Facebook Page
Twitter
RSS
Closed Thread
Page 3 of 7 FirstFirst 12345 ... LastLast
Results 21 to 30 of 62
  1. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,857 times
    Thank/Post
    2.315
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #21 Thread Author
    4.Integration using special functions (continued)

    4.3.Digamma function(continued) :


    We have the following digamma property :


    $\displaystyle \psi(s+1)\,=\, -\gamma \,+\, \int^{1}_{0}\frac{1-x^s}{1-x}$





    Prove the following integral :


    $ \displaystyle \int_0^1 \frac{(1-x^a)(1-x^b)(1-x^c)}{(1-x)(-\log x)}dx= \log \left\{\frac{\Gamma(b+c+1) \Gamma(c+a+1)\Gamma(a+b+1)}{\Gamma(a+1) \Gamma(b+1) \Gamma(c+1) \Gamma(a+b+c+1)} \right\}$




    Solution :


    As crazy as it looks , it becomes very easy to solve if we know how to start !

    First note that since there is a log in the denominator that gives as an idea to differentiate ...



    $ \displaystyle \text{Let : }F(c)=\int_0^1 \frac{(1-x^a)(1-x^b)(1-x^c)}{(1-x)(-\log x)}dx$


    Differentiate with respect to c :


    $ \displaystyle F'(c)=\int_0^1 \frac{(1-x^a)(1-x^b)x^c}{(1-x)}dx$


    $ \displaystyle F'(c)=\int_0^1 \frac{(1-x^a-x^b+x^{a+b})x^c}{(1-x)}dx$


    $ \displaystyle F'(c)=\int_0^1 \frac{x^c\,-\,x^{a+c}\,-\,x^{b+c}\,+\,x^{a+b+c}}{(1-x)}dx$


    $ \displaystyle F'(c)=\int_0^1 \frac{(x^c\,-1)\,+\,(1-\,x^{a+c})\,+\,(1-\,x^{b+c})\,+\,(x^{a+b+c}-1)}{(1-x)}dx$


    $ \displaystyle F'(c)=-\int_0^1 \frac{1-x^c\,}{1-x}\,dx+\int_0^1\frac{1-x^{a+c}}{1-x}\,dx+\int_0^1\frac{1-x^{b+c}}{1-x}\,dx-\int_0^1\frac{1-x^{a+b+c}}{1-x}dx$


    Now use the following result :


    $ \displaystyle \psi(s+1)=-\gamma+\int^{1}_0\frac{1-x^s}{1-x}\,dx$



    $ \displaystyle F'(c)=-\psi(c+1)-\gamma+\psi(a+c+1)+\gamma+\psi(b+c+1)+\gamma-\psi(a+b+c+1)-\gamma$




    $ \displaystyle F'(c)=-\psi(c+1)+\psi(a+c+1)+\psi(b+c+1)-\psi(a+b+c+1)$



    Integrate with respect to c we have :



    $ \displaystyle F(c)=-\log\left[\Gamma(c+1)\right]+\log \left[\Gamma(a+c+1)\right] +\log\left[\Gamma(b+c+1)\right]-\log \left[\Gamma(a+b+c+1)\right] +C_1$


    Which reduces to :


    $ \displaystyle \log\left[\frac{\Gamma(a+c+1)\Gamma(b+c+1)}{\Gamma (c+1) \Gamma (a+b+c+1)} \right] +C_1$


    Now put c= 0 we have :



    $ \displaystyle 0=\log \left[ \frac{\Gamma(a+1)\Gamma(b+1)}{\Gamma(a+b+1)}\right]+C_1$



    $ \displaystyle C_1=-\log \left[ \frac{\Gamma(a+1)\Gamma(a+1)}{\Gamma(a+b+1)}\right]$


    So we have the following :


    $ \displaystyle F(c)=\log\left[ \frac{\Gamma(a+c+1)\Gamma(b+c+1)}{\Gamma(c+1) \Gamma (a+b+c+1)}\right] -\log\left[\frac{\Gamma(a+1)\Gamma(a+1)}{\Gamma(a+b+1)}\right] $


    Hence we have the result :


    $ \displaystyle \int_0^1 \frac{(1-x^a)(1-x^b)(1-x^c)}{(1-x)(-\log x)}dx= \log \left\{\frac{\Gamma(b+c+1) \Gamma(c+a+1)\Gamma(a+b+1)}{\Gamma(a+1) \Gamma(b+1) \Gamma(c+1) \Gamma(a+b+c+1)} \right\}$



    To be Continued ...

