Atomic dipole moment for a superposition state

In summary, the conversation discusses calculating the time dependent expectation value of the atomic dipole moment for a superposition state. The formula for the expectation value is given, and it is then calculated for a specific example. The final result is a function of time and involves the difference between the energies of the two states in the superposition. The correctness of the calculations is not confirmed.
  • #1
DivGradCurl
372
0
Hi all,

I'm trying to understand how to calculate the time dependent expectation value of the atomic dipole moment for a superposition state, and I have a good guess to check with you. Say we have
[tex]\psi = \frac{1}{\sqrt{2}} \left[ \psi _{100} + \psi _{310} \right][/tex]
at t = 0. Then, for t > 0:
[tex]\Psi (t) = \frac{1}{\sqrt{2}} \left[ \psi _{100} e^{-iE_1 t/\hbar} + \psi _{310} e^{-iE_3 t/\hbar} \right] = \frac{1}{\sqrt{2}} \left[ \psi _{100} e^{-i\omega_1 t} + \psi _{310} e^{-i\omega_3 t} \right] [/tex]
Given that the time dependent expectation value of the atomic dipole moment is defined as
[tex]\langle \vec{d}(t) \rangle = -e \langle \vec{r} (t) \rangle[/tex]
I proceed as follows:
[tex]\langle \vec{d}(t) \rangle = -e \langle \Psi (t) | \mbox{ } \vec{r} \mbox{ } | \Psi (t) \rangle[/tex]
[tex]\langle \vec{d}(t) \rangle = -e \langle \left( \frac{1}{\sqrt{2}} \psi _{100} e^{-i\omega_1 t} + \frac{1}{\sqrt{2}} \psi _{310} e^{-i\omega_3 t} \right) | \mbox{ } \vec{r} \mbox{ } | \left( \frac{1}{\sqrt{2}} \psi _{100} e^{-i\omega_1 t} + \frac{1}{\sqrt{2}} \psi _{310} e^{-i\omega_3 t} \right) \rangle[/tex]
[tex]\langle \vec{d}(t) \rangle = -e \langle \left( \frac{1}{\sqrt{2}} \psi _{100} e^{-i\omega_1 t} \right) | \mbox{ } \vec{r} \mbox{ } | \left( \frac{1}{\sqrt{2}} \psi _{310} e^{-i\omega_3 t} \right) \rangle -e \langle \left( \frac{1}{\sqrt{2}} \psi _{310} e^{-i\omega_3 t} \right) | \mbox{ } \vec{r} \mbox{ } | \left( \frac{1}{\sqrt{2}} \psi _{100} e^{-i\omega_1 t} \right) \rangle[/tex]
[tex]\langle \vec{d}(t) \rangle = -e \left( \frac{1}{\sqrt{2}} e^{+i\omega_1 t} \right) \langle \psi _{100} | \mbox{ } \vec{r} \mbox{ } | \psi _{310} \rangle \left( \frac{1}{\sqrt{2}} e^{-i\omega_3 t} \right) -e \left( \frac{1}{\sqrt{2}} e^{+i\omega_3 t} \right) \langle \psi _{310} | \mbox{ } \vec{r} \mbox{ } | \psi _{100} \rangle \left( \frac{1}{\sqrt{2}} e^{-i\omega_1 t} \right)[/tex]
[tex]\langle \vec{d}(t) \rangle = -e \left( \frac{1}{\sqrt{2}} e^{+i\omega_1 t} \right) \langle 100 | \mbox{ } \vec{r} \mbox{ } | 310 \rangle \left( \frac{1}{\sqrt{2}} e^{-i\omega_3 t} \right) -e \left( \frac{1}{\sqrt{2}} e^{+i\omega_3 t} \right) \langle 310 | \mbox{ } \vec{r} \mbox{ } | 100 \rangle \left( \frac{1}{\sqrt{2}} e^{-i\omega_1 t} \right)[/tex]
[tex]\langle \vec{d}(t) \rangle = -e \left( \frac{1}{\sqrt{2}} e^{+i\omega_1 t} \right) \langle 10 | \mbox{ } r \mbox{ } | 31 \rangle \langle 00 | \mbox{ } \hat{r} \mbox{ } | 10 \rangle \left( \frac{1}{\sqrt{2}} e^{-i\omega_3 t} \right) -e \left( \frac{1}{\sqrt{2}} e^{+i\omega_3 t} \right) \langle 31 | \mbox{ } r \mbox{ } | 10 \rangle \langle 10 | \mbox{ } \vec{r} \mbox{ } | 00 \rangle \left( \frac{1}{\sqrt{2}} e^{-i\omega_1 t} \right)[/tex]
[tex]\langle \vec{d}(t) \rangle = -e \left( \frac{1}{\sqrt{2}} e^{+i\omega_1 t} \right) (0.517 a_0) \left( 0, 0, \frac{1}{\sqrt{3}}\right) \left( \frac{1}{\sqrt{2}} e^{-i\omega_3 t} \right) -e \left( \frac{1}{\sqrt{2}} e^{+i\omega_3 t} \right) (0.517 a_0) \left( 0, 0, \frac{1}{\sqrt{3}}\right) \left( \frac{1}{\sqrt{2}} e^{-i\omega_1 t} \right)[/tex]
[tex]\langle \vec{d}(t) \rangle = -e \frac{1}{2} e^{+i\omega_1 t} e^{-i\omega_3 t} (0.517 a_0) \left( 0, 0, \frac{1}{\sqrt{3}}\right) -e \frac{1}{2} e^{+i\omega_3 t} e^{-i\omega_1 t} (0.517 a_0) \left( 0, 0, \frac{1}{\sqrt{3}}\right)[/tex]
[tex]\langle \vec{d}(t) \rangle = \left[ -e \frac{1}{2} (0.517 a_0) \left( 0, 0, \frac{1}{\sqrt{3}}\right) \right] \left( e^{+i\omega_1 t} e^{-i\omega_3 t} + e^{+i\omega_3 t} e^{-i\omega_1 t}\right)[/tex]
[tex]\langle \vec{d}(t) \rangle = \left[ -e \frac{1}{2} (0.517 a_0) \left( 0, 0, \frac{1}{\sqrt{3}}\right) \right] \left( e^{+i(\omega_1 - \omega_3) t} + e^{-i(\omega_1 - \omega_3) t} \right)[/tex]
[tex]\langle \vec{d}(t) \rangle = \left[ -e \frac{1}{2} (0.517 a_0) \left( 0, 0, \frac{1}{\sqrt{3}}\right) \right] 2\cos \left[(\omega_1 - \omega_3) t \right][/tex]
[tex]\fbox{$\displaystyle\langle \vec{d}(t) \rangle = -e (0.517 a_0) \left( 0, 0, \frac{1}{\sqrt{3}}\right) \cos \left[(\omega_1 - \omega_3) t \right]$}[/tex]

