Prove if ##x<0## and ##y<z## then ##xy>xz## (Rudin)

  • #1
zenterix
497
72
Homework Statement
Using field axioms, definition of ordered field, and some properties that ensue, prove the property that if ##x<0## and ##y<z## then ##xy>xz##.
Relevant Equations
A field is a set F with two operations (called addition and multiplication) which satisfy so-called "field axioms". These axioms are properties the operations satisfy.
1700211943304.png

1700211957058.png


These axioms lead to certain properties

1700211986081.png

1700211999646.png

1700212030541.png


The properties above apply to all fields.

We can define a more specific type of field, the ordered field

1700212106625.png


And the following properties follow from this definition

1700212129766.png


My question is about the proof of (c).

My initial proof was

Using b) with ##z=0## we have that if ##x>0## and ##y<0## then ##xy<0##.

Now assume ##x,y,z\in F## with ##x>0## and ##y<z## for a general ##z## in ##F##.

Then, ##(-y)+z>(-y)+y=0## by property (i) of ordered fields (1.17). Thus ##z-y>0##.

Then, ##x(z-y)<0## and thus

##xz=x(z-y)+xy<0+xy=xy##

where again we used property (i) of ordered fields.

Rudin uses the following proof

By (a), (b) and Proposition 1.16(c),

##-\left [ x(z-y)\right ]=(-x)(z-y)>0##

so that ##x(z-y)<0##, hence ##xz<xy##.

In more steps,

We start with ##-\left [x(z-y)\right ]## and by 1.16c this equals ##(-x)(z-y)##. This is larger than zero because of property (ii) of ordered fields.

But then ##x(z-y)<0## by part (a) and so ##xz=x(z-y)+xy<0+xy=xy##, where again we have used property (i) of ordered field.

Thus, ##xz<xy##.

I find that though these proofs are all simple they aren't completely trivial because I think it is easy to use assumptions that have not been proved yet.

My question is if my initial proof is correct.
 
Physics news on Phys.org
  • #2
Your proof looks correct.
 
  • Like
Likes zenterix
  • #3
The way I would do this is simply to see c) as a corollary of b). If ##x < 0## then ##-x > 0## (a), hence ##(-x)y < (-x)z## (b), hence ## -xy < -xz## (1.16c), hence ##xz < xy##. For this last step, it feels like you need another proposition: ##x < y## iff ##-x > -y##
 

Similar threads

  • Calculus and Beyond Homework Help
Replies
1
Views
478
  • Calculus and Beyond Homework Help
Replies
7
Views
712
  • Calculus and Beyond Homework Help
Replies
6
Views
572
  • Calculus and Beyond Homework Help
Replies
13
Views
2K
  • Calculus and Beyond Homework Help
Replies
2
Views
534
  • Calculus and Beyond Homework Help
Replies
6
Views
789
  • Calculus and Beyond Homework Help
Replies
2
Views
328
  • Calculus and Beyond Homework Help
Replies
15
Views
2K
  • Calculus and Beyond Homework Help
Replies
5
Views
1K
  • Calculus and Beyond Homework Help
Replies
17
Views
1K
Back
Top