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Abstract: In several areas of optics and photonics like wave propagation, digital holography, holographic microscopy, diffraction imaging, biomedical 

imaging and diffractive optics, the behavior of the electromagnetic waves has to be calculated with the scalar theory of diffraction by computational 

methods. Many of these high speed diffraction algorithms based on a fast Fourier transformation are in principle approximations of the 

Rayleigh-Sommerfeld Diffraction (RSD) theory. However, to investigate their numerical accuracy, they should be compared with and 

verified by RSD. All numerical simulations are in principle based on a sampling of the analogue continuous field. In this article we 

demonstrate a novel validity condition for the well-sampling in RSD, which makes a systematic treatment of sampling in RSD possible. 

We show the fundamental restrictions due to this condition and the anomalies caused by its violation. We also demonstrate that the 

restrictions are completely removed by a sampling below the Abbe resolution limit. Furthermore, we present a very general unified approach 

for applying the RSD outside its validity domain by the combination of a forward and reverse calculation.  

 

1. Introduction 

The Rayleigh-Sommerfeld diffraction (RSD) integral is used for the 

calculation of scalar wave propagation. In contrast to approximations 

such as Fresnel or Fraunhofer diffraction, the RSD gives an exact 

solution for the output field of a given input field [1-3]. However, to 

the best of our knowledge there is no general analytical solution for 

the calculation of an exact RSD. Therefore, numerical methods have 

to be used. In these methods, the RSD is treated as a Riemann 

integral, which has to be discretized. Thus, with usual computational 

power, only high speed algorithms make the utilization of the 

diffraction theory possible. These high speed algorithms use 

approximations of the RSD integral such as a quadratic phase  [2, 4] 

or a frequency-cut in convolution RSD [5-7] and in the angular 

spectrum method (ASM) [6, 8-11]. Whereupon the latter is only 

valid for small propagation distances [2, 12].  Contrary to the 

Kirchhoff solution of the diffraction problem [2, 3, 13], the 

mathematical solution of the RSD is not inconsistent when the 

observation point is close to the diffracting screen. Thus, the 

accuracy of the high-speed alternatives, even for very short 

propagation distances, could be verified by referencing them with 

exact solutions given by the RSD. Since there exist only a few 

analytical solutions, an  alternative is to compare them with a 

discretized RSD. However, here we will demonstrate that the use of 

the discretized RSD can cause enormous calculation errors. We will 

give the boundary conditions for the usage of the discretized RSD 

and show possibilities to completely remove the calculation errors. 

2. Sampling condition for the Rayleigh-

Sommerfeld-diffraction  

Figure 1 shows a typical setup for the calculation of the diffraction 

problem. A coherent source, a laser, illuminates a small object in 

plane 1. A discretized sensor like a CCD camera would see a 

diffracted image of the object in plane 2 or 3. 

According to the Rayleigh-Sommerfeld diffraction integral 

the field distribution in an output plane 2 in the distance 𝑧12, 

parallel to the input plane is [1-3]: 

𝑅⃗⃗⃗ 2 = 𝑟⃗⃗ 2 +𝑧12𝑒̂𝑧;  𝛼 = (𝑖𝑘−
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Figure 1:  Coherent imaging of an object in the first (object) plane. The second and third 

planes refer to the diffracted images of the object at the distance 𝑧12 and 𝑧13 from the 

object plane, respectively. 

 

Where 𝑢1(𝑟⃗⃗ 1) is the field distribution in the input (object) 

plane 1 and 𝑘 is the wave number. The two vectors 𝑟⃗⃗ 1, 𝑟⃗⃗ 2are 

position vectors in plane 1 or 2, respectively.  

