Hanging Spring with non-negligible mass is subjected to a driving force

In summary, the equations state that the displacement at any point in a spring is equal to the sum of the displacement of the end above it and the displacement of the end below it. If the spring is subjected to uniform tension, the tension at the free end is zero.
  • #1
LCSphysicist
646
161
Homework Statement
Print below
Relevant Equations
I will post below.
1597937522792.png

1597936455920.png

First i will use a equation resulted in considering a spring as a continuum limit of massive mass:

ω = √(KL/ρ)*kn

ρ is the linear density ρ

ω = √(KL/ρ)*kn

X = A*cos(kn*x)*cos(ω*t)

ξ = A (first consequence)

X = ξ*cos(kn*x)*cos(ω*t)

∂y/∂x need to be zero in x=L (for strain be zero)

kn*L = n*π (second)

ω = √(KL/ρ)*kn = √(KL/ρ)*n*π/L

So

X = L + ξ*cos(((n*π))*cos(ω*t)

where

ω = √(K/M)*n*π

n is a natural

This seems okay?
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
LCSphysicist said:
Homework Statement:: Print below
Relevant Equations:: I will post below.

First i will use a equation resulted in considering a spring as a continuum limit of massive mass:
You've lost me already. I don't know what you mean by that, nor how you get that equation, nor what kn is. For the equation to be dimensionally consistent, kn would have to have dimension L-1, right?

I would expect to see a differential equation obtained by considering an element length dy subject to different tensions above and below.
 
  • #3
haruspex said:
You've lost me already. I don't know what you mean by that, nor how you get that equation, nor what kn is.
I would expect to see a differential equation obtained by considering an element length dy subject to different tensions above and below.
I am trying to approach the problem by means of waves, so when the up part is oscillating, the wave will propagate by the spring until the end of the spring...
I think i need to explain better, kn has the same sense as we use it in string oscillating vertically, it is like the wave number.
And the expression for w is just a result by oscillate the massive spring:

Imagine a spring as a lot of masses in line and as perturbation in one end is made.

You know the result ω will be

1597962944735.png


But as we are imagining a massive spring,

m is the little mass
Ka is the spring stiffness in the little mass region.

a -> 0

When we cut a spring, the stiffnes of each part is 2K right? Following this thinking:

Ka*a = K*L

ω² = (4*K*L/m*a)*k²*a²/4

ω = √(K*L/ρ)*k
ρ = M/L

and just put in the stationary wave with respectives conditions...

Since the waves propagates in the spring direction, when it came below, it will governs the motion of the end
 
  • #4
Ok, I understand a little better, but it doesn’t seem to me you have arrived at an answer to the question. I would have thought we are supposed to find the phase and amplitude at the free end.
Also, I am confused by your use of x. In one place it looks like x is the distance of an element from one end in the relaxed state, and y is its displacement from its equilibrium position; in another, x seems to be the position of an element as a function of time.
Please define all your variables clearly.
 
  • #5
haruspex said:
Ok, I understand a little better, but it doesn’t seem to me you have arrived at an answer to the question. I would have thought we are supposed to find the phase and amplitude at the free end.
Also, I am confused by your use of x. In one place it looks like x is the distance of an element from one end in the relaxed state, and y is its displacement from its equilibrium position; in another, x seems to be the position of an element as a function of time.
Please define all your variables clearly.
I agree there is a flaw in approach the problem by this way, because i can not find any k, and i don't know how could we find it.

I will rewrite:

Now y denote the initial position and X the position at time t

ω = √(KL/ρ)*kn
ρ is the linear density ρ

X = y + A*cos(kn*y)*cos(ω*t)

(ξ*cos(ω*t) at y=0)=>

X = ξ*cos(kn*y)*cos(ω*t)

∂X/∂y need to be zero in y=L (for strain be zero)

kn*L = n*π (second)

ω = √(KL/ρ)*kn = √(KL/ρ)*n*π/L

So

X = L + ξ*cos(((n*π))*cos(ω*t)

where
ω = √(K/M)*n*π
 
  • #6
If the spring were deformed uniformly, the tension would be $$T=Ku_L$$where ##u_L## is the displacement at x = L, assuming that x = 0 is fixed. This equation can also be written as $$T=KL\frac{u_L}{L}$$where the local uniform strain in the spring is given by $$\epsilon(x)=\frac{u_L}{L}=\frac{\partial u}{\partial x}$$Therefore, in any arbitration non-uniform axial deformation of the spring, the local tension is given by:
$$T(x)=KL\frac{\partial u}{\partial x}$$

For the problem at hand, if we perform a force balance on the portion of the spring between x and ##x+\Delta x##, we obtain:$$T(x+\Delta x)-T(x)=\frac{m}{L}\Delta x\frac{\partial^2u}{\partial t^2}$$Combining the previous two equations, dividing by ##\Delta x##, and taking the limit as ##\Delta x## approaches zero yields:
$$\frac{\partial^2u}{\partial t^2}=\frac{KL^2}{m}\frac{\partial^2u}{\partial x^2}=c^2\frac{\partial^2u}{\partial x^2}$$where c is the wave speed: $$c=L\sqrt{\frac{K}{m}}$$The boundary condition at x = L is zero tension: ##\frac{\partial u}{\partial x}=0## @ x = L.

The solution to this problem is going to be of the form $$u(x,t)=A(x)\cos{\omega t}+B(x)\sin{\omega t}$$subject to the initial conditions ##A(0)=\epsilon##, B(0)=0.
 