  2. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,857 times
    Thank/Post
    2.315
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #22 Thread Author
    4.Integration using special functions (continued)

    4.3.Digamma function(continued) :


    We continue with some more exercises :




    Find the following integral :


    $\displaystyle \int^{\infty}_0\left(e^{-bx}-\frac{1}{1+ax}\right)\,\frac{dx}{x}$




    Solution :


    Let us first use the substitution t = ax so we get the following :


    $ \displaystyle \int^{\infty}_0\left(e^{-\frac{bt}{a}}-\frac{1}{1+t}\right)\,\frac{dt}{t}$


    Now we must realize the result we get earlier in this series that :


    $ \displaystyle \int^{\infty}_0 \frac{e^{-x}-(1+x)^{-a}}{x}\,dx = \psi(a)$


    But there we don't have $ \displaystyle e^{-x}$ so let us add and subtract it :


    $ \displaystyle \int^{\infty}_0\left(e^{-t}-e^{-t}+e^{-\frac{bt}{a}}-\frac{1}{1+t}\right)\,\frac{dt}{t}$


    $ \displaystyle \int^{\infty}_0 \left(e^{-t}-\frac{1}{1+t}\right)\,\frac{dt}{t}+\int^{\infty}_0 \frac{e^{-\frac{bt}{a}}-e^{-t}}{t}\, dt$


    $ \displaystyle \int^{\infty}_0 \left(e^{-t}-\frac{1}{1+t}\right)\frac{dt}{t}=-\gamma$


    We already also proved several posts ago that :


    $ \displaystyle \int^{\infty}_0 \frac{e^{-\frac{bt}{a}}- e^{-t}}{t}\, dt= -\log\left(\frac{b}{a}\right) = \log\left(\frac{a}{b}\right)$


    Hence the result :


    $ \displaystyle \int^{\infty}_0 \left(e^{-bx}-\frac{1}{1+ax} \right)\, \frac{dx}{x} = \log\left(\frac{a}{b} \right)-\gamma$




    Prove the following integral :


    $\displaystyle \int^{\infty}_0 \, e^{-ax} \left(\frac{1}{x}-\text{coth}(x) \right) \, dx = \psi\left(\frac{a}{2}\right) - \ln\left(\frac{a}{2}\right) + \frac{1}{a}$




    Solution :


    We know the following hyperoblic identity : (hopefully )



    $ \displaystyle \text{coth}(x)= \frac{1+e^{-2x}}{1-e^{-2x}}$



    $ \displaystyle \int^{\infty}_0 \, e^{-ax} \left(\frac{1}{x}-\frac{1+e^{-2x}}{1-e^{-2x}} \right) \, dx$



    Now let 2x =t so we have :



    $ \displaystyle \int^{\infty}_0 \, e^{-\left(\frac{at}{2}\right)} \left(\frac{1}{t}-\frac{1+e^{-t}}{2(1-e^{-t})} \right) \, dt$


    $ \displaystyle \int^{\infty}_0 \, \frac{e^{-\left(\frac{at}{2}\right)}}{t}-\frac{e^{-\left(\frac{at}{2}\right)}+e^{\left(-\frac{at}{2}-t\right)}}{2(1-e^{-t})} \, dt$



    I will add and subtract some terms :



    $ \displaystyle \int^{\infty}_0 \, \frac{e^{-t}+e^{-\left(\frac{at}{2}\right)}-e^{-t}}{t}\,-\,\frac{e^{-\left(\frac{at}{2}\right)}+e^{-\left(\frac{at}{2}\right)}-e^{-\frac{at}{2}}+e^{-\left(\frac{at}{2}\right)-t}}{2(1-e^{-t})} \, dt$



    $ \displaystyle \int^{\infty}_0 \, \frac{e^{-t}}{t}-\frac{e^{-\left(\frac{at}{2}\right)}}{1-e^{-t}}\,dt +\int^{\infty}_0 \frac{e^{-\left(\frac{at}{2}\right)}-e^{\left(-\frac{at}{2}-t\right)}} {2(1-e^{-t})}\, dt +\int^{\infty}_0 \frac{e^{-\left(\frac{at}{2}\right)}-e^{-t}}{t} \, dt$


    First : We use the identity :


    $ \displaystyle \psi \left(x\right)=\int^{\infty}_0 \, \frac{e^{-t}}{t}-\frac{e^{-\left(x t\right)}}{1-e^{-t}}\, dt$