For a numerical treatment of Eq.1, not only the input and 

output plane but as well the propagation dependent harmonic 

term 𝑒𝑖𝑘|𝑅⃗⃗⃗ 2−𝑟⃗⃗ 1|
 has to be sampled, according to the well-known 

Nyquist sampling criterion [14]. Thus, the sampling 

frequency must at least correspond to twice the highest 

frequency contained in the harmonic term. If we consider the 

phase of the propagation term as:  

 

 

with the transversal Cartesian coordinates in the input (𝑥1, 𝑦1) 

and output (𝑥2, 𝑦2) plane, the derivative of the phase 𝜑 results 

in the spatial frequency of the propagation phase 𝑓: 
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|
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      (3) 

 

This spatial frequency is a monotonically increasing function 

of |𝑥1 −𝑥2|. To get its maximum value the conditions 

|𝑦1 −𝑦2| = 0 and |𝑥1 −𝑥2| = 𝑥1𝑓𝑝 + 𝑥2𝑓𝑝 must be fulfilled. 

Here 𝑥1𝑓𝑝 and 𝑥2𝑓𝑝 are the distances of the farthest point from 

the center in 𝑥-direction in the relevant computational plane 1 

or 2 with nonzero amplitude value (see Fig. 1). Due to zero 

values of the amplitude around the boundary, the maximum 

width can be smaller than the real width of the computational 

domain. Thus, it follows for the maximum spatial frequency 

𝑓𝑥,𝑚𝑎𝑥 in 𝑥-direction: 
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The sampling frequency 𝑓s is related to the sampling spacing 

via 𝛿𝑥1 = 1/𝑓s. Thus, it follows for the sampling according to 

the Nyquist criterion (𝑓s ≥ 2𝑓𝑚𝑎𝑥): 

 

Therefore, the validity condition for the numerical treatment 

of the RSD can be written as: 

 

Consequently, for a given sampling spacing 𝛿𝑥1 , 𝛿𝑦1 in the 

object plane and a maximum size 𝑥1𝑓𝑝 , 𝑦1𝑓𝑝 of the object and 

its image 𝑥2𝑓𝑝, 𝑦2𝑓𝑝 in the output computational plane, there is 

a critical minimum propagation distance 𝑧1 allowed, in which 

the output plane can be calculated by: 

 

An analog derivation results in a similar condition for the 𝑦-

direction: 

 

 

Thus, the condition for the minimum propagation distance 

(critical distance) is: 

 

The critical distance is the minimum distance in which an 

output field (image) can be numerically calculated by RSD 

without violating the Nyquist criterion for the interplay of the 

sampling conditions of input and output planes and the 

distance. The reconstruction of the object from the diffracted 

image is only possible, if the Nyquist theorem is fulfilled in 

the reverse direction too. This results in equations analogous 

to (7), (8) and (9) with reversed index 1 and 2.  

Thus, the total critical distance 𝑧c for a forward and reverse 

transformation of the field has to be at least 𝑧c = 𝑚𝑎𝑥 (𝑧1c,
𝑧2c), which is the proposed validity condition for a numerical 

treatment of the RSD. 

According to the validity condition, the correct calculation of the 

diffraction pattern and also the reconstruction of the original object 

from the achieved pattern may be performed if the propagation 

distance is longer than the critical distance: 

 

                                             𝑧12 > 𝑧c                                         (10) 
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𝑧1c = 𝑚𝑎𝑥(𝑧1𝑐𝑥 , 𝑧1𝑐𝑦) 
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However, it does not mean that the full information of the object can 

be obtained from the diffracted image in the output plane. This 

depends on the numerical aperture of the output plane as well. 
 

3. Investigation of the validity condition 

A. Anomalies if 𝒛 < 𝒛𝒄 

To show the influence of the violation of the aforementioned 

validity condition we have used an amplitude object (constant 

phase) as described in Fig. 2 (a) and (b) and calculated its 

diffraction pattern at a distance 𝑧 < 𝑍𝑐. For the sake of simplicity 

but without loss of generality, the phase distributions are compared 

indirectly. Thus, the magnitude and real part of the complex 

amplitude will be discussed throughout the paper. As can be seen 

in Fig. 2, for this object both values are identical because it 

has a zero phase. The color-bar shows the normalized 

amplitude and real part values.  

