It is an algebraically dependent set over F

  • MHB
  • Thread starter mathmari
  • Start date
  • Tags
    Set
In summary, the conversation discusses proving that there are distinct elements in a field extension that form an algebraically dependent set over the base field. The speaker has shown that this is possible by rationalizing a polynomial and creating a new polynomial using its coefficients. The speaker also asks for confirmation on the validity of their proof and it is confirmed.
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :eek:

Let $E/F$ be a field extension, $S\subseteq E$ and let $t\in E$ be algebraic over $F(S)$.

I want to show that there are distinct $s_1, \ldots , s_r\in S$, different from $t$, such that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$.
I have done the following:
We have that $t\in E$ is algebraic over $F(S)$, i.e., there is a non-zero $f\in F(S)[x]$ such that $f(t)=0$, right? (Wondering)

To show that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$, we have to show that there is a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ such that $g(s_1, \ldots , s_r, t)=0$, right? How can we use the polynomial $f$ for that? (Wondering)
 
Physics news on Phys.org
  • #2
mathmari said:
Hey! :eek:

Let $E/F$ be a field extension, $S\subseteq E$ and let $t\in E$ be algebraic over $F(S)$.

I want to show that there are distinct $s_1, \ldots , s_r\in S$, different from $t$, such that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$.
I have done the following:
We have that $t\in E$ is algebraic over $F(S)$, i.e., there is a non-zero $f\in F(S)[x]$ such that $f(t)=0$, right? (Wondering)

To show that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$, we have to show that there is a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ such that $g(s_1, \ldots , s_r, t)=0$, right? How can we use the polynomial $f$ for that? (Wondering)
The coefficients of $f$ are elements of $F(S)$. Thus each coefficient of $f$ looks like a ratio of two polynomials over $F$ evaluated on some members of $S$. Thus there are $s_1, \ldots, s_r\in S$ such that each coefficient of $f$ is of the form $p(s_1, \ldots, s_r)/q(s_1, \ldots, s_r)$, where $p$ and $q$ are polynomials over $F$. Now if you "rationalize" $f$ you will get your required polynomial showing $s_1, \dots, s_r, t$ are algebraically dependent over $F$.
 
  • #3
caffeinemachine said:
The coefficients of $f$ are elements of $F(S)$. Thus each coefficient of $f$ looks like a ratio of two polynomials over $F$ evaluated on some members of $S$. Thus there are $s_1, \ldots, s_r\in S$ such that each coefficient of $f$ is of the form $p(s_1, \ldots, s_r)/q(s_1, \ldots, s_r)$, where $p$ and $q$ are polynomials over $F$. Now if you "rationalize" $f$ you will get your required polynomial showing $s_1, \dots, s_r, t$ are algebraically dependent over $F$.
We have that $t\in E$ is algebraic over $F(S)$, so for a positive integer $r$ there are elements $s_1, \ldots , s_r\in S$ and a non-zero polynomial $f\in F(s_1, \ldots , s_r)[x]$ such that $f(t)=0$.

Since $f\in F(s_1, \ldots , s_r)[x]$ the polynomial is of the form $$f=\frac{p_0(s_1, \ldots , s_0)}{q_0(s_1, \ldots , s_r)}+\frac{p_1(s_1, \ldots , s_r)}{q_1(s_1, \ldots , s_r)}x+\ldots +\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}x^n$$ with $p,q$ polynomials in $F$ and with $\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}\neq 0$.

Let $h$ be the lcm of the $q_i$'s. It holds that $h\neq 0$.

When we multiply $f$ by $h$, the coefficients of $f$ are now polynomials. So,
$$\tilde{f}(x)=f\cdot h=h_0(s_1, \ldots , s_r)+h_1(s_1, \ldots , s_r)x+\ldots +h_n(s_1, \ldots , s_r)x^n$$
Let $g(s_1, \ldots , s_r, x):=\tilde{f}(x)$. Since $\tilde{f}$ is non-zero, it follows that $g$ is non-zero.

