Integrals with natural logarithm....

In summary, the indefinite integral proposed in the 'Challenge Forum' can be simplified using the Dirichlet series.
  • #1
chisigma
Gold Member
MHB
1,628
0
Recently in the 'Challenge Forum' the following integral has been proposed...

$$\int_{0}^{\infty} \frac{\ln x}{x^{2}+ a^{2}}\ d x\ (1)$$

Scope of this note is to illustrate a general procedure to engage integrals like (1) in elementary way, i.e. without use comnplex analysis tecniques. The preliminary is the evaluation of the following indefinite integral, which doesn't appear in most 'Integration Manuals'... $$\int x^{m}\ \ln^{n} x\ d x\ (2)$$

... where m and n are non negative integers. Proceeding with standard integration by part we first obtain...

$$\int x^{m}\ \ln^{n} x\ d x = \frac{x^{m+1}}{m+1}\ \ln^{n} x - \frac{n}{m+1}\ \int x^{m}\ \ln^{n-1} x\ d x\ (3)$$

... so that the integral in second term is the original integral with exponent of the logarithm is n-1 instead of n. Repeating n times this procedure we arrive to the final result... $$\int x^{m}\ \ln^{n} x\ d x = x^{m+1}\ \sum_{i=0}^{n} (-1)^{i}\ \frac{n!}{(n-i)!\ (m+1)^{i+1}}\ \ln^{n-i} x + c\ (4)$$

The (4) is itself important and it will be the basis of all successive steps... Comments or question about this thread can be submitted in a specific thread open in the 'Commentary Forum'...

http://mathhelpboards.com/commentary-threads-53/commentary-integrals-natural-logarithm-5287.html

Kind regards$\chi$ $\sigma$
 
Physics news on Phys.org
  • #2
The indefinite integral we found in previous post…

$$\int x^{m}\ \ln^{n} x\ d x = x^{m+1}\ \sum_{i=0}^{n} (-1)^{i}\ \frac{n!}{(n-i)!\ (m+1)^{i+1}}\ \ln^{n-i} x + c\ (1)$$

… now will be used in the particular case…

$$\int_{0}^{1} x^{m}\ \ln^{n} x\ d x = |x^{m+1}\ \sum_{i=0}^{n} (-1)^{i}\ \frac{n!}{(n-i)!\ (m+1)^{i+1}}\ \ln^{n-i} x|_{0}^{1} = (-1)^{n}\ \frac{n!}{(m+1)^{n+1}}\ (2)$$

... and the (2) can be used the more general integral... $$\int_{0}^{1} f(x)\ \ln^{n} x\ dx\ (3)$$

... where f(*) is an analytic function in the interval 0 < x < 1, i.e. is...

$$f(x) = \sum_{k=0}^{\infty} a_{k}\ x^{k}\ (4)$$

... so that we can write...

$$\int_{0}^{1} f(x)\ \ln^{n} x\ dx = \sum_{k=0}^{\infty} a_{k}\ \int_{0}^{1} x^{k}\ \ln^{n} x\ dx = (-1)^{n} n!\ \sum_{k=0}^{\infty} \frac{a_{k}}{(k+1)^{n+1}}\ (5) $$

One of the most simple cases is $f(x)= \frac{1}{1-x}$ for which is $a_{k}=1\ \forall k$, so that is... $$\int_{0}^{1} \frac{\ln^{n} x}{1-x}\ dx = (-1)^{n} n!\ \sum_{k=0}^{\infty} \frac{1}{(k+1)^{n+1}}\ = (-1)^{n}\ n!\ \zeta(n + 1)\ (6) $$

... where $\zeta(*)$ is the so called 'Riemann Zeta Function'. In next post we will examine other interesting similar integrals...

Kind regards$\chi$ $\sigma$
 
  • #3
Writing in different form the conclusion of the previous post we can say that, given an analytic function...