 

 
 
Figure 2: Input object plane, (a) magnitude and real part (b) of the complex amplitude. 

If not otherwise stated, the following parameters were used for the presented 

simulations: Wavelength 𝜆 = 0.633 𝜇𝑚,  sampling spacing in the input plane 𝛿𝑥1 =
𝛿𝑦1 = 0.76 𝜇𝑚 and in the output plane 𝛿𝑥2 = 𝛿𝑦2 = 0.94 𝜇𝑚. The pixel numbers 

in the x and y axis as well as in the input and output plane are the same 𝑁1,2,𝑥,𝑦 = 265. 

The width of the computational domain in the input plane is 𝑃𝑥1
= 𝑃𝑦1

= 201 𝜇𝑚, 

whereas for the output plane it is 𝑃𝑥2
= 𝑃𝑦2

= 250 𝜇𝑚.  

 

The simulated distance between the object and the image plane 

is 𝑧12 = 20 𝜇𝑚 which, according to Eqs. (7 - 9), is much smaller 

than the critical distance 𝑧𝑐 = 534 𝜇𝑚. The calculated 

amplitude and real part of the diffracted field 𝑢12 at a 

distance 𝑧12 can be seen in Fig. 3 (a) and (b) respectively. The 

error due to the violation of the validity condition can be seen 

by a reconstruction of the original object from the diffracted 

image 𝑢12. Thus, the reverse RSD 𝑧21 has to be applied. Here 

the term “reverse” instead of “inverse” transform will be used 

in order to avoid confusion. 

The result can be seen in Fig. 3 (c) and (d). A similar pattern 

like in the original object occurs but, with very strong 

anomalies. Especially the nonzero values of the field in areas, 

which originally exhibit zero values, lead to completely 

wrong results. The correlation coefficient 𝑟 between 𝑢1 and 

𝑢121, i.e. the field after transforming from position 1 to 2 and 

back to 1 is 𝑟 = 0.72 and 𝑟 = 0.75 for the magnitude of the 

complex field and its real part, respectively. The obviously 

strong deviation to the input is a consequence of the 

insufficiency of the propagation distance 𝑧 < 𝑧𝑐 .  

 

 
 
Figure 3: Reconstruction errors  for 𝑧 < 𝑧𝑐  (a) magnitude and (b) real part of the 
complex amplitude of the diffracted image in plane 2. (c) and (d) magnitude and real 

part of the reconstructed object in plane 1.   

B. Propagation distance z >𝒛𝒄 

 

As derived in section 1, if the condition 𝑧12 > 𝑧c is satisfied 

for the numerical calculation of the RSD, there will be no loss 

of information due to the transformation. For an object with a 

fixed sampling spacing the critical propagation distance is 

fixed. Accordingly, if the propagation distance is longer 

than 𝑧c, a correct treatment of the computational RSD should 

be achieved for the given sampling spacing.  

In Fig. 4 (a) and (b) the diffracted image is numerically 

calculated by the RSD under the assumption that the 

propagation distance 𝑧13 = 730 𝜇𝑚 satisfies the validity 

condition. To confirm the correctness of the field 𝑢13 in the 

plane 3 as a necessary condition, the reverse transform is 

considered to reconstruct the input object in the input plane, 

as reported in Fig. 4 (c) and (d). The correlation coefficient 

is 𝑟 = 0.97 for both, magnitude and real part of the complex 

amplitude. Since a small part of the whole information will be 

lost by the spatial limitation of the computational plane, it is 

smaller than one. Comparing the correlation coefficients for 

the reconstructed object in Fig. 3 and Fig. 4 shows a more than 

20% improvement. Therefore, at the distance 𝑧13 almost the 

whole information of the object plane is preserved. However, 

in some cases the RSD might be applied as a reference for 

different algorithms at a propagation distance outside of the 

validity domain. 
 



 
 

Figure 4: (a), (b) magnitude and real part of the image complex amplitude,  respectively 

for 𝑧13 > 𝑧𝑐 .  (c) and (d) corresponding reconstructed amplitude and real part of the 
reconstructed object in the input plane. 

