Understanding the Statement Circled in Red: Solving a Problem

  • Thread starter ChiralSuperfields
  • Start date
In summary: Yes, but if the teacher says "as x approaches negative infinity", as he did, that takes care of itself.
  • #1
ChiralSuperfields
1,311
138
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1676692240288.png

The solution is
1676692285706.png

However, I don't understand the statement circled in red. I don't understand why ## x = - \sqrt{x^2}##? They did not explained why.

I remember a year ago a calculus teacher showed me how to solve this type of problem. They divided the numerator by ##\sqrt{(-x)^2} = \sqrt{(x)^2}## and the denominator by ##-x##. I don't know why you have to divide by negative x for x approaches negative infinity, but this method works and give me the same result as the books method.

Many thanks!
 
Physics news on Phys.org
  • #2
Remember that this is the case where ## x\lt 0##. Therefore, ##-x## is positive and ##-x = |x| = \sqrt{x^2}##.
 
  • Like
Likes ChiralSuperfields
  • #3
FactChecker said:
Remember that this is the case where ## x\lt 0##. Therefore, ##-x## is positive and ##-x = |x| = \sqrt{x^2}##.
Thank you for your reply @FactChecker!

I think I understand now :)
 
  • #4
Callumnc1 said:
I remember a year ago a calculus teacher showed me how to solve this type of problem. They divided the numerator by ##\sqrt{(-x)^2} = \sqrt{(x)^2}## and the denominator by ##-x##.
You didn't say, but the teacher must have specified that x < 0. Otherwise ##\sqrt{(-x)^2} \ne -x##, so the fraction would essentially be multiplied by -1, which changes the value of the fraction.
 
  • Like
Likes ChiralSuperfields
  • #5
Mark44 said:
You didn't say, but the teacher must have specified that x < 0. Otherwise ##\sqrt{(-x)^2} \ne -x##, so the fraction would essentially be multiplied by -1, which changes the value of the fraction.
Yes. The solution included in post #1 says "we must remember that for ##x \lt 0## ...".
 
  • Like
Likes ChiralSuperfields
  • #6
FactChecker said:
Yes. The solution included in post #1 says "we must remember that for ##x \lt 0## ...".
I understand that, but I was responding to the part where the OP was remembering an event from a year ago. It wasn't stated that the teacher had specified then that x must be negative.
 
  • Like
Likes ChiralSuperfields and FactChecker
  • #7
Mark44 said:
You didn't say, but the teacher must have specified that x < 0. Otherwise ##\sqrt{(-x)^2} \ne -x##, so the fraction would essentially be multiplied by -1, which changes the value of the fraction.
Thank you for your replies @Mark44 and @FactChecker !

I think my teacher said divide by numerator and denominator by (-x)^n where n is the highest degree of the denominator for taking the limit as x approaches negative infinity.

Many thanks!
 
  • #8
Callumnc1 said:
I think my teacher said divide by numerator and denominator by (-x)^n where n is the highest degree of the denominator for taking the limit as x approaches negative infinity.
That's not what my comment was about. For ##\sqrt{(-x)^2}## to be equal to -x, the teacher must have said that x < 0.
 
  • Like
Likes ChiralSuperfields
  • #9
Mark44 said:
teacher must have said that x < 0.
Yes, but if the teacher says "as x approaches negative infinity", as he did, that takes care of itself.
 
  • Like
Likes ChiralSuperfields
  • #10

Similar threads

  • Calculus and Beyond Homework Help
Replies
8
Views
860
  • Calculus and Beyond Homework Help
Replies
14
Views
446
  • Calculus and Beyond Homework Help
Replies
5
Views
884
Replies
7
Views
595
  • Calculus and Beyond Homework Help
Replies
8
Views
684
  • Calculus and Beyond Homework Help
Replies
2
Views
631
Replies
9
Views
796
  • Calculus and Beyond Homework Help
Replies
7
Views
964
  • Calculus and Beyond Homework Help
Replies
1
Views
303
  • Calculus and Beyond Homework Help
Replies
4
Views
917
Back
Top