What is the rocket's initial acceleration?

  • #1
JoeDGreat
5
2
New user has been reminded to always show their work when posting schoolwork questions
Homework Statement
A rocket is in outer space, far from any planet, when the rocket engine is turned on. In the first second of firing, the rocket ejects 1/120 of its mass with a relative speed of 2400m/s. What is the rocket's initial acceleration?
Relevant Equations
Vf-Vi = VeIn(Mi/Mf)
Help me solve... I'm getting errors here..
 
Physics news on Phys.org
  • #2
The rocket equation you have quoted is not very useful to find acceleration. For that you need to look at the fundamental conservation law that is behind the rocket equation, and specifically how the conserved quantities of the rocket and ejected propellant change the instant the rocket is turned on.
 
  • #3
JoeDGreat said:
Homework Statement: A rocket is in outer space, far from any planet, when the rocket engine is turned on. In the first second of firing, the rocket ejects 1/120 of its mass with a relative speed of 2400m/s. What is the rocket's initial acceleration?
Relevant Equations: Vf-Vi = VeIn(Mi/Mf)

Help me solve... I'm getting errors here..
Per forum rules, please post your attempt.
 
  • #4
a = -Ve/Me × dM/dt
dM/dt = Mi/120 ÷ 1sec = -Mi/120sec
a =-2400/Mi ( -Mi/120) = 20m/s²

PS: This is the textbook solving but, I don't know how dM= Mi/120
 
  • #5
JoeDGreat said:
a = -Ve/Me × dM/dt
dM/dt = Mi/120 ÷ 1sec = -Mi/120sec
a =-2400/Mi ( -Mi/120) = 20m/s²

PS: This is the textbook solving but, I don't know how dM= Mi/120
They are giving you the instantaneous rate of mass ejection at ##t=0##:

## \dot M(0) = -\frac{1}{120}M \frac{ \text{kg}}{ \text{s}} ##

Then apply "The Rocket Equation" at ##t = 0## (with no external forces).
 
Last edited:
  • #6
JoeDGreat said:
In the first second of firing, the rocket ejects 1/120 of its mass with a relative speed of 2400m/s.
Is it this statement that is giving you interpretive issues? They should have just said something to the effect of " at the instant of firing", or we are just to assume the mass flow rate as constant over the first second for the sake of simplicity (i.e. being able to find a solution).
 
  • #7
A loss of 1/120th of total mass is sufficiently small that we don't need to worry about how it changes over the second, or, indeed, that it changes at all. Just use momentum conservation: m/120 * 2400m/s = m*v.
Then a=v/t.
 
  • Like
Likes jbriggs444

Similar threads

  • Introductory Physics Homework Help
Replies
14
Views
823
  • Introductory Physics Homework Help
Replies
2
Views
1K
  • Introductory Physics Homework Help
2
Replies
42
Views
3K
  • Introductory Physics Homework Help
Replies
10
Views
714
  • Introductory Physics Homework Help
Replies
12
Views
2K
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
3
Views
2K
  • Introductory Physics Homework Help
2
Replies
53
Views
3K
  • Introductory Physics Homework Help
Replies
2
Views
774
  • Introductory Physics Homework Help
Replies
2
Views
1K
Back
Top