  • Like
Likes etotheipi
  • #7
@Chestermiller just to clarify, have you defined ##x## to be the material coordinates and ##u(x,t)## as the displacement of the point of the spring at material coordinate ##x## from its position at ##t=0##? That is to say that the function which converts the material coordinate to the 'real' coordinate ##X## is ##X(x,t) = x + u(x,t)##?
 
  • #8
Chestermiller said:
The solution to this problem is going to be of the form $$u(x,t)=A(x)\cos{\omega t}+B(x)\sin{\omega t}$$
I worried that there might be harmonics. Is that not possible ?
 
  • #9
Chestermiller said:
If the spring were deformed uniformly, the tension would be $$T=Ku_L$$where ##u_L## is the displacement at x = L, assuming that x = 0 is fixed. This equation can also be written as $$T=KL\frac{u_L}{L}$$where the local uniform strain in the spring is given by $$\epsilon(x)=\frac{u_L}{L}=\frac{\partial u}{\partial x}$$Therefore, in any arbitration non-uniform axial deformation of the spring, the local tension is given by:
$$T(x)=KL\frac{\partial u}{\partial x}$$

For the problem at hand, if we perform a force balance on the portion of the spring between x and ##x+\Delta x##, we obtain:$$T(x+\Delta x)-T(x)=\frac{m}{L}\Delta x\frac{\partial^2u}{\partial t^2}$$Combining the previous two equations, dividing by ##\Delta x##, and taking the limit as ##\Delta x## approaches zero yields:
$$\frac{\partial^2u}{\partial t^2}=\frac{KL^2}{m}\frac{\partial^2u}{\partial x^2}=c^2\frac{\partial^2u}{\partial x^2}$$where c is the wave speed: $$c=L\sqrt{\frac{K}{m}}$$The boundary condition at x = L is zero tension: ##\frac{\partial u}{\partial x}=0## @ x = L.

The solution to this problem is going to be of the form $$u(x,t)=A(x)\cos{\omega t}+B(x)\sin{\omega t}$$subject to the initial conditions ##A(0)=\epsilon##, B(0)=0.

I almost get it, unless the X = L + ξ*cos(((n*π))*cos(ω*t) in the equation, so in my way n would be some even number? Why should it be?
 
  • #10
This remember the fact when we driven something below resonance frequency, the system resonates with the force, while above the resonance frequency, it will oscillates180 degree out.
 
  • #11
etotheipi said:
@Chestermiller just to clarify, have you defined ##x## to be the material coordinates and ##u(x,t)## as the displacement of the point of the spring at material coordinate ##x## from its position at ##t=0##? That is to say that the function which converts the material coordinate to the 'real' coordinate ##X## is ##X(x,t) = x + u(x,t)##?
Yes, material point, but not at time zero. It is supposed to be distance along the spring at a time when the spring is not under any load. In the present system, the motion is supposed to be a stationary oscillatory motion, so that at each material point, it is periodic, but with a different phase angle.
 
  • Like
Likes etotheipi
  • #12
haruspex said:
I worried that there might be harmonics. Is that not possible ?
I don't think that higher harmonics can satisfy the boundary conditions.
 
  • #13
LCSphysicist said:
I almost get it, unless the X = L + ξ*cos(((n*π))*cos(ω*t) in the equation, so in my way n would be some even number? Why should it be?
I don't get this result. I get the following standing wave:
$$u(x,t)=\epsilon\frac{\cos{\frac{\omega}{c}(L-x)}}{\cos{\frac{\omega}{c}L}}\cos{\omega t}$$I believe that this satisfies the boundary conditions and the differential equation.
 
  • Like
Likes TSny

Related to Hanging Spring with non-negligible mass is subjected to a driving force

1. What is a hanging spring with non-negligible mass?

A hanging spring with non-negligible mass refers to a spring that has a significant amount of mass attached to it, such as a weight or object. This added mass affects the behavior and motion of the spring when subjected to external forces.

2. What is a driving force?

A driving force is any external force that is applied to a system, in this case, the hanging spring. It can be a constant force or a periodic force that causes the spring to move or change its shape.

3. How does a hanging spring with non-negligible mass behave when subjected to a driving force?

The behavior of a hanging spring with non-negligible mass can vary depending on the magnitude and frequency of the driving force. It may exhibit simple harmonic motion, where it oscillates back and forth around a stable equilibrium position, or it may exhibit more complex behavior such as chaotic motion.

4. What factors affect the motion of a hanging spring with non-negligible mass?

The motion of a hanging spring with non-negligible mass is affected by several factors, including the mass of the object attached to the spring, the stiffness of the spring, the amplitude and frequency of the driving force, and the presence of any damping forces.

5. How can the behavior of a hanging spring with non-negligible mass be predicted?

The behavior of a hanging spring with non-negligible mass can be predicted using mathematical models and equations, such as Hooke's law and the equations of motion for a damped harmonic oscillator. These models take into account the various factors that affect the motion of the spring and can provide insight into its behavior under different conditions.

Similar threads

  • Introductory Physics Homework Help
Replies
3
Views
886
  • Introductory Physics Homework Help
Replies
11
Views
2K
  • Introductory Physics Homework Help
Replies
7
Views
4K
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
6
Views
2K
  • Introductory Physics Homework Help
Replies
2
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
2K
  • Introductory Physics Homework Help
Replies
17
Views
473
  • Introductory Physics Homework Help
Replies
26
Views
3K
  • Introductory Physics Homework Help
Replies
3
Views
2K
Back
Top