Facebook Page
Twitter
RSS
+ Reply to Thread
Page 3 of 3 FirstFirst 123
Results 21 to 25 of 25
  1. MHB Master
    MHB Site Helper
    mathmari's Avatar
    Status
    Offline
    Join Date
    Apr 2013
    Posts
    2,588
    Thanks
    2,075 times
    Thanked
    665 times
    Trophies
    1 Highscore
    Awards
    MHB Chat Room Award (2015)  

MHB Model User Award (2015)  

MHB LaTeX Award (2015)
    #21 Thread Author
    Suppose that $\sqrt{3}\in \mathbb{Q}[\rho]$ then we have the following:

    $$\sqrt{3}=a+b\rho+c\rho^2+d\rho^3 \\ \Rightarrow 3=a^2+2 a b\rho+b^2\rho^2+2 a c\rho^2+2 b c\rho^3+c^2\rho^4+2 a d\rho^3+2 b d\rho^4+2 c d\rho^5+d^2\rho^6\\ \Rightarrow 3=a^2+2 a b\rho+(b^2+2 a c)\rho^2+(2 b c+2 a d)\rho^3+(c^2+2 b d)(2\rho^2+1)+2 c d\rho(2\rho^2+1)+d^2\rho^2(2\rho^2+1)\\ \Rightarrow 3=(a^2+c^2+2 b d)+(2 a b+2 c d)\rho+(b^2+2 a c+2c^2+4 b d+d^2)\rho^2+(2 b c+2 a d+4 c d)\rho^3+2d^2\rho^4\\ \Rightarrow 3=(a^2+c^2+2 b d)+(2 a b+2 c d)\rho+(b^2+2 a c+2c^2+4 b d+d^2)\rho^2+(2 b c+2 a d+4 c d)\rho^3+2d^2(2\rho^2+1) \\ \Rightarrow 3=(a^2+c^2+2 b d+2d^2)+(2 a b+2 c d)\rho+(b^2+2 a c+2c^2+4 b d+5d^2)\rho^2+(2 b c+2 a d+4 c d)\rho^3 \\ \Rightarrow (a^2+c^2+2 b d+2d^2-3)+(2 a b+2 c d)\rho+(b^2+2 a c+2c^2+4 b d+5d^2)\rho^2+(2 b c+2 a d+4 c d)\rho^3=0$$

    Then $$a^2+c^2+2 b d+2d^2-3=2 a b+2 c d=b^2+2 a c+2c^2+4 b d+5d^2=2 b c+2 a d+4 c d=0$$

    How could we solve this system?

    From the second equation we have that $ab=-cd$.
    If we substitute this in the last equation we get $b(c-a)+a(d-b)=0$.
    How could we continue?

    Or is this way not correct?

  2. MHB Journeyman
    MHB Math Scholar
    caffeinemachine's Avatar
    Status
    Offline
    Join Date
    Mar 2012
    Location
    India
    Posts
    779
    Thanks
    564 times
    Thanked
    1,101 time
    Thank/Post
    1.413
    Awards
    MHB Topology and Advanced Geometry Award (2016)
    #22
    Quote Originally Posted by mathmari View Post
    Suppose that $\sqrt{3}\in \mathbb{Q}[\rho]$ then we have the following:

