Kishan's question via email about an indefinite integral

In summary: The summary of the conversation is that we should use Partial Fractions to simplify the integral and that the final solution should include absolute value in each logarithm.
  • #1
Prove It
Gold Member
MHB
1,465
24
What is the $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{\left( t- 9 \right) \left( t^2 - 2 \right) } \,\mathrm{d}t } \end{align*}$

We should use Partial Fractions to simplify the integrand. The denominator can be factorised further as $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } \end{align*}$, so that means the decomposition we should use is

$\displaystyle \begin{align*} \frac{A}{t - 9} + \frac{B}{t - \sqrt{2}} + \frac{C}{t + \sqrt{2}} &\equiv \frac{54\,t - 12}{\left( t - 9 \right) \left( t^2 - 2 \right) } \\ \frac{A\,\left( t - \sqrt{2} \right)\left( t + \sqrt{2} \right) + B\,\left( t - 9 \right) \left( t + \sqrt{2}\right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } &\equiv \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \\ A\,\left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) + B \,\left( t - 9 \right) \left( t + \sqrt{2} \right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) &\equiv 54\,t - 12 \end{align*}$

Let $\displaystyle \begin{align*} t = 9 \end{align*}$ and we have $\displaystyle \begin{align*} 79\,A = 474 \implies A = 6 \end{align*}$.

Let $\displaystyle \begin{align*} t = \sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} 2\,\sqrt{2} \,\left( \sqrt{2} - 9 \right)\,B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = -3\,\left( 4 - 18\,\sqrt{2} \right) \implies B= -3 \end{align*}$.

Let $\displaystyle \begin{align*} t = -\sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} -2\,\sqrt{2} \,\left( -\sqrt{2} - 9 \right) \, C = -54\,\sqrt{2} - 12 \implies \left( 4 + 18\,\sqrt{2} \right) \, C = -3\,\left( 4 + 18\,\sqrt{2} \right) \implies C = -3 \end{align*}$

So the integral becomes

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left| t - \sqrt{2} \right| } - 3\ln{ \left| t + \sqrt{2} \right| } + C \end{align*}$
 
Mathematics news on Phys.org
  • #2
This is correct, however are
Prove It said:
What is the $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{\left( t- 9 \right) \left( t^2 - 2 \right) } \,\mathrm{d}t } \end{align*}$

We should use Partial Fractions to simplify the integrand. The denominator can be factorised further as $\displaystyle \begin{align*} \int{ \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } \end{align*}$, so that means the decomposition we should use is

$\displaystyle \begin{align*} \frac{A}{t - 9} + \frac{B}{t - \sqrt{2}} + \frac{C}{t + \sqrt{2}} &\equiv \frac{54\,t - 12}{\left( t - 9 \right) \left( t^2 - 2 \right) } \\ \frac{A\,\left( t - \sqrt{2} \right)\left( t + \sqrt{2} \right) + B\,\left( t - 9 \right) \left( t + \sqrt{2}\right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } &\equiv \frac{54\,t - 12}{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \\ A\,\left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) + B \,\left( t - 9 \right) \left( t + \sqrt{2} \right) + C \,\left( t - 9 \right) \left( t - \sqrt{2} \right) &\equiv 54\,t - 12 \end{align*}$

Let $\displaystyle \begin{align*} t = 9 \end{align*}$ and we have $\displaystyle \begin{align*} 79\,A = 474 \implies A = 6 \end{align*}$.

Let $\displaystyle \begin{align*} t = \sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} 2\,\sqrt{2} \,\left( \sqrt{2} - 9 \right)\,B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = 54\,\sqrt{2} - 12 \implies \left( 4 - 18\,\sqrt{2} \right) \, B = -3\,\left( 4 - 18\,\sqrt{2} \right) \implies B= -3 \end{align*}$.