 

Additionally, a good object reconstruction by a forward and 

reverse calculation is just a necessary, but not a sufficient 

condition for testing the validity of a diffraction algorithm. It 

does not necessarily mean, that the output corresponds to the 

expected result of the diffraction theory. In other words, a 

combination of an arbitrary propagation operator (physically 

or non-physically) with its inverse always results in an 

identity operator, and consequently the reconstruction of the 

input is expected automatically. Thus in the next subsection a 

sampling condition, which always satisfies the validity 

condition and which can be used as a reference for the 

diffraction will be presented and in section 4 a general 

procedure, which makes the RSD a feasible method for 

arbitrary propagation distances will be shown. 

C. Sampling spacing below the Abbe resolution limit for fine 

structures larger than the Abbe limit 

 

According to inequality 6, the left side and the second term on 

the right side are always positive whereas, the first term on 

the right side can change its sign.  For a sampling lower than 

half of the wavelength 𝛿𝑥1 <
𝜆

2
, it will become negative and 

consequently the inequality will be fulfilled for all 

propagation distances 𝑧. Thus, the validity condition is always 

satisfied, if the sampling spacing of the harmonic term is 

smaller than the Abbe resolution limit. It should be 

emphasized that this condition only holds for the harmonic 

term. As will be shown in subsection D, this does not 

contradict the Abbe resolution limit.  

According to the discussion above, substructures smaller than 

the Abbe limit could be resolved and consequently be 

reconstructed by the Nyquist criterion. However, there are 

different meanings of „reconstruction“ in respect to 

diffraction (restricted due to the Abbe limit) and in respect to 

the sampling theory, restricted by the Nyquist criterion. In the 

context of the sampling theory, a direct reconstruction of the 

original field after sampling will be possible, whereas for the 

diffraction theory the reconstruction of the original field is 

indirect, since it takes place after a propagation over the 

distance z. Thus, the sampled data is exposed to the diffraction 

effect and consequently restricted by the Abbe limit. 

Eventually, a sampling below the wavelength does not lead to 

the breaking of the Abbe rule for our approach, but it enables 

the calculation of a diffracted image without violating the 

RSD validity condition.  
 

 
 
Figure 5: (a) and (b) magnitude and real part of the complex amplitude according to the 
RSD at the same propagation distance like Fig. 3 but with a  sampling spacing of the 

object and image smaller than the Abbe limit., (c) and (d) reconstruction of the object. 

The structures in the object are larger than the Abbe limit. 

 

In Fig. 5 (a) and (b) the diffracted image for the same 

simulation parameters like in Fig. 3 can be seen (z12 < zc), 

except that for this simulation the object was sampled with a 

sampling spacing below the Abbe limit. However, the 

structures in the object are still larger than the Abbe limit. The 

reconstructed object is shown in Fig. 5 (c) and (d). The 

correlation coefficient between the reconstructed and input 

object is 𝑟 = 0.997 for both the magnitude and the real part 

of the complex amplitude. The minor loss of information is 

just due to the limited aperture. Thus, the sampling of the 

harmonic term with a sampling spacing smaller than the Abbe 

limit can be used as a reference for the evaluation of the 

quality of the numerical calculations. 

D. Sampling spacing below the Abbe resolution limit for fine 

structures smaller than the Abbe limit 

To investigate the effect of the sampling below the Abbe limit 

for under Abbe limit structures, the input area, the output area 

and the sampling spacing have been rescaled (10 and 20 times 

smaller than the object in Fig. 2), so that both the object’s fine 

structures and the sampling spacing are below the Abbe limit. 

In Fig. 6 (a, b) and (c, d) the rescaled object and the 

reconstructed object are shown respectively. 

 



 
 
Figure 6:  (a), (b) magnitude and the real part of the complex amplitude for 

the rescaled input object. (c) and (d) magnitude and real part of the complex 

amplitude for the reconstructed object for a sampling spacing below the Abbe 

limit 𝛿𝑥1 = 𝛿𝑦1 = 0.025 μm <
𝜆

2
= 0.32 μm. 