    $$\sqrt{3}=a+b\rho+c\rho^2+d\rho^3 \\ \Rightarrow 3=a^2+2 a b\rho+b^2\rho^2+2 a c\rho^2+2 b c\rho^3+c^2\rho^4+2 a d\rho^3+2 b d\rho^4+2 c d\rho^5+d^2\rho^6\\ \Rightarrow 3=a^2+2 a b\rho+(b^2+2 a c)\rho^2+(2 b c+2 a d)\rho^3+(c^2+2 b d)(2\rho^2+1)+2 c d\rho(2\rho^2+1)+d^2\rho^2(2\rho^2+1)\\ \Rightarrow 3=(a^2+c^2+2 b d)+(2 a b+2 c d)\rho+(b^2+2 a c+2c^2+4 b d+d^2)\rho^2+(2 b c+2 a d+4 c d)\rho^3+2d^2\rho^4\\ \Rightarrow 3=(a^2+c^2+2 b d)+(2 a b+2 c d)\rho+(b^2+2 a c+2c^2+4 b d+d^2)\rho^2+(2 b c+2 a d+4 c d)\rho^3+2d^2(2\rho^2+1) \\ \Rightarrow 3=(a^2+c^2+2 b d+2d^2)+(2 a b+2 c d)\rho+(b^2+2 a c+2c^2+4 b d+5d^2)\rho^2+(2 b c+2 a d+4 c d)\rho^3 \\ \Rightarrow (a^2+c^2+2 b d+2d^2-3)+(2 a b+2 c d)\rho+(b^2+2 a c+2c^2+4 b d+5d^2)\rho^2+(2 b c+2 a d+4 c d)\rho^3=0$$

    Then $$a^2+c^2+2 b d+2d^2-3=2 a b+2 c d=b^2+2 a c+2c^2+4 b d+5d^2=2 b c+2 a d+4 c d=0$$

    How could we solve this system?


    From the second equation we have that $ab=-cd$.
    If we substitute this in the last equation we get $b(c-a)+a(d-b)=0$.
    How could we continue?

    Or is this way not correct?
    I would find it very difficult to solve this problem this way. I suggest you leave this problem for now and come back to it when you have learnt more theory.

  3. MHB Master
    MHB Site Helper
    mathmari's Avatar
    Status
    Offline
    Join Date
    Apr 2013
    Posts
    2,588
    Thanks
    2,075 times
    Thanked
    665 times
    Trophies
    1 Highscore
    Awards
    MHB Chat Room Award (2015)  

MHB Model User Award (2015)  

MHB LaTeX Award (2015)
    #23 Thread Author
    If we want to check if $f$ can be splitted in $\mathbb{Q}[\sqrt{3}]$ we do the following:

    We have the following possibilities:

    - $x^4-2x^2-1=(x+a)(x^3+bx^2+cx+d)$
    When $a$ is a root then $-a$ is also a root, ans so $(x-a)$ is also a factor. Therefore, $x^2-a^2$ is a factor of $f$. We have that $a\in \mathbb{Q}[\sqrt{3}]$, so $a=q_1+q_2\sqrt{3}$. Then $a^2=(q_1+q_2\sqrt{3})(q_1-q_2\sqrt{3})=q_1^2-3q_2^2\in \mathbb{Q}[x]$. That means that there is a factor of $f$ in $\mathbb{Q}[x]$, so it is not irreducible in $\mathbb{Q}[x]$, a contradiction.

    - $x^4-2x^2-1=(x^2+ax+b)(x^2+cx+d)$
    We have that $bd=-1$, where $b,d\in \mathbb{Q}[\sqrt{3}]$, so $b=q_1+q_2\sqrt{3}, d=\tilde{q_1}+\tilde{q_2}\sqrt{3}$. Then $$bd=-1 \Rightarrow q_1\tilde{q_1}+3q_2\tilde{q_2}+(q_1\tilde{q_2}+\tilde{q_1}q_2)\sqrt{3}=-1$$
    Does the following have to stand?
    $$q_1\tilde{q_1}+3q_2\tilde{q_2}=-1 \\ q_1\tilde{q_2}+\tilde{q_1}q_2=0$$
    Last edited by mathmari; October 18th, 2016 at 13:58.