    $ \displaystyle \int^{\infty}_0 \, \frac{e^{-t}}{t}-\frac{e^{-\left(\frac{at}{2}\right)}}{1-e^{-t}}\, dt=\psi \left(\frac{a}{2}\right)$



    The second integral can easily be proven :


    $ \displaystyle \int^{\infty}_0\frac{e^{-\left(\frac{at}{2}\right)}-e^{-\left(\frac{at}{2}-t\right)}}{2(1-e^{-t})}=\int^{\infty}_0 \frac{e^{-\left(\frac{at}{2}\right)}}{2}\,dt=\frac{1}{a}$


    We also proved earlier that :



    $ \displaystyle \int^{\infty}_0\frac{e^{-t}\,-\,e^{-st}}{t} \, dt = \ln \left( s \right)$



    $ \displaystyle \int^{\infty}_0\frac{e^{-\left(\frac{at}{2}\right)}-e^{-t}}{t} \, dt = -\ln \left(\frac{a}{2}\right)$


    Hence we have the full integral :


    $ \displaystyle \int^{\infty}_0 \, e^{-ax} \left(\frac{1}{x}-\text{coth}(x) \right) \, dx = \psi\left(\frac{a}{2}\right) - \ln\left(\frac{a}{2}\right) + \frac{1}{a}$




    [HW] Prove : $ \displaystyle \psi \left(x\right)=\int^{\infty}_0 \, \frac{e^{-t}}{t}-\frac{e^{-\left(x t\right)}}{1-e^{-t}}\, dt$





    Zeta function ,,, is on the way

  3. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,857 times
    Thank/Post
    2.315
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #23 Thread Author
    4.Integration using special functions (continued)

    4.4.Riemann Zeta function :


    You surely had heard about this interesting function, not only has it resulted in many interesting founding but also the yet to be solved Riemann Hypothesis makes it one of the most celebrated functions in history of mathematics. Its interesting aspect is the relation to prime numbers.

    In this tutorial we will not go so deep in the proofs and analyticity of it, we will try to describe its properties and mainly focus on the integral representation and its relation to other functions.


    Let us first start by defining the zeta function as the following :


    $\displaystyle \zeta(s) \,=\, \sum_{n=1}^{\infty}\,\frac{1}{n^s}\,\,\, \,\, \text{Re}(s)>1$

    There are more general representation of the zeta function but we will stick to the one we defined above. For the first glance it seems that zeta has no relations to other functions but it turned out that it has a strong relation to other functions such as gamma and digamma functions.


    4.4.1 zeta and gamma representation :


    $\displaystyle \Gamma(s) \, \zeta(s) \, = \int^{\infty}_{0}\, \frac{t^{s-1}}{e^t-1}\, dt $


    This relation turns out to be so much interesting since we can evaluate the right-hand integral using known results for both zeta and gamma.

    This most famous value for zeta function is when $s=2$ which represents the infinite sum of reciprocals of squares :


    $\displaystyle \zeta(2) =\sum^{\infty}_{n=1} \frac{1}{n^2}\,= \frac{\pi^2}{6}$


    Actually we can derive all the values of $\displaystyle \zeta(2k) \,\,\,\, k\in \mathbb{Z}$ but unfortunately there is no known way to find the zeta for odd integers $\displaystyle \zeta(2k+1)\, $ .

    Now let us use this result to find some integrals :

    $\displaystyle \int^{\infty}_0 \frac{t}{e^t-1} \,dt$


    It follows directly from the gamma-zeta relation that taking $s=2$ we have :


    $\displaystyle \Gamma(2) \, \zeta(2) \, = \int^{\infty}_{0}\, \frac{t}{e^t-1}\, dt $


    $ \displaystyle \int^{\infty}_{0}\, \frac{t}{e^t-1}\, dt=\zeta(2)=\frac{\pi^2}{6}$




    Solve the following integral :


    $\displaystyle \int_0^{\frac{\pi}{2}} \,\frac{\log \left(\sec(x) \right)}{\tan(x)} \,dx $



    use the substitution : $\displaystyle \sec(x)=e^t $



    $ \displaystyle \int_0^{\infty} \, \frac{t}{e^{2t}-1}\,dt\, =\, \frac{1}{4} \cdot \int_0^{\infty}\,\frac{t}{e^t-1}\,dt=\frac{\pi^2}{24}$


    Another similar relation between zeta and gamma is the following identity :


    $\displaystyle \Gamma(s)\, \zeta(s) \, (1-2^{1-s})\, = \int^{\infty}_0\, \frac{t^{s-1}}{e^t+1}\, $


    It follows from that equation that :



    $ \displaystyle \int^{\infty}_0\, \frac{t}{e^t+1}\,dt = \frac{\pi^2}{12}$



    To be continued ...