 

As can be seen, due to the violation of the Abbe resolution 

limit, the fine structures of the object in Fig. 6 cannot be 

resolved anymore. The calculated correlation coefficients 

are 𝑟 = 0.88 and 𝑟 = 0.89  for the magnitude and the real part 

of the complex amplitude respectively. 

 

 
 
Figure 7:  (a) and (b) magnitude and real part of the complex amplitude of the 

input object. (c) and (d) magnitude and real part  of the complex amplitude 

for the corresponding output by a sampling below the Abbe limit 𝛿𝑥1 =

𝛿𝑦1 = 0.013 𝜇𝑚<<
𝜆

2
= 0.32 𝜇𝑚. 

 

For a further reduction of the fine structures in the object the 

effect is increased as can be seen in Fig. 7 (a-d). The 

calculated correlation coefficients are only 𝑟 = 0.62 and 𝑟 =
0.63.Thus, a subwavelength sampling in RSD cannot retain 

the full object information, if the fine substructures  are below 

the Abbe limit. 

4. General solution for removing the limitation 

of the propagation distance 
 

In practical applications the sampling of the object is restricted by a 

minimum spacing as a consequence of the limited pixel size of a 

given CCD camera. Here a general solution for an arbitrary distance 

from the object will be presented.  

The RSD is a linear operator ℛ , which transforms an input 

field 𝑢1(𝑟 ) over a propagation distance  𝑧12 into the 

field 𝑢12 = ℛ12{𝑢1}. Theoretically, for an unlimited aperture 

the information in the input plane 𝑢1 is completely conserved 

in the diffracted image 𝑢12. Therefore, the field 𝑢1 can be 

reconstructed from the field 𝑢12 by a reverse application of 

the RSD with 𝑧 → – 𝑧. The combination of the forward 

operator ℛ12 and the reverse operator ℛ21  (𝑢1 =
ℛ21{𝑢12}) of the field is an identical operator  ℛ21ℛ12 = 𝕝  . 
Thus, it can be written that ℛ21ℛ12{𝑢1} = 𝕝 {𝑢1} =
𝑢1 (for 𝑧12 > 𝑧12c

). 

If the validity condition is not satisfied 𝑧12 < 𝑧12c
, a complete 

reconstruction is not possible and ℛ21ℛ12 ≠ 𝕝.  If a set Υ of 

all propagation distances satisfying the validity condition is 

introduced, it follows that the reverse transform is not an 

inverse transform if z ∉ Υ. Although analytically the reverse 

and the inverse transforms are identical. Thus, a perfect 

reconstruction of all the information in the object is only 

possible if ℛ21ℛ12 = 𝕝. Therefore an RSD operator, which 

satisfies ℛ21ℛ12 = 𝕝 for z ∉ Υ  has to be found.   

As described in the last section, at the distance 𝑧13 ∈ Υ, the 

reconstruction of the object is almost perfect but, outside the 

validity condition 𝑧12 ∉ Υ, the whole object information 

cannot be retrieved from the field 𝑢12. Thus for a general 

solution, the following approach is proposed: in a first step the 

image at a longer distance which satisfies the validity 

condition and identity relation 𝑧13 ∈ Υ, is calculated with the 

additional property 𝑧13 − 𝑧12 ∈ Υ. In a second step a new 

propagation distance 𝑧23 = 𝑧13 − 𝑧12 ∈ Υ  will be calculated 

with ℛ23 = ℛ32
−1. The operator ℛ32 transforms the field 𝑢13 at 

𝑧13 to the field 𝑢132 at a shorter distance 𝑧12 . Thus, the 

operator ℛ132 = ℛ32ℛ13 , which transforms the field 𝑢1  to 

the field 𝑢132 = ℛ132{𝑢1} at the distance 𝑧12 is introduced. 

Although 𝑧12 ∉ Υ, it can be easily shown that ℛ231 satisfies 

the identity relation as follows: 

The reverse of the operator ℛ132 is the operator ℛ231. 

