Elementary physics of falling bodies.

In summary, the conversation revolves around calculating the velocity and kinetic energy of falling objects, taking into account potential resistance and the force needed to stop a falling object. The gravitational acceleration constant is used in these calculations, but there is also a discussion on whether or not to reduce the acceleration to account for unknown resistance. Ultimately, the conversation delves into the relationship between mass, force, velocity, and kinetic energy.
  • #1
Randomer Guy
15
0
It is possible to calculate the velocity of falling bodies (ignoring air resistance of course) using a gravitational acceleration constant.

If there is some other resistance, other than air, is it reasonable to simply reduce the acceleration by some amount to account for that resistance, if one is trying to get at a reasonable range for kinetic energy?

Assume:

You don't know what the resistance is

You DO know there is downwards motion

I am trying to get at an ending velocity for about 3-10 meters of accleration if that helps. Using that ending velocity, I can then easily calculate kinetic energy.
 
Physics news on Phys.org
  • #2
If you have an acceleration, what is its velocity after that amount of distance?
 
  • #3
mathPimpDaddy said:
If you have an acceleration, what is its velocity after that amount of distance?

Ah, there is the burn.

I am trying to get the acceleration or a close approximation of it.

The people I am talking to say that it is not reasonable to simply reduce or "fudge" the gravitational acceleration to account for some unknown quantity of resistance.

The falling object is meeting some resistance that is not due to air.
 
  • #4
Randomer Guy said:
Ah, there is the burn.

I am trying to get the acceleration or a close approximation of it.

The people I am talking to say that it is not reasonable to simply reduce or "fudge" the gravitational acceleration to account for some unknown quantity of resistance.

The falling object is meeting some resistance that is not due to air.

Going back to the OP, the only known is that the object is moving.

I think the resistance is rather small compared to the energy of motion, so the ending velocity is probably pretty close to what one would expect from a free fall. (say about 75% of g, acting over a known distance)
 
  • #5
mathPimpDaddy said:
If you have an acceleration, what is its velocity after that amount of distance?

I do know that the maximum acceleration is that of gravity though. :biggrin:
 
  • #6
how big is the body?? I say, if the problem doesn't say it, they don't want you to have that much fun.
 
  • #7
mathPimpDaddy said:
how big is the body?? I say, if the problem doesn't say it, they don't want you to have that much fun.

Check your private messages.

The question ultimately hinges on how much force, relative to the mass, is required to stop the fall.

The thing doing the catching is designed to hold the falling mass stationary plus some.

I am trying to demonstrate that the kinetic energy/force imparted of a falling body is MUCH higher than that of the body held stationary.
 
  • #8
Randomer Guy said:
Check your private messages.

The question ultimately hinges on how much force, relative to the mass, is required to stop the fall.

The thing doing the catching is designed to hold the falling mass stationary plus some.

I am trying to demonstrate that the kinetic energy/force imparted of a falling body is MUCH higher than that of the body held stationary.

X is falling from 11 meters.

Y is an object designed to support X+(unknown variable) against gravity when it is stationary.

How much force/resistance must Y apply to X to stop its downwards motion?

Assume X+(unknown variable)= X*2

What is not known in this case is the ending velocity. If two times the mass of the falling object X is all that Y can stop/catch, the ending velocity would have to be VERY low, around 5% (less actually) of what one would expect if the object had been accelerated for 11 meters at 9.8 m/s/s

I have figured all of this out, but simply want to know if there is anything I am missing.

Again, I have been told my calculations (by my dubious pupils) are meaningless. I think they don't believe that moving bodies really impart as much force as they do.
 
  • #9
Well, force does equal mass times acceleration. so bigger the mass, and g will always be the same for the most part, the bigger the force. Its really not that complex really. In terms of kinetic energy, I think the velocity would have a bigger impact at a certain speeds because of the v squared. But it takes a lot of time to reach a powerful energetic speed when the acceleration is g. but that object has a a lot of mass so, its from all that mass.
 
Last edited:
  • #10
I think you should research momentum, collisions etc... You derive the kinetic equations from momentum relationships. Newton's equation is actually rate of change in momentum
 
  • #11
mathPimpDaddy said:
Well, force does equal mass times acceleration. so bigger the mass, and g will always be the same for the most part, the bigger the force. Its really not that complex really. In terms of kinetic energy, I think the velocity would have a bigger impact at a certain speeds because of the v squared. But it takes a lot of time to reach a powerful energetic speed when the acceleration is g. but that object has a a lot of mass so, its from all that mass.

But Y's ability to catch that mass is a function of the mass in the first place.

So the mass is less important than the amount of energy relative to the mass.
 

Related to Elementary physics of falling bodies.

What is the definition of "Elementary physics of falling bodies"?

The elementary physics of falling bodies is a branch of physics that studies the motion of objects as they fall under the influence of gravity. It involves understanding concepts such as acceleration, velocity, and distance traveled.

What is the difference between velocity and acceleration?

Velocity is the rate at which an object changes its position over time, while acceleration is the rate at which an object changes its velocity over time. In simpler terms, velocity is the speed and direction of an object, while acceleration is the change in speed and direction.

How does air resistance affect the motion of a falling object?

Air resistance, also known as drag, is a force that acts opposite to the direction of motion of a falling object. It can slow down the object's velocity and change its trajectory, resulting in a longer time for the object to reach the ground.

What is the relationship between mass and gravitational force?

The greater the mass of an object, the greater the gravitational force it experiences. This is because the force of gravity is directly proportional to the mass of the object. Therefore, a heavier object will fall faster than a lighter object under the same conditions.

How does the height from which an object is dropped affect its time of fall?

The height from which an object is dropped does not affect its time of fall. According to the law of conservation of energy, the potential energy of the object at the top is converted into kinetic energy as it falls, and the total energy remains constant. Therefore, the time of fall will be the same regardless of the object's starting height.

Similar threads

  • Introductory Physics Homework Help
Replies
8
Views
258
  • Introductory Physics Homework Help
Replies
13
Views
1K
  • Introductory Physics Homework Help
Replies
33
Views
1K
  • Introductory Physics Homework Help
2
Replies
47
Views
3K
  • Introductory Physics Homework Help
2
Replies
56
Views
2K
  • Introductory Physics Homework Help
Replies
11
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
427
  • Introductory Physics Homework Help
Replies
9
Views
2K
  • Introductory Physics Homework Help
Replies
17
Views
797
Back
Top