  4. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,857 times
    Thank/Post
    2.315
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #24 Thread Author
    4.4.2.Zeta function and Bernoulli numbers

    We will see in this section some values of the zeta function using an equation due to Euler , but let us first define the Bernoulli numbers .

    It is usually defined as $ \displaystyle B_{k}$ and the easiest way to derive them is find the coefficients of the power series of $ \displaystyle \frac{x}{e^x-1}$






    Definition

    $ \displaystyle \frac{x}{e^x-1} = \sum_{k \geq 0} \frac{B_k}{k!}x^k $




    Now let us derive some values for the Bernoulli numbers , rewrite the power series as

    $ \displaystyle x = (e^x-1) \, \sum_{k\geq 0} \frac{B_k}{k!}x^k$


    $ \displaystyle x = \left( x+\frac{1}{2!}x^2 + \frac{1}{3!} x^3+ \frac{1}{4!} x^4+\cdots \right) \cdot \left( B_0 +B_1 \, x+\frac{B_2}{2!}\,x^2 +\frac{B_3}{3!} x^3+ \cdots \right)$

    $ \displaystyle x = B_0 x + \left(B_1+\frac{B_0}{2!} \right)x^2 + \left(\frac{B_0}{3!}+ \frac{B_2}{2!}+\frac{B_1}{2!}\right)x^3 +\left( \frac{B_0}{4!}+\frac{B_1}{3!}+\frac{B_2}{2!\, 2!}+\frac{B_3}{3!}\right) x^4+ \cdots $

    By comparing the terms we get the following values

    $ \displaystyle {B_0 = 1 \, , \, B_1 =-\frac{1}{2} \, + \, B_2 = \frac{1}{6} \, , \, B_3=0 \, , \, B_4 = -\frac{1}{30} , \cdots }$


    Actually continuing with this we deduce

    • $ \displaystyle B_{2k+1}=0 \,\, \, \, \, \,\,\, \, \, \, \, \forall \,\, \, \, \, \, k\in \mathbb{Z}^+$
    • Every Bernoulli number depends on all the numbers before it so it can be defined recursively .
    • $ \displaystyle B_{2k} \, , \, k\geq 1$ are alternating .





    Now according to Euler we have the following interesting result :

    $ \displaystyle \zeta(2k) \, = \, (-1)^{k-1} B_{2k} \frac{2^{2k-1}}{(2k)!}{\pi}^{2k}$




    PROOF


    Let us start by the following definition due to Euler


    $ \displaystyle \frac{\sin(z)}{z} = \prod_{n\geq1} \left(1-\frac{z^2}{n^2 \, \pi^2} \right)$


    Take the logarithm to both sides


    $ \displaystyle \ln(\sin(z)) - \ln(z) = \sum_{n\geq1} \ln \left(1-\frac{z^2}{n^2 \, \pi^2} \right)$


    By differentiation with respect to z


    $ \displaystyle \cot(z) -\frac{1}{z} = \sum_{n\geq1} \frac{-2 \frac{z}{n^2 \, \pi^2 }}{1-\frac{z^2}{n^2 \, \pi^2}}$


    By simple algaberic manipulation we have


    $ \displaystyle z\cot(z) = 1+2\sum_{n\geq1} \frac{z^2}{z^2-n^2 \, \pi^2}$


    $ \displaystyle z\cot(z) = 1-2\sum_{n\geq1} \frac{z^2}{ n^2 \, \pi^2} \left(\frac{1}{1-\frac{z^2}{\pi^2 \, n^2}} \right)$


    Now using the power series expansion


    $ \displaystyle \frac{1}{1-\frac{z^2}{\pi^2 \, n^2}}= \sum_{k\geq 0} \frac{1}{n^{2k}\, \pi^{2k}} z^{2k}$ converges for $ \displaystyle |z|< \pi \, n $


    $ \displaystyle \frac{z^2}{ n^2 \, \pi^2}\left(\frac{1}{1-\frac{z^2}{\pi^2 \, n^2}} \right) = \sum_{k\geq 1}\frac{1}{n^{2k}\, \pi^{2k}} z^{2k}$ notice the change in the index !


