If $a^2b^2+b^2c^2+c^2a^2-69abc=2016$, then, what can be said about the least value of $\min(a, b ,c)$?

This problem is unyielding to the major inequalities like AM-GM, Cauchy-Schwarz, etc. I also tried relating it to $x^3+y^3+z^3-3xyz=(x+y+z)(\sum_{cyc}x^2+\sum_{cyc}xy)$, but of no use. Any ideas. Thanks beforehand.

PS: This is problem S395 in Mathematical Reflections.