Charge-Conjugation property

  • #1
BobaJ
38
0
Homework Statement
I have to show, the last equality in the charge-conjugation property of the current $$C\bar{\Psi}_a\gamma^{\mu}\Psi_bC^{-1}=\bar{\Psi}_a^c\gamma^{\mu}\Psi_b^c=-(\bar{\Psi}_a\gamma^{\mu}\Psi_b)^\dagger$$
Relevant Equations
##\bar{\Psi}^c=-\Psi^TC^{-1}##

##\Psi^c=C\bar{\Psi}^T##

##C^{-1}\gamma^{\mu}C=-\gamma^{\mu T}##

##C=-C^{-1}=-C^\dagger=-C^T##

And I have to use that the fermionic quantum fields ##\Psi_a## and ##\Psi_b## anticommute.
I'm probably just complicating things, but I'm a little bit stuck with this problem.

I started with just plugging in the definitions for ##\bar{\Psi}_a^c## and ##\Psi_b^c##. So I get

$$\bar{\Psi}_a^c\gamma^{\mu}\Psi_b^c=-\Psi_a^TC^{-1}\gamma^{\mu}C\bar{\Psi}_b^T$$.

After this I used ##C^{-1}\gamma^{\mu}C=-\gamma^{\mu T}## to get:

$$=\Psi-a^T\gamma^{\mu T}\bar{\Psi}_b^T$$.

Is this the right way? How do I go onto show the equality? Thank you for your help.
 

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
926
  • Advanced Physics Homework Help
Replies
0
Views
706
  • Advanced Physics Homework Help
Replies
15
Views
2K
  • Advanced Physics Homework Help
3
Replies
95
Views
5K
  • Advanced Physics Homework Help
Replies
2
Views
991
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
814
  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Advanced Physics Homework Help
Replies
15
Views
2K
Replies
3
Views
1K
Back
Top