    So now the sums becomes


    $ \displaystyle z\cot(z) = 1-2\sum_{n\geq1} \sum_{k \geq 1} \frac{1}{n^{2k}} \, \frac{z^{2k}}{\pi^{2k}}$


    Now if we invert the order of summation we have


    $ \displaystyle z\cot(z) = 1-2\sum_{k\geq1} \sum_{n \geq 1} \frac{1}{n^{2k}} \, \frac{z^{2k}}{\pi^{2k}}$ (Wow do you notice !)


    $ \displaystyle z\cot(z) = 1-2\sum_{k\geq1} \frac{\zeta(2k) }{\pi^{2k}}z^{2k} \text{ }\cdots(1)$


    Euler didn't stop here , he used power series estimation for $ \displaystyle z\cot(z) $ using the Bernoulli numbers


    staring by the equation $ \displaystyle \frac{x}{e^x-1} = \sum_{k\geq 0} \frac{B_k}{k!}x^k$


    by putting $ \displaystyle x=2iz $ we have


    $ \displaystyle \frac{2iz}{e^{2iz}-1} = \sum_{k\geq0} \frac{B_k}{k!}{(2iz)}^k$


    Which can be reduced directly to the following by noticing that $ \displaystyle B_{2k+1}=0, \,\,\, k>0$


    $ \displaystyle z \cot(z) = 1- \sum_{k\geq 1}(-1)^{k-1} B_{2k} \frac{2^{2k}}{(2k)!}z^{2k} \text{ } \cdots(2)$


    The result is immediate by comparing (1) and (2) $ \displaystyle \square$




    [HW] find $ \displaystyle \zeta(4) \, ,\, \zeta(6) \, , \, B_5 \, , \, B_6$

    To be continued ...

  5. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,857 times
    Thank/Post
    2.315
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #25 Thread Author
    4.4.3. Hurwitz zeta and polygamma functions


    Hurwitz zeta is a generalization of the zeta function by adding a parameter . This intimate relation between the two functions arises from multiple differentiations of the the digamma function .




    Let us first start by defining the Hurwitz zeta function

    Definition

    $ \displaystyle \zeta(a,z) \, = \, \sum_{n\geq 0} \frac{1}{(n+z)^a}$




    Note : according to this definition we have $ \displaystyle \zeta(a,1) = \zeta(a)$


    Let us define the polygamma function as the function produced by differentiating the digamma function and it is often denoted by $ \displaystyle \psi_{n}(z) \,\,\,\, \forall \,\, n\geq 0$ . We define the digamma function by setting $n=0$ so it's denoted by $\psi_0(z)$ .

    Other values can be found by the following recurrence relation $ \displaystyle \psi'_{n}(z) = \psi_{n+1}(z)$ , so we have $ \displaystyle \psi_{1}(z) = \psi'_{0}(z)
    $




    We have the following relation between Hurwitz zeta and the polygamma function

    DEFINITION

    $ \displaystyle \psi_{n}(z) \, = \, (-1)^{n+1}n!\,\zeta(n+1,z) \,\,\, \, \forall \,\, n\geq 1$




    PROOF


    We have already proved the following relation


    $ \displaystyle \psi_{0}(z) = -\gamma -\frac{1}{z}+ \sum_{n\geq 1}\frac{z}{n(n+z)}$


    This can be written as the following


    $ \displaystyle \psi_{0}(z) = -\gamma + \sum_{k\geq 0}\frac{1}{k+1}-\frac{1}{k+z}$


    By differentiating with respect to $z$


    $ \displaystyle \psi_{1}(z) = \sum_{k\geq 0}\frac{1}{(k+z)^2}$


    $ \displaystyle \psi_{2}(z) = -2\sum_{k\geq 0}\frac{1}{(k+z)^3}$


    $ \displaystyle \psi_{3}(z) = 2 \cdot 3 \, \sum_{k\geq 0}\frac{1}{(k+z)^4}$


    $ \displaystyle \psi_{4}(z) = -2 \cdot 3 \cdot 4 \,\sum_{k\geq 0}\frac{1}{(k+z)^5}$

    $ \displaystyle \text{ }\cdot$

    $ \displaystyle \text{ }\cdot$

    $ \displaystyle \text{ }\cdot$

    $ \displaystyle \psi_{n}(z) = (-1)^{n+1}n!\,\sum_{k\geq 0}\frac{1}{(k+z)^{n+1}}$


    We realize the RHS is just the Hurwitz zeta function


    $ \displaystyle \psi_{n}(z) = (-1)^{n+1}n!\,\zeta(n+1,z)$


    As required to prove $ \displaystyle \square$.