Let $\displaystyle \begin{align*} t = -\sqrt{2} \end{align*}$ and we have $\displaystyle \begin{align*} -2\,\sqrt{2} \,\left( -\sqrt{2} - 9 \right) \, C = -54\,\sqrt{2} - 12 \implies \left( 4 + 18\,\sqrt{2} \right) \, C = -3\,\left( 4 + 18\,\sqrt{2} \right) \implies C = -3 \end{align*}$

So the integral becomes

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left| t - \sqrt{2} \right| } - 3\ln{ \left| t + \sqrt{2} \right| } + C \end{align*}$

This is correct, however are you not missing the modulus sign on the last part of your solution? Is it not supposed to be;

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left|| t - \sqrt{2} \right|| } - 3\ln{ \left|| t + \sqrt{2} \right|| } + C \end{align*}$
 
  • #3
chwala said:
This is correct, however are you not missing the modulus sign on the last part of your solution? Is it not supposed to be;

$\displaystyle \begin{align*} \int{ \frac{54\,t - 12 }{ \left( t - 9 \right) \left( t - \sqrt{2} \right) \left( t + \sqrt{2} \right) } \,\mathrm{d}t } &= \int{ \left[ \frac{6}{t - 9} - \frac{3}{t - \sqrt{2}} - \frac{3}{t + \sqrt{2}} \right] \,\mathrm{d}t } \\ &= 6\ln{ \left| t - 9 \right| } - 3\ln{ \left|| t - \sqrt{2} \right|| } - 3\ln{ \left|| t + \sqrt{2} \right|| } + C \end{align*}$
The given solution does have absolute value in each logarithm.

##\displaystyle 6\ln{ \left| \,t - 9\, \right| } - 3\ln{ \left| \, t - \sqrt{2} \, \right| } - 3\ln{ \left| \, t + \sqrt{2} \,\right| } + C ##
 
  • Like
Likes chwala
  • #4
SammyS said:
The given solution does have absolute value in each logarithm.

##\displaystyle 6\ln{ \left| \,t - 9\, \right| } - 3\ln{ \left| \, t - \sqrt{2} \, \right| } - 3\ln{ \left| \, t + \sqrt{2} \,\right| } + C ##
Noted @SammyS
 

Related to Kishan's question via email about an indefinite integral

1. What is an indefinite integral?

An indefinite integral is a mathematical concept that represents the antiderivative of a function. It is the inverse operation of differentiation and helps to find the original function when its derivative is known.

2. How do you solve an indefinite integral?

To solve an indefinite integral, you need to use the fundamental theorem of calculus, which states that the antiderivative of a function is equal to the function itself. This means that you can find the indefinite integral by reversing the process of differentiation using integration rules and techniques.

3. Why is Kishan asking about an indefinite integral?

Kishan may be studying calculus and is likely curious about the concept of indefinite integrals as they are a fundamental part of the subject. They may also have a specific problem or question they are trying to solve using indefinite integrals.

4. What are some common techniques used to solve indefinite integrals?

Some common techniques used to solve indefinite integrals include substitution, integration by parts, partial fractions, and trigonometric substitution. Each technique is used to solve specific types of functions and can be learned through practice and understanding of integration rules.

5. Can you provide an example of solving an indefinite integral?

Sure, let's say we have the function f(x) = 3x^2 + 5x. To solve the indefinite integral of this function, we would use the power rule, which states that the indefinite integral of x^n is (x^(n+1))/(n+1). So, the integral of f(x) would be (3x^3)/3 + (5x^2)/2 + C, where C is the constant of integration. This is the general solution to the indefinite integral, and you can plug in specific values of x to find the definite integral.

Similar threads

Replies
1
Views
10K
Replies
1
Views
10K
Replies
4
Views
10K
Replies
1
Views
9K
Replies
2
Views
10K
Replies
1
Views
10K
Replies
0
Views
9K
Replies
1
Views
10K
Replies
1
Views
9K
Replies
1
Views
10K
Back
Top