
2210 Exponential and log functions 
 Exponential functions, even simple ones like 10x, or 2x,  are relatively difficult to describe 
and to calculate because they involve taking high roots of integers, and we do not know much 
even about computing square roots, much less cube roots or fifth roots, or 29th roots, etc.  Lets 
review the "standard" description of exponential functions, and then see the additional problems 
involved in trying to compute their derivatives.  Lets start with an easy base like 2. 
 
Positive Integer exponents 
 We want to define 2x for all real numbers as a continuous function.  We start by saying 
that 21 = 2, and 2n =  a product of n factors of 2, for any positive integer n.  I.e. 22 = 2(2), 23 = 
2(2)(2), 24 = 2(2)(2)(2), and so on. 
 
Negative integer exponents 
 But what next?  How do we define negative powers of 2?  or 20?  Notice a very 
important property of the exponential function, it satisfies 2(n+m) = 2n2m for all positive 
integers n,m.  I.e. to get a product of n+m factors of 2, just multiply a product with n factors by 
a product with m factors.  Altogether, there will be n+m factors of 2.  This is such a useful 
property that we would like it to continue to hold for all values of the exponential function.  But 
that demand limits how we can define the exponential function very much.  I.e. if we want to 
have 2m = 2(0+m) = 202m, then we must have 20 = 1.  And then if we want to have 1 = 20 = 
2(n+(-n)) = 2n2-n, then we must have 2-n = 1/2n.  Thus we have no choice about how to define 
negative and zero powers of 2. 
 
Fractional exponents 
 What about rational powers?  If we want to have 2 = 21 = 2(1/2 + 1/2) = (21/2)(21/2), 
then (21/2) must be a number which gives 2 when multiplied by itself, i.e. we must have (21/2) = 
sqrt(2).  Similarly, we must have 21/3 = cuberoot(2), and 21/n = nth root(2).  For 2m/n we must 
have 2m/n =  
2(1/n + 1/n +....+1/n) (m terms) =  
(21/n)(21/n)(.........)(21/n) (m factors) =  
[nth root(2)]m = nth root(2m). 
 As before than we must have 2-(n/m) = 1/(2n/m) =  
1/[nth root(2m)].  Thus we are forced to make this definition of a rational power of 2, just by the 
definition for positive integer powers, plus the basic law 2(x+y) = 2x 2y.  This completely 
determines the exponential function on all rational numbers.   
 
Irrational exponents and continuity 
Then what about irrational numbers?  This extension uses continuity, and a complete proof 
would take more care and time than we wish to devote to it.  But we can state it easily as 
follows.  Note that 2x is an increasing function on rational numbers, since for every positive n 
and m, 2m/n = [nth root(2m)] is greater than one.  Hence for any rational numbers r < s, we have 



(s-r )= a positive rational number, so 2s = 2r+(s-r) = 2r 2s-r where 2s-r is greater than 1.  Since 
we get 2s from 2r by multiplying 2r by a number greater than 1, 2s > 2r, i.e. 2x is an increasing 
function.  Then we extend it to irrational values just by keeping it increasing.  I.e. define for any 
irrational number x, 2x to be the smallest real number not smaller than 2r for any rational number 
r < x.  Put another way, choose an infinite decimal expansion for x.  Then for each n, taking an 
approximation by only using the first n digits, gives us a sequence of approximations to x from 
below, by rational numbers.  If we exponentiate each of these rational numbers, we get a bounded 
increasing sequence of real numbers which therefore have a limit, and we call this limit 2x. 
One can prove with some work, that with this definition, 2x is a continuous increasing function, 
defined for all real numbers, and that it still satisfies the relation 2(x+y) = 2x 2y for all real 
numbers x,y. 
 
Differentiating exponential functions 
 We see that it is not a trivial matter even to evaluate an exponential function at a rational 
number, since we must extract a root, and often a rather high order one.  What about computing 
the derivative?  Is the function 2x differentiable?  If it is what is the derivative?  Suppose we start 
from the definition, the only place to ever start such an investigation.  Then 2x has a derivative if 
the limit (2x+h - 2x)/h exists as h approaches 0.  We can simplify this using the law 2(x+h) = 2x 

2h.  Thus we ask whether 2x (2h-1)/h has a limit as h-->0.  Since 2x is constant in h, this is true if 
and only if (2h-1)/h has a limit, i.e. since 1 = 20, 2x has a derivative at x, if and only if it has a 
derivative at 0.   
 It is not easy to see whether or not the limit (2h-1)/h exists as  
h-->0, and if it does exist, to see what it is equal to.  Lets assume that it does exist, and call the 
limit K.  Then from the calculation above, it follows that the derivative of 2x equals K(2x), i.e. the 
derivative of 2x, if it exists, is a constant multiple of 2x.  Even if we assume this limit exists, we 
need some way to calculate this constant. 
 
