an exponential 
function, but I recall the proof.  Let g(x) = f(a+x)/f(x), and differentiate.  Then g’(x) =  
[f’(a+x).f(x)-f(a+x).f’(x)]/f^2(x) = [f(a+x).f(x)-f(a+x).f(x)]/f^2(x) = 0. Thus g(x) = K for some 
constant K, i.e. so f(a+x) = K.f(x), for some constant K, and since f(0) = 1, K = f(a).  Thus f(a+x) 
= f(a).f(x), and f is thus an exponential function. 
 
Technically we have assumed that f(x) ≠ 0 for this proof, but it is clear that the proof works on 
any interval where this holds.  Since f’(x) = f(x) and f(0) = 1 > 0, it follows that f is increasing, 
hence positive, on R+.  Then the formula f(a+x) = f(a).f(x) is true for all x >0.  Hence for all a < 0, 
we have f(1/a) > 0 and f(a) = 1/(f(1/a)) > 0 as well.  So f is always positive. 
 
Now to do the series for sin(x), I am a little more challenged as to how to do it.  We could of 
course start from the series x - x3/3! + x5/5! -x7/7! + - ........, and show as above that it converges 
to some function f, on any closed bounded interval, and that the series x2/2! - x4/4! + x6/6!  - +  
.... of indefinite integrals also converges to some function.  Hence the series  1 - x2/2! + x4/4! - 
x6/6!  +  .... also converges to some function g such that g' = -f.  Integrating again gives a series 
converging to some function h with h'' = -f.  However, looking at this last series shows that it 
again equals x - x3/3! + x5/5! -x7/7! + - .......  I.e. that h = f.  Hence f'' = -f.  Similarly one sees that 
g'' = -g.  Moreover g(0) = 1 and f(0) = 0.   
 
Now the only problem is to show that these properties can only hold for f = sin and g = cos.  
 
I borrow a proof from a book by Serge Lang. 
Lemma:  If f' = g, g' = -f, and f(0) = 0, g(0) = 1, then f2+g2 = 1. 
proof:  Differentiate the lhs. and then set x = 0.  QED. 
 



Now differentiate  f.cos –g.sin, and get f'.cos –f.sin -g'.sin –g.cos = 0, hence f.cos –g.sin = a is 
constant.  Similarly f.sin + g.cos = b. 
 
In the meantime,  I supply another result, which we have used to treat the last example.  
Differentiation of series term by term 
We would like to have a criterion telling us when we may differentiate a convergent series term 
by term, and get a series converging to the derivative of the limit of the original series.  The 
following one is easy to prove and suffices for our purposes. 
 
Theorem:  Suppose {fn} is a sequence of C1 functions on [a,b] (i.e. continuous functions with 

continuous derivatives), such that both series of norms | | f n
n=1

!

" | | , and | | f ' n
n=1

!

" | |  are bounded.  Then 

fn (x) 
n=1

!

"  = f, where f is a continuously differentiable function, and f' = f '
n (x) 

n=1

!

" , is the sum of 

the derivatives of the fn, (where both series converge in the sup norm). 
 
 
Remark: For example, by the Weierstrass M test, if we can find convergent series of positive 

numbers Mn
n=1

!

" , and Kn
n=1

!

" , such that  

for all n, and all x in [a,b], we have |fn(x)| ≤ Mn, and |f'n(x)| ≤ Kn, then both series of functions 
converge and the conclusion of the theorem holds.  
 

Proof of theorem:  If the hypothesis holds, then by our previous results, the series fn
n=1

!

"  

converges to some continuous limit function f, and also the series of derivatives f 'n
n=1

!

"  converges 

to some continuous limit function g.    We claim f is differentiable and f' = g. 
 
By our theorem on convergence of integrals we know that the series of indefinite integrals 

( f n
' )

a

x

!
n=1

"

#  converges to the indefinite integral g
a

x

! .  By the FTC, the indefinite integral 

f '
n

a

x

!  =  f n(x) " f n(a) .  Moreover the series  

( fn (x) ! f n (a)
n=1

"

# )  converges to fn (x) ! fn (a)
n=1

"

#
n=1

"

#  = f(x)-f(a).   

 

Since the series ( f n
' )

a

x

!
n=1

"

#  and ( fn (x) ! f n (a)
n=1

"

# )  are equal, their limits are also equal, so f(x)-f(a) 

= g
a

x

! .  Thus also f(x) = g
a

x

!  + f(a).  Now since the rhs is differentiable by the FTC with 

derivative g, the same is true of the lhs.  Hence f'(x) = g(x) = f '
n (x) 

n=1

!

" , as claimed.  QED. 