$\displaystyle f(x)= \sum_{n=0}^{\infty} a_{n}\ x^{n}\ (1)$

... then the following relation holds...

$\displaystyle \sum_{n=1}^{\infty} \frac{a_{n-1}}{n^{k}} = \frac{(-1)^{k-1}}{(k-1)!}\ \int_{0}^{1} f(x)\ \ln^{k-1} x\ dx\ (2)$

The first term of (2) belongs to a family of series called Dirichlet Series and they play an important role in Analytic Number Theory. The most famous of them is the so called 'Riemann Zeta Function' where $\displaystyle f(x) = \frac{1}{1-x}$ so that $\forall n$ is $a_{n}=1$ and we have...

$\displaystyle \zeta (k) = \sum_{n=1}^{\infty} \frac{1}{n^{k}} = \frac{(-1)^{k-1}}{(k-1)!}\ \int_{0}^{1} \frac{ \ln^{k-1} x}{1-x}\ dx\ (3)$

Also very important is the Dirichlet Series which derives from the so called 'Moebious Function', a discrete function defined as...

$\displaystyle \mu(n) = \begin {cases} (-1)^{\omega(n)} & \text{if}\ \omega(n)=\Omega(n)\\ 0 & \text{if}\ \omega(n)<\Omega(n)\end{cases}\ (4)$

... where $\omega(n)$ is the number of distinct primes dividing the number $n$ and $\Omega(n)$ is the number of prime factors of $n$, counted with multiplicities; clearly $\omega(n) \le \Omega(n)$. This Dirichlet series is...

$\displaystyle \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{k}} = \frac{1}{\zeta(k)}\ (5)$

Now if we want to find for it an expression like (2) we introduce the function...

$\displaystyle \rho(x) = \sum_{n=0}^{\infty} \mu(n+1)\ x^{n}\ (6)$

... that is represented in the figure...

http://www.123homepage.it/u/i72528932._szw380h285_.jpg.jfif... so that we arrive to the expression...

$\displaystyle \frac{1}{\zeta(k)} = \frac{(-1)^{k-1}}{(k-1)!}\ \int_{0}^{1} \rho(x)\ \ln^{k-1} x\ dx\ (7)$

The same procedure can be extended to other Dirichlet series...

Kind regards

$\chi$ $\sigma$
 
Last edited:

Related to Integrals with natural logarithm....

1. What is the natural logarithm?

The natural logarithm, denoted as ln(x), is the inverse of the exponential function. It is a mathematical function that gives the amount of time needed to reach a certain level of growth.

2. How is the natural logarithm used in integrals?

The natural logarithm is often used in integrals to solve for the area under a curve. It is especially useful when the function being integrated involves exponential terms.

3. What is the difference between ln(x) and log(x)?

The natural logarithm, ln(x), has a base of e (Euler's number), while log(x) can have different bases. The natural logarithm is also the inverse of the exponential function, while the logarithm is the inverse of the power function.

4. Are there any special rules for integrating natural logarithms?

Yes, there is a special rule for integrating natural logarithms called the natural logarithm rule. It states that the integral of 1/x is ln(x) + C, where C is the constant of integration.

5. Can natural logarithms be used in higher dimensions?

Yes, natural logarithms can be used in higher dimensions. In multivariable calculus, the natural logarithm can be used to calculate partial derivatives and solve for the gradient of a function.

Similar threads

Replies
14
Views
1K
  • Calculus and Beyond Homework Help
Replies
14
Views
373
  • Calculus and Beyond Homework Help
Replies
14
Views
2K
  • Calculus and Beyond Homework Help
Replies
13
Views
737
Replies
3
Views
431
  • Advanced Physics Homework Help
Replies
1
Views
874
Replies
8
Views
317
Replies
14
Views
839
  • Calculus
Replies
1
Views
1K
  • Calculus and Beyond Homework Help
Replies
3
Views
403
Back
Top