We take an indirect approach below.  We will work backwards, by finding a function we know to 
be differentiable, which we then show equals 2x.  For this we must have a way to recognize the 
exponential function.  This follows from the same reasoning used above to predict the values of 
an exponential function from a small number of them. 
 
Theorem:  If f(x) is a continuous function defined on all reals such that  
1) f(0) = 1, 
2) f(x+y) = f(x) f(y), for all reals x,y, 
then f(1) = a > 0, and f(x) = ax for all real x. 
Proof:  Since f(1) = f(1/2 + 1/2) = f(1/2) f(1/2), f(1) = a is a square hence non negative.  Since 1 = 
f(0) = f(1+ (-1)) = f(1) f(-1), f(1) cannot be 0, so f(1) = a > 0.  Reasoning as above we see that f(r) 
= ar for all rational r.  Then we conclude that f(x) = ax for all real x, by continuity as above.  
QED. 
 
Corollary:  Since a differentiable function is also continuous, if we can find a differentiable 



function f(x) satisfying f(0) = 1, and f(x+y) = f(x) f(y), for all reals x,y, then f must be an 
exponential function.  If we can find one with f(1) = 2, then f(x) = 2x, and we will have proven 
that 2x is differentiable. 
 
Logarithms 
 First we discuss the inverse function of an exponential function, the so called logarithm 
function.  It follows from arguments like those above that an exponential function ax with a >0, is 
increasing if and only if a > 1, and is decreasing if a < 1.  The exponential function 1x is neither 
increasing nor decreasing, but a constant equal to 1, and has no inverse.  However for all a > 0 and 
a ≠ 1, the function ax has an inverse function called the "log base a", written loga(x).  To find the 
domain of the log function we must determine the range of values of the exponential function, so 
we assume for simplicity that a > 1.  Then notice that if say a = 1+h where h > 0, then for all 
positive integers n, we have an = (1+h)n = 1 + nh +....., with all terms positive, so an > 1+nh.  
Since the right hand side grows to infinity as n does, we conclude that ax gets arbitrarily large for 
large x, i.e. the limit of ax is +∞ as x approaches +∞.  Since a-x = 1/ax, we see that ax approaches 
zero from above as x approaches -∞.  Thus ax assumes all positive values as x ranges over all 
reals, so the domain of the inverse function loga(x) is the positive reals.  Moreover loga is also 
continuous and satisfies the law loga(xy) = loga(x) + loga(y) for all positive reals x,y, opposite to 
the law for the exponential function.  Since a function determines its inverse, we have the 
analogous theorem to recognize a log function. 
 
Theorem:  If g is a continuous function defined for all positive reals, satisfying 
1) g(1)= 0, and g(b) ≠ 0 for some b > 0, 
2) g(xy) = g(x) + g(y), for all positive x,y, 
then there is a unique a > 0 with g(a) = 1, and g(x) = loga(x), for all positive x. 
 
[Note: the function g(x) = 0 for all x > 0. satisfies hypotheses 1), 2), except the second part of 1), 
and does not satisfy the conclusion.]  
 
Now all we have to do is find a differentiable function g satisfying the conditions in the theorem, 
and then it must be a log function.  If we find one with g(2) = 1, it will prove that log2(x) is 
differentiable.  Moreover by the inverse function theorem it will follow that 2x is also 
differentiable, and we will have accomplished by a very indirect route, the goal of proving this 
fact, which we temporarily gave up on earlier. 
 
The only tool we have for constructing differentiable functions is the fundamental theorem of 
calculus, which allows us to construct a function with any given continuous derivative.  Thus in 
order to construct a log function we need to know the derivative of a log function.  Using the 
chain rule we have aloga(x) = x, so Kaloga(x) loga'(x) = 1, so loga'(x) = 1/K(aloga(x)) = 1/Kx.  Thus 
assuming it is differentiable, a log function must have derivative equal to 1/Kx, for some K≠0.  
Now with this information,  we can construct a differentiable function with derivative 1/Kx, and 
ask whether it is  a log function, which we have every right to expect to be true.  Moreover the 
simplest choice for K is obviously 1, so we begin from that choice. 



 
Define L(x) = 

dt
t1

x

! .  We claim L(x) is a log function.  To check this we must show that L(1) = 0, 

but L is not everywhere zero (which is “obvious”), then that L is continuous, which is always 
true for a function defined by an integral, indeed by the FTC this one is even differentiable with 
derivative 1/x, and finally that L(xy) = L(x) + L(y) for all x,y > 0.  To prove this last formula we 
use the MVT.  I.e. fix y > 0 and let g(x) = L(xy).  Then g'(x) = yL'(xy) = y(1/xy) = 1/x = L'(x).  
Thus L and g have the same derivative so must differ by a constant according to the MVT.  I.e. 
g(x) = L(xy) = L(x) + c for some c.  To evaluate c, set x = 1 and get L(y) = L(1) + c = c.  So c = 
L(y) and thus L(xy) = L(x) + L(y) as claimed.   
 