  4. MHB Journeyman
    MHB Math Scholar
    caffeinemachine's Avatar
    Status
    Offline
    Join Date
    Mar 2012
    Location
    India
    Posts
    779
    Thanks
    564 times
    Thanked
    1,101 time
    Thank/Post
    1.413
    Awards
    MHB Topology and Advanced Geometry Award (2016)
    #24
    Quote Originally Posted by mathmari View Post
    ... so $a=q_1+q_2\sqrt{3}$. Then $a^2=(q_1+q_2\sqrt{3})(q_1-q_2\sqrt{3})=q_1^2-3q_2^2\in \mathbb{Q}[x]$.
    Why is $a^2 = (q_1+q_2\sqrt{3})(q_1-q_2\sqrt{3})$. Shouldn't it simply be $(q_1+q_2\sqrt{3})^2$?

  5. MHB Master
    MHB Site Helper
    mathmari's Avatar
    Status
    Offline
    Join Date
    Apr 2013
    Posts
    2,588
    Thanks
    2,075 times
    Thanked
    665 times
    Trophies
    1 Highscore
    Awards
    MHB Chat Room Award (2015)  

MHB Model User Award (2015)  

MHB LaTeX Award (2015)
    #25 Thread Author
    If we want to check if $f$ can be splitted in $\mathbb{Q}[\sqrt{3}]$ we do the following:

    We have the following possibilities:

    - $x^4-2x^2-1=(x+(a+b\sqrt{3}))p_3(x)$, where $p_3(x)\in \mathbb{Q}Q[\sqrt{3}](x)$
    When $(a+b\sqrt{3})\in \mathbb{Q}[\sqrt{3}]$ is a factor of $f$ is its conjugate $(a-b\sqrt{3})$ also a factor of $f$ ?



    - $x^4-2x^2-1=(x^2+(a+b\sqrt{3})x+(c+d\sqrt{3}))(x^2+(\alpha +\beta \sqrt{3})x+(\gamma+\delta \sqrt{3}))\\ =x^4+x^3\left [\alpha +\beta \sqrt{3}+a+b\sqrt{3}\right ]+x^2 \left [\gamma+\delta \sqrt{3}+ c+d\sqrt{3}+(a+b\sqrt{3})(\alpha +\beta \sqrt{3})\right ]+x\left [(a+b\sqrt{3})(\gamma+\delta \sqrt{3})+(c+d\sqrt{3})(\alpha +\beta \sqrt{3})\right ]+(c+d\sqrt{3})(\gamma+\delta \sqrt{3}) $
    where $a,b,c,d,\alpha, \beta, \gamma, \delta\in \mathbb{Q}$.

    We have the following:

    • $\alpha +\beta \sqrt{3}+a+b\sqrt{3}=0 \Rightarrow (\alpha+a)+(\beta+b)\sqrt{3}=0 \Rightarrow \alpha+a=0 \text{ and } \beta+b=0 \Rightarrow \alpha=-a \text{ and } \beta=-b$
      $$$$
    • $\gamma+\delta \sqrt{3}+ c+d\sqrt{3}+(a+b\sqrt{3})(\alpha +\beta \sqrt{3})=-2 \Rightarrow \gamma+\delta \sqrt{3}+ c+d\sqrt{3}+(a+b\sqrt{3})(-a -b \sqrt{3})=-2 \\ \Rightarrow \gamma+\delta \sqrt{3}+ c+d\sqrt{3}-a^2 -3b^2 =-2 \Rightarrow (\gamma+c-a^2-3b^2)+(\delta+d)\sqrt{3}=-2 \Rightarrow \gamma+c-a^2-3b^2=-2\text{ and } \delta+d=0 \Rightarrow \gamma+c-a^2-3b^2=-2\text{ and } \delta=-d$
      $$$$
    • $(a+b\sqrt{3})(\gamma+\delta \sqrt{3})+(c+d\sqrt{3})(\alpha +\beta \sqrt{3})=0 \Rightarrow (a+b\sqrt{3})(\gamma-d \sqrt{3})+(c+d\sqrt{3})(-a -b \sqrt{3})=0 \\ \Rightarrow a\gamma-ad\sqrt{3}+\gamma b\sqrt{3}-3bd-ac-bc\sqrt{3}-ad\sqrt{3}-3bd=0 \Rightarrow (a\gamma-ac-6bd)+(-2ad+\gamma b-bc)\sqrt{3}=0 \\ \Rightarrow a\gamma-ac-6bd =0\text{ and } -2ad+\gamma b-bc=0$
      $$$$
    • $(c+d\sqrt{3})(\gamma+\delta \sqrt{3})=-1 \Rightarrow c\gamma-cd \sqrt{3}+\gamma d\sqrt{3}+3d\delta=-1 \Rightarrow (c\gamma+3d\delta)+(-cd+d\gamma )\sqrt{3} =-1 \\ \Rightarrow c\gamma-3d^2=-1 \text{ and } -d(c-\gamma)=0$