So, we have a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ with $g(s_1, \ldots , s_r, t)=\tilde{f}(t)=0$. This is the definition that the set $\{s_1, \ldots , s_r, t\}$ is algebracailly dependent.

Is everything correct? (Wondering)
 
  • #4
mathmari said:
We have that $t\in E$ is algebraic over $F(S)$, so for a positive integer $r$ there are elements $s_1, \ldots , s_r\in S$ and a non-zero polynomial $f\in F(s_1, \ldots , s_r)[x]$ such that $f(t)=0$.

Since $f\in F(s_1, \ldots , s_r)[x]$ the polynomial is of the form $$f=\frac{p_0(s_1, \ldots , s_0)}{q_0(s_1, \ldots , s_r)}+\frac{p_1(s_1, \ldots , s_r)}{q_1(s_1, \ldots , s_r)}x+\ldots +\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}x^n$$ with $p,q$ polynomials in $F$ and with $\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}\neq 0$.

Let $h$ be the lcm of the $q_i$'s. It holds that $h\neq 0$.

When we multiply $f$ by $h$, the coefficients of $f$ are now polynomials. So,
$$\tilde{f}(x)=f\cdot h=h_0(s_1, \ldots , s_r)+h_1(s_1, \ldots , s_r)x+\ldots +h_n(s_1, \ldots , s_r)x^n$$
Let $g(s_1, \ldots , s_r, x):=\tilde{f}(x)$. Since $\tilde{f}$ is non-zero, it follows that $g$ is non-zero.

So, we have a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ with $g(s_1, \ldots , s_r, t)=\tilde{f}(t)=0$. This is the definition that the set $\{s_1, \ldots , s_r, t\}$ is algebracailly dependent.

Is everything correct? (Wondering)
Yes.
 
  • #5
caffeinemachine said:
Yes.

Thank you so much! (Smile)
 

Related to It is an algebraically dependent set over F

1. What is an algebraically dependent set over F?

An algebraically dependent set over F is a set of elements that can be expressed as a polynomial with coefficients from the field F. This means that each element in the set can be written as a linear combination of the other elements in the set using operations of addition, subtraction, multiplication, and division, with the coefficients coming from the field F.

2. What is the difference between an algebraically dependent set and an algebraically independent set?

An algebraically dependent set can be expressed as a polynomial with coefficients from a field, while an algebraically independent set cannot. In other words, an algebraically independent set cannot be written as a linear combination of its elements using operations of addition, subtraction, multiplication, and division with coefficients from any field.

3. How do you determine if a set is algebraically dependent over F?

To determine if a set is algebraically dependent over F, you can use the definition of algebraic dependence. If you can find a polynomial with coefficients from the field F that equals zero when evaluated at each element in the set, then the set is algebraically dependent over F. If no such polynomial exists, then the set is algebraically independent over F.

4. Can an algebraically dependent set over F also be algebraically dependent over a different field?

Yes, an algebraically dependent set can be dependent over multiple fields. For example, a set of real numbers can be algebraically dependent over both the fields of real numbers and rational numbers.

5. How is the concept of algebraic dependence used in mathematics?

The concept of algebraic dependence is used in many areas of mathematics, including linear algebra, abstract algebra, and number theory. It is also used in applications such as cryptography and coding theory. Understanding algebraic dependence is important in solving equations and systems of equations, as well as in studying the properties of different fields.

Similar threads

  • Linear and Abstract Algebra
Replies
5
Views
1K
  • Linear and Abstract Algebra
Replies
1
Views
1K
  • Linear and Abstract Algebra
Replies
28
Views
2K
  • Linear and Abstract Algebra
Replies
19
Views
2K
  • Linear and Abstract Algebra
Replies
4
Views
1K
  • Linear and Abstract Algebra
Replies
4
Views
1K
  • Linear and Abstract Algebra
Replies
15
Views
4K
  • Linear and Abstract Algebra
Replies
19
Views
2K
  • Linear and Abstract Algebra
Replies
3
Views
1K
  • Linear and Abstract Algebra
Replies
8
Views
1K
Back
Top