Is this correct? :smile: Thanks!
 
Physics news on Phys.org
  • #2
I did not check your math but the approach is reasonable.
 

Related to Atomic dipole moment for a superposition state

1. What is an atomic dipole moment?

An atomic dipole moment is a measure of the separation of positive and negative charges within an atom, which results in a net electrical dipole. It is usually represented by a vector pointing from the negative to the positive charge.

2. How is the atomic dipole moment calculated?

The atomic dipole moment is calculated by multiplying the magnitude of the charge of the atom by the distance between the positive and negative charges.

3. What is a superposition state in relation to atomic dipole moment?

In quantum mechanics, a superposition state is a state in which an atom or particle exists in multiple states or locations simultaneously. This can affect the atomic dipole moment as it may cause the charges within the atom to be distributed differently.

4. How does a superposition state affect the atomic dipole moment?

In a superposition state, the atomic dipole moment can change as the individual charges within the atom are in different locations or states simultaneously. This can result in a different net dipole moment for the atom.

5. What are the practical applications of studying the atomic dipole moment for a superposition state?

Studying the atomic dipole moment for a superposition state can provide insights into the behavior and properties of atoms and particles in quantum systems. It can also have practical applications in technologies such as quantum computing and quantum communication.

Similar threads

Replies
2
Views
617
  • Quantum Physics
Replies
26
Views
1K
Replies
5
Views
1K
  • Quantum Physics
Replies
2
Views
874
  • Quantum Physics
Replies
3
Views
1K
  • Quantum Physics
Replies
15
Views
2K
  • Quantum Physics
Replies
4
Views
795
  • Quantum Physics
Replies
9
Views
995
Replies
3
Views
836
  • Quantum Physics
Replies
9
Views
1K
Back
Top