    Therefore, we have the following equations:
    1. $\gamma+c-a^2-3b^2=-2$
    2. $a\gamma-ac-6bd =0$
    3. $-2ad+\gamma b-bc=0$
    4. $c\gamma-3d^2=-1$
    5. $-d(c-\gamma)=0$


    From the last equation we get either $d=0$ or $c=\gamma$.

    -If $c=\gamma$ we get the following equations:
    1. $c+c-a^2-3b^2=-2 \Rightarrow 2c-a^2-3b^2=-2$
    2. $ac-ac-6bd =0\Rightarrow bd=0$
    3. $-2ad+c b-bc=0\Rightarrow ad=0$
    4. $c^2-3d^2=-1$


    From the equation 3. suppose we have $d=0$, then from the equation 4. we get $c^2=-1$, a contradiction.
    Therefore it must be $d\neq 0$. And so it must be $b=a=0$ from the equations 2. and 3. .
    From the equation 1. we get then $c=-1$. And then from the equation 4. we get $3d^2=-2$, a contradiction.

    Therefore the case $c=\gamma$ cannot hold.


    -If $d=0$ we get the following equations:
    1. $\gamma+c-a^2-3b^2=-2$
    2. $a\gamma-ac =0 \Rightarrow a(\gamma -c)=0$
    3. $\gamma b-bc=0 \Rightarrow b(\gamma-c)=0$
    4. $c\gamma=-1$


    From above we have that it cannot hold that $d=0$ and $\gamma=c$. So from the equations 2. and 3. we get that $a=b=0$.
    Therefore, from the equation 1. we get $\gamma+c=-2 \Rightarrow \gamma=-2-c$. And so from the equation 4. we get $c(-2-c)=-1 \Rightarrow -2c-c^2=-1 \Rightarrow c^2+2c-1=0$.
    So, we have to find the roots of $x^2+2x-1=0$. $\Delta=4+4=8$. $x_{1,2}=\frac{-2\pm 2\sqrt{2}}{2}=-1\pm \sqrt{2}\notin \mathbb{Q}$.

    Therefore the case $d=0$ cannot hold.


    Thus, there are no rationals so that the above relation hold. Therefore $f(x)$ cannot be factorized into two polynomials of degree $2$.


    Is evrything correct?

Similar Threads

  1. Field extension and degree
    By mathmari in forum Linear and Abstract Algebra
    Replies: 6
    Last Post: October 23rd, 2014, 10:13
  2. Field Extensions, Polynomial Rings and Eisenstein's Criterion
    By Peter in forum Linear and Abstract Algebra
    Replies: 1
    Last Post: September 21st, 2013, 16:44
  3. Polynomial Rings - Irreducibility - Proof of Eisenstein's Criteria
    By Peter in forum Linear and Abstract Algebra
    Replies: 3
    Last Post: May 26th, 2013, 04:20
  4. Automorphisms of an extension field
    By Bingk in forum Linear and Abstract Algebra
    Replies: 1
    Last Post: October 31st, 2012, 15:56
  5. Degrees of a Field Extension
    By shmounal in forum Linear and Abstract Algebra
    Replies: 4
    Last Post: February 16th, 2012, 12:56

Tags for this Thread

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  
Math Help Boards