According to operator theory [16]: 

 

ℛ231ℛ132 = (ℛ31ℛ23) (ℛ32ℛ13) = ℛ31ℛ23ℛ32ℛ13 
 

 

Which means the reverse and inverse transforms are the 

same ℛ231 = ℛ132
−1 . If the loss of information due to the 

limited aperture for practical applications is neglected, the 

new image 𝑢132 contains all information from 𝑢1.  

The operator ℛ132 depends on two propagation variables 𝑧12 

and 𝑧13. The first is the real variable, which determines the 

distance between the object and the image. The second is just 

an arbitrary parameter which has to fulfill the condition 𝑧13 ∈

= ℛ13
−1ℛ32

−1ℛ32ℛ13 = ℛ13
−1𝕝ℛ13 =  𝕝       (11) 



Υ, 𝑧13 − 𝑧12 ∈ Υ. Thus, the set Υ has an infinite number of 

elements, which are all valid. However, a cutting of diffracted 

field values due to the limited size of the computational plane 

3 leads to a loss of information. Thus, for a fixed value of the 

pixel size and pixel number, the optimal choice for the 

propagation distance 𝑧13 is the minimum allowed value. In 

Fig. 8 the calculated field 𝑢132 at the distance 𝑧12 ∉ Υ  is 

compared with the field 𝑢12 at the same distance. This field 

𝑢12 was calculated for a sampling spacing below the Abbe 

limit and can be used as a reference, as discussed in section 

3C.  

  

 

 
 
Figure 8: (a) and (b) magnitude and real part of the complex amplitude 𝑢132 , 

(c) and (d) magnitude and real part of the complex amplitude 𝑢12 by sampling 
below the Abbe limit, used as a reference. 

 

The correlation coefficient for the magnitude and real part of 

the amplitude are 𝑟 = 0.97 respectively 𝑟 = 0.95, which 

shows a remarkable  improvement compared to  𝑟 = 0.65 

and 𝑟 = 0.49 for the case of applying the conventional 

RSD ℛ12 . If we compare the image in Fig. 3 (a), (b) with the 

below Abbe sampling image in Fig. 8 (c) and (d), we have a 

32% improvement in the magnitude and 46% in the real part 

of  the amplitude. 

In Fig. 9 the reconstruction of the object 𝑢13231 by the use of 

the operator ℛ132 for the forward and ℛ231 for the backward 

propagation is presented. The correlation coefficients for the 

magnitude and the real part of the complex amplitude are 𝑟 =
0.97. Again the validity and capability of the proposed 

approach can be seen.                                     
 

 
 
Figure 9: (a), (b) amplitude and real part of the input object (c), (d) magnitude 

and real part of the amplitude for the reconstructed object. 
 

5. Conclusion 
 

In this paper the numerical treatment of the Rayleigh-Sommerfeld 

diffraction was investigated in detail. A validity condition for the 

numerical calculation was derived. As have been shown, for a fixed 

sampling spacing in the computational domain, the allowed 

propagation distance is restricted to a minimum value. However, the 

restriction can be completely removed if the sampling spacing (not 

the structure in the object) is lower than the Abbe limit. As have been 

shown, this results in the maximum obtainable information in the 

output plane under the consideration of the limited computational 

domain, and was therefore used as a reference. Moreover, a very 

general approach for the calculation of the output field for arbitrary 

propagation distances was presented. This operator is based on a 

combination of forward and reverse RSD transforms and leads to 

very high correlation coefficients of  𝑟 = 0.97. An about 30% 

improvement in the magnitude of the amplitude and about 45% for 

the real part confirms the reliability of the new operator. A 

comparison of the results of the below Abbe limit sampling with the 

results of the composed operator is an additional verification of both 

methods and the consistency of the theoretically derived validity 

condition for the RSD. The developed approach can be used as a 

reference for the testing of high speed algorithms and other methods, 

which are based on the approximation of the exact scalar diffraction 

theory. 
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