Question # 2

The number of customers at Winkies Donuts between 8:00a.m. and 9:00a.m. is believed to follow a Poisson distribution with a mean of 2 customers per minute. During a randomly selected one minute interval during this time period, what is the probability of 6 customers arriving to Winkies? What is the probability that at least 2 minutes elapse between customer arrivals?

Answers

1. Here we apply Poisson distribution because the distribution is over as given period of time. The stated mean of the problem is 2.

The formula is

$$P(X) = \frac{\mu^X e^{-\mu}}{X!}$$

_

Where the random variable X as the number of customers arriving in the interval and μ is the mean.

Substituting values:

$$P(6) = \frac{(2^{6} e^{-2})}{(6!)}$$
$$\frac{64 \times .135}{720} = .012$$

So, there is 1.2% probability of 6 customers arriving to Winkies in a randomly selected one minute interval.

2. Next we have to find the probability of 2 minute elapse between customer arrivals. Currently 2 customers per minute so a 2 minutes gap can be represented as 2/3 customers per minute.

Using exponential probability formula

$$P(x < x_0) = 1 - e^{-(x_0/\mu)}$$

 $P(x \ge 2) = 1 - e^{-(2 \times 1)}$

1 - 0.71828 = 0.28172

There fore, 28.17 % is the probability of 2 minutes gap between customer arrivals.

Question # 3

A large consignment of tennis balls is assumed to have 20% substandard balls with standard deviation of 5. A sample of 400 balls is selected. Find the probability that percentage of substandard balls in the sample is

i) at most 16% ii) at least 22% iii) between 18% and 22%

Answers

1. Let σ = 5, μ = 20% of 400 = 80 and x = 15.9% of 400 = 63.6.

$$P(x \le 16)$$

= $P(x \le 15.9)$
 $z = (x - \mu) / \sigma$
 $z = (63.6 - 80) / 5 = -3.28$
 $P(z \le -3.28)$
= .0005

2. Let σ = 5, μ = 20% of 400 = 80 and x = 22.1% of 400 = 88.4

$$P(x>=22)$$

= P(x>22.1)
z = (x - µ)/ σ
z = (88.4-80)/5 = 1.68
P(z>1.68)
=P(z<-1.68)
= .0465

3. Let $\sigma = 5$, $\mu = 20\%$ of 400 = 80 and x between 18% of 400 = 72 and 22% of 400 = 88 P(74< x <88) $z = (x - \mu)/\sigma$ z1 = (74-80)/5 = -1.2 z2 = (88-80)/5 = 1.6P(-1.2 < z < 1.6) = P(z<1.6) - P(z<-1.2)= .9452 - .1151

Question # 4

= 0.8301

The following probability model describes the number of snow storms for Washington, D. C. for a given year:

# of Snowstorms	0	1	2	3	4	5	6	
Probability	.25	.33	.24	.11	.04	.02	.01	

The probability of 7 or more snowstorms in a year is 0.

- a. What is the probability of more than 2 but less than 5 snowstorms?
- b. Given this a particularly cold year (in which 2 snowstorms have already been observed), what is the conditional probability that 4 or more snowstorms will be observed?
- c. If at the beginning of winter there is a snowfall, what is the probability of at least one more snowstorm before winter is over?

Answers

a. We can phrase the question as

P (2 < X <= 4) = 0.11 + 0.04

- =<u>0.15</u>
- b. Here we have to find the conditional probability of 4 or more given 2 has occurred.

$$P (X >= 4 | X = 2)$$

$$P (X >= 4) = .04 + .02 + .01$$

$$= 0.07$$

$$P(X = 2) = 0.24$$

P(X >= 4 | X = 2) = .07/.24 = 0.29

c. The question asks the conditional probability of 1 more given 1 has occurred.

$$P(X=2 | X=1)$$

$$P(X=2) = .24$$

P(X=1) = 0.33

P (*X*=2|*X*=1)

- = .24/.33
- = 0.727
- <u>~ 0.73</u>