    By setting $z=1$ we have an equation in terms of the ordinary zeta function


    $ \displaystyle \psi_{n}(1) = (-1)^{n+1}n!\,\zeta(n+1)$


    Now since we already proved in the preceding section that


    $ \displaystyle \zeta(2k) \, = \, (-1)^{k-1} B_{2k} \frac{2^{2k-1}}{(2k)!}{\pi}^{2k}$


    we can easily verify the following


    $ \displaystyle \psi_{2k-1}(1)= (2k-1)!\, (-1)^{k-1} B_{2k} \frac{2^{2k-1}}{(2k)!}{\pi}^{2k}$


    $ \displaystyle \psi_{2k-1}(1)= (-1)^{k-1} B_{2k} \frac{2^{2k-2}}{k}{\pi}^{2k} \,\,\, \, , \,\, k\geq 1$


    This can be used to evaluate some values for the polygamma function


    $ \displaystyle \psi_{1}(1)= \frac{\pi^2}{6} \,\, , \,\, \psi_{3}(1) = \frac{\pi^4}{15} $


    Other values can be evaluated in terms of the zeta function


    $ \displaystyle \psi_{2}(1)= -2 \zeta(3) \,\, , \,\, \psi_{4}(1) = -24 \zeta(5)$


    To Be Continued ...

  6. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,857 times
    Thank/Post
    2.315
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #26 Thread Author
    4.4.4. integrals involve zeta computations




    Prove that

    $ \displaystyle \int^{\frac{\pi}{2}}_0 \,x \sin(x)\cos(x) \log(\sin x) \log(\cos x) \, dx = \frac{\pi}{16}-\frac{\pi^3}{192}$





    PROOF


    Start by the change of variable, $ \displaystyle t=\frac{\pi}{2}-x$


    $ \displaystyle \int^{\frac{\pi}{2}}_0 \,x \sin(x)\cos(x) \log(\sin x) \log(\cos x) \, dx\,=\frac{\pi}{4}\int^{\frac{\pi}{2}}_0 \,\sin(x)\cos(x) \log(\sin x) \log(\cos x) \, dx \text{ }\cdots (1)$


    We need to find :


    $ \displaystyle \int^{\frac{\pi}{2}}_0 \,\sin(x)\cos(x) \log(\sin x) \log(\cos x) \, dx$


    Let us start by the following :


    $ \displaystyle F(a,b)=2\int^{\frac{\pi}{2}}_0 \,\sin^{2a-1}(x)\cos^{2b-1}(x) \, dx\,=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$


    Now let us differentiate with respect to $a$


    $ \displaystyle \frac{\partial}{\partial a}(F(a,b))=4\int^{\frac{\pi}{2}}_0 \,\sin^{2a-1}(x)\cos^{2b-1}(x) \log(\sin x)\, dx\,=\frac{\Gamma(a)\Gamma(b) \left(\psi_0(a)-\psi_0(a+b)\right)}{\Gamma(a+b)}$


    Differentiate again but this time with respect to $b$


    $ \displaystyle \frac{\partial}{\partial b}\left(F_a(a,b) \right)=8\int^{\frac{\pi}{2}}_0 \,\sin^{2a-1}(x)\cos^{2b-1}(x) \log(\sin x)\, \log( \cos x)dx\,$


    $ \displaystyle =\frac{\Gamma(a) \Gamma(b) \left( \psi_0^2(a+b) +\psi_0(a)\psi_0(b)-\psi_0(a)\psi_0(a+b)-\psi_0(b)\psi_0(a+b) +\psi_1(a+b)\right)}{\Gamma(a+b)}$


    putting $ \displaystyle a=b=1$ we have the following


    $ \displaystyle \int^{\frac{\pi}{2}}_0 \,\sin (x)\cos(x) \log(\sin x)\, \log( \cos x)dx\,= \frac{ \psi_0^2(2) +\psi_0^2(1)-\psi_0(1)\psi_0(2)-\psi_0(1)\psi(2) -\psi_1(2)}{8}$


    By simple algebra we arrive to


    $ \displaystyle \int^{\frac{\pi}{2}}_0 \,\sin (x)\cos(x) \log(\sin x)\, \log( \cos x)dx\,= \frac{ (\psi_0(2) -\psi_0(1))^2-\psi_1(2)}{8}$


