Solve the problem involving the velocity - time graph

  • Thread starter chwala
  • Start date
  • Tags
    equation
  • #1
chwala
Gold Member
2,650
351
Homework Statement
see attached
Relevant Equations
Mechanics
1711792658609.png


For part (a)

1711796581561.png


I came up with a simultaneous equation, i.e

##m+x+4m+700##
##5m+x=700##

and

##15000=\dfrac{1}{2}[5m+2x]25##
##1200=5m+2x##

therefore on solving the simultaneous,

##5m+x=700##
##1200=5m+2x##

we get ##x=500## and ##m=40##

the ms approach is here; more less similar approach.

1711792926502.png



Part (c) is straightforward.

For part (d) i used the concept on gradient,

i have for the deceleration part,

##m =\left[ \dfrac{25-0}{540-700} \right]##

##-0.15625=\left[\dfrac{y_1 - 0}{572 - 700}\right]##

##(-0.15625) (-128) =y_1##

##y_1 = 20##.

Mark scheme approach is here for part (d)

1711793499268.png




just sharing in case there is more insight.
 
Last edited:
Physics news on Phys.org
  • #2
If you want people to comment on your solution, you should be more clear about what you are doing by (a) defining what the symbols you use stand for and (b) justifying the equations in which you use these symbols.

In other words explain what you are doing by placing yourself in the position of the reader.
 
  • Like
  • Love
Likes SammyS, erobz, MatinSAR and 1 other person
  • #3
kuruman said:
If you want people to comment on your solution, you should be more clear about what you are doing by (a) defining what the symbols you use stand for and (b) justifying the equations in which you use these symbols.

In other words explain what you are doing by placing yourself in the position of the reader.
done.
 
  • #4
chwala said:
done.
Not completely.

Your solution to part (b) is well organized and we can infer what the variables represent by your labelling on your graph for part (a).
It would have been good for you to indicate that the area under the velocity-time graph gives the distance traveled, and that you were using units of metes for that, and that you computed the area using the formula for area of a trapezoid.
Also, your answers should definitely include units.

For part(d):
You have previously used the variable, ##m##, for another purpose in parts (a) and (b). Besides, we have a name for this quantity, namely acceleration.

If you have made changes to the OP as a result of @kuruman 's comments, you should indicate that when you edit the OP. I know this has been pointed out on other occasions.

chwala said:
Homework Statement: see attached
Relevant Equations: Mechanics

For part (a)

View attachment 342548

I came up with a simultaneous equation, i.e

##m+x+4m+700##
##5m+x=700##

and

##15000=\dfrac{1}{2}[5m+2x]25##
##1200=5m+2x##

therefore on solving the simultaneous,

##5m+x=700##
##1200=5m+2x##

we get ##x=500## and ##m=40##

the ms approach is here; more less similar approach.

View attachment 342546


Part (c) is straightforward.

For part (d) i used the concept on gradient,

i have for the deceleration part,

##m =\left[ \dfrac{25-0}{540-700} \right]##

##-0.15625=\left[\dfrac{y_1 - 0}{572 - 700}\right]##

##(-0.15625) (-128) =y_1##

##y_1 = 20##.

Mark scheme approach is here for part (d)

View attachment 342547

just sharing in case there is more insight.
 
  • Like
Likes Lnewqban and kuruman

Similar threads

  • Calculus and Beyond Homework Help
Replies
1
Views
616
  • Introductory Physics Homework Help
Replies
21
Views
201
  • Calculus and Beyond Homework Help
Replies
1
Views
471
  • Precalculus Mathematics Homework Help
Replies
10
Views
586
  • Calculus and Beyond Homework Help
Replies
15
Views
1K
  • Precalculus Mathematics Homework Help
Replies
4
Views
627
  • Calculus and Beyond Homework Help
Replies
2
Views
274
  • Calculus and Beyond Homework Help
Replies
3
Views
825
  • Precalculus Mathematics Homework Help
Replies
21
Views
1K
  • Precalculus Mathematics Homework Help
Replies
5
Views
515
Back
Top