 To see what the base is we must find the unique positive number a such that L(a) = 1.  
This is not so immediate, but one can show using approximations of the integral that the base is a 
number we shall call e such that 2.71828 < e < 2.71829.  Indeed since the midpoint estimate is an 
underestimate for a function like 1/x which is concave up, using the midpoint estimate on the 
interval [1,3] we get L(3) ≥ 2(1/2) = 1, so e ≤ 3.  Subdividing into [1,2] and [2,2.8] we have 
midpoint estimate 2/3 + 5/12  = 13/12 ≤ L(2.8), so e < 2.8.  Then using the trapezoidal upper 
estimate for the subdivision [1,1.4], [1.4,1.8] and [1.8,2.2], [2.2,2.6] gives  
(1/5)(1 + 10/7 + 10/9 +10/11 + 5/13)  
≤  (1/5) (1 + 1.43 + 1.112 + .9091 + .385) ≤ .97.   
 
Thus e > 2.6.  Later we will find a better way to estimate e using infinite series. 
 
 We see that L(x) = loge(x), but it is usual to write it as ln(x).  In particular ln(x) is a 
differentiable function defined on all positive reals, with derivative 1/x, and which takes on all real 
values.  Its inverse is the exponential function ex whose derivative is also ex.  If K = ln(2) and if 
we consider the function g(x) = 

dt
Kt1

x

! , it follws from the same argument as above using MVT, 

that g is a logarithm function.  The base is the unique number a such that g(a) = 1.  But since g(x) 
= (1/K)ln(x) = ln(x)/ln(2), it follows that the number a with g(a) = 1, is a = 2.  Hence g(x) = 
log2(x), and we see the derivative of g is 1/(ln(2)x).  Using the inverse function theorem, the 
inverse of g is the differentiable function f(x) = 2x with derivative f'(x) = ln(2) 2x. 
 
 We obtain as well that for all a > 0, the function 

dt
Kt1

x

!  where K = ln(a), is the 

differentiable log function loga(x).  Its inverse is then the differentiable function ax, with 
derivative ln(a)(ax).  In fact, for all a > 0, we can express ax in terms of ex, by showing that ax = 
e(x ln(a)).  To check this we only need show that e(x ln(a)) satisfies the properties that 
characterize ax.  I.e. e(x ln(a)) is continuous in x, and equals 1 when x = 0, and equals a when x = 
1.  Thus e(x ln(a)) = (eln(a))x = ax.  More generally we have the following theorem. 
 
Theorem:  For any real numbers x,y, and a > 0, we have a(xy) = (ax)y. 
Proof:  Fix x and consider the function a(xy).  It has the value 1 when y = 0, and equals ax when 



y=1.  Moreover it is continuous in y.  Then for all y,z, we have ax(y+z) = a(xy+xz) = axy axz.  
Thus axy does satisfy the properties which characterize the function (ax)y.  QED. 
 
Now that we have the definition and the basic properties of exponential and log functions, the 
other basic properties are their rates of growth.  According to the formulas above we can express 
every exponential function in terms of the simplest one ex, so we may consider only that one.  
Similarly we saw above for all a > 0, that loga(x) = ln(x)/ln(a).  Basically ex grows rapidly, faster 
than any positive power of x, and ln(x) grows slowly, slower than any positive power of x. 
More precisely, for all r > 0, we have limx-->∞ xr/ex = 0, and limx-->∞ ln(x)/ xr = 0. 
There are several ways to prove this, but the easiest way, and the way which teaches us the most 
useful fact, is to use  
 
l'Hopital's rule: 
Theorem: If f, g are both differentiable functions such that both have limit  ± ∞, or if both have 
limit 0, as x approaches a, or as x approaches ∞, then the limit of f/g equals the limit of f'/g', 
assuming that latter limit exists. 
 
Using this theorem on xr/ex,  we can take derivatives until the power of x in the top is non 
positive, so that then the function in the top is constant or approaches zero as x approaches 
infinity, and the one in the bottom, still equal to ex, approaches infinity.  Then the limit is 1/∞, or 
0/∞, both = 0.  For the limit ln(x)/ xr, one can begin with ln(x)/x and take one derivative in top and 
bottom to finish.  Then for the general case, one may consider instead the equivalent limit 
ln(x1/r)/ x = (1/r) ln(x)/ x, which we have already done.  (The only point is that the bottom 
number should be the rth power of the top number, and that both approach infinity, it does not 
matter which one we call x.) 