    We can easily see that


    • $ \displaystyle \psi_0(1) = -\gamma$
    • $ \displaystyle \psi_0(2) =1 -\gamma$



    Now to evaluate $ \displaystyle \psi_1(2) $ , we have to use the zeta function


    we have already established the following relation :


    $ \displaystyle \psi_1(z) = \sum_{k\geq 0} \frac{1}{(n+z)^2}$


    Now putting $ \displaystyle z =2$ we have the following


    $ \displaystyle \psi_1(2) = \sum_{k\geq 0} \frac{1}{(k+2)^2}$


    Let us write the first few terms in the expansion


    $ \displaystyle \sum_{k\geq 0} \frac{1}{(k+2)^2} = \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+ \cdots $


    we see this is similar to $ \displaystyle \zeta(2) $ but we are missing the first term


    $ \displaystyle \psi_1(2) = \zeta(2)-1 = \frac{\pi^2}{6} -1$


    Collecting all these information together we have


    $ \displaystyle \int^{\frac{\pi}{2}}_0 \,\sin (x)\cos(x) \log(\sin x)\, \log( \cos x)dx\,= \frac{1}{4}-\frac{\pi^2}{48}$


    substituting in (1) we get :


    $ \displaystyle \int^{\frac{\pi}{2}}_0 \,x\sin(x)\cos(x) \log(\sin x) \log(\cos x) \, dx =\frac{\pi}{16}-\frac{\pi^3}{192}$



    To Be Continued ...

  7. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,857 times
    Thank/Post
    2.315
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #27 Thread Author
    4.4.5 Dirichlet eta function( an alternating form )


    Dirichlet eta function is the alternating form of the zeta function





    DEFINITION :

    $ \displaystyle \eta(s) = \sum_{n\geq 1} \frac{(-1)^{n-1}}{n^s}$






    The alternating form of the zeta function is easier to compute once we have established the main results of the zeta function because the alternating form is related to the zeta function through the relation


    $ \displaystyle \eta(s) = \left( 1-2^{1-s} \right) \zeta(s) $


    PROOF


    We will start by the RHS


    $ \displaystyle \left( 1-2^{1-s} \right) \zeta(s) = \zeta(s) - 2^{1-s} \zeta(s)$


    which can be written as sums of series


    $ \displaystyle \sum_{n\geq 1} \frac{1}{n^s} - \frac{1}{2^{s-1}}\sum_{n\geq 1} \frac{1}{n^s}$


    $ \displaystyle \sum_{n\geq 1} \frac{1}{n^s} - 2\sum_{n\geq 1} \frac{1}{(2n)^s}$


    Clearly we can see that we are subtracting even terms twice , this is equivalent to


    $ \displaystyle \sum_{n\geq 1} \frac{1}{(2n+1)^s} - \sum_{n\geq 1} \frac{1}{(2n)^s}$


    This looks easier to understand if we write the terms


    $ \displaystyle \left(1+\frac{1}{3^s}+\frac{1}{5^s}+ \cdots\right) - \left( \frac{1}{2^s}+\frac{1}{4^s} + \frac{1}{6^s}+\cdots \right)$


    Rearranging the terms we establish the alternating form


    $ \displaystyle 1-\frac{1}{2^s}+\frac{1}{3^s}-\frac{1}{4^s}+\cdots = \sum_{n\geq 1}\frac{(-1)^{n-1}}{n^s} =\eta(s) \, \square $






    We know feel tempted to evaluate some values


    $ \displaystyle \eta(2) = \left(1-\frac{1}{2} \right) \zeta(2) = \frac{\pi^2}{12}$


    Actually there is a nice integration formula similar to that we had for zeta


    $ \displaystyle \eta(s) \, \Gamma(s) = \int^{\infty}_{0} \frac{t^{s-1}}{e^t+1} \, dt $


    PROOF :


    Start by the RHS


    $ \displaystyle \int^{\infty}_{0} \frac{t^{s-1}}{e^t+1} \, dt = \int^{\infty}_0 \frac{e^{-t} t^{s-1}}{1+e^{-t}} \, dt$


    Now using the power expansion we arrive to


    $ \displaystyle \int^{\infty}_0 e^{-t} t^{s-1}dt \left(\sum_{n\geq 0} (-1)^n e^{-nt} \right)$


    $ \displaystyle \sum_{n\geq 0}(-1)^n\int^{\infty}_0 e^{-(n+1) t} t^{s-1}dt $


    Using Laplace transform we can solve the inner integral


    $ \displaystyle \int^{\infty}_0 e^{-(n+1) t} t^{s-1}dt = \frac{\Gamma(s)}{(n+1)^s}$


    Hence we have the following


    $ \displaystyle \Gamma(s) \sum_{n\geq 0}\frac{(-1)^n}{(n+1)^s}=\Gamma(s) \sum_{n\geq 1}\frac{(-1)^{n-1}}{n^s}=\Gamma(s)\, \eta(s) \square $


    An easy result of the above integral


    $ \displaystyle \int^{\infty}_{0}\frac{t}{e^t+1} \, dt = \Gamma(2)\, \eta(2) = \frac{\pi^2}{12}$




    We shall look at the polylogarithms in the next thread
    Last edited by ZaidAlyafey; June 6th, 2013 at 16:55.

  8. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,857 times
    Thank/Post
    2.315
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #28 Thread Author
    4.Integration using special functions (continued)

    4.5. Polylogarithm


    As the name suggests, this special function is closely related to the logarithms .






    DEFINITION


    $ \displaystyle \operatorname{Li}_{n}(z) = \sum_{k\geq 1} \frac{z^k}{k^n}$






    Note : As we see , we use $ \displaystyle \operatorname{Li}_{n}(z)$ to denote the polylogarithm . The name contains two parts , (poly) because we can choose different $n$ and produce many functions . (logarithm) because we can express it integrals of logarithms .


    Through that representation we can see how closely it is related to the zeta function


    $ \displaystyle \operatorname{Li}_{n}(1) = \sum_{k \geq 1} \frac{1}{k^n}= \zeta(n)$


    In particular we have for $n=2$


    $ \displaystyle \operatorname{Li}_{2}(1) = \zeta(2) = \frac{\pi^2}{6}$


    Also we can relate it to the eta function though $z=-1$


    $ \displaystyle \operatorname{Li}_{n}(-1) = \sum_{k\geq 1} \frac{(-1)^k}{k^n}=-\eta(n)$


    Also we shall see how to relate this function to the logarithm


    putting $ \displaystyle n=1$ we have the following


    $ \displaystyle \operatorname{Li}_{\, 1}(z) = \sum_{n\geq 1} \frac{z^k}{k} $


    The power expansion on the left is quire famous


    $ \displaystyle \sum_{n\geq 1} \frac{z^k}{k} = - \log(1-z) $





    There is an interesting recursive representation of this function


    $ \displaystyle \operatorname{Li}_{\, n+1}(z) = \int^z_0 \frac{\operatorname{Li}_{\,n}(t) }{t}\, dt$





    PROOF


    Using the series representation we have


    $ \displaystyle \int^z_0 \frac{1}{t} \left( \sum_{k\geq 1} \frac{t^k}{k^n}\, \right) dt$


    $ \displaystyle \sum_{k\geq 1}\frac{1}{k^n} \int^z_0 t^{k-1} \, dt$


    Integrating term by term we have


    $ \displaystyle \sum_{k\geq 1}\frac{z^{k}}{k^{n+1}} \, = \operatorname{Li}_{\, n+1}(z) \,\, \square $


    We can differentiate the result to obtain


    $ \displaystyle \frac{\partial}{\partial z}\operatorname{Li}_{\, n+1}(z) = \frac{1}{z} \operatorname{Li}_{\,n}(z)$






    Square formula


    $ \displaystyle \operatorname{Li}_{\,n}(-z) + \operatorname{Li}_{\,n}(z) = 2^{1-n} \,\operatorname{Li}_{\,n}(z^2) $







    PROOF


    As usual we write the series representation of the LHS


    $ \displaystyle \sum_{k\geq 1} \frac{z^k}{k^n}+\sum_{k\geq 1} \frac{(-z)^k}{k^n}$


    Listing the first few terms


    $ \displaystyle z+\frac{z^2}{2^n}+\frac{z^3}{3^n}+\cdots +\left(-z+\frac{z^2}{2^n}-\frac{z^3}{3^n}+\cdots \right) $


    Clearly the odd terms will cancel so we are left with


    $ \displaystyle 2\frac{z^2}{2^n}+2\frac{z^4}{4^n}+2\frac{z^6}{6^n}+\cdots $


    By simple manipulation


    $ \displaystyle 2^{1-n} \left( z^{2}+\frac{(z^2)^2}{2^n}+\frac{(z^2)^3}{3^n}+ \cdots \right)$


    $ \displaystyle 2^{1-n} \sum_{k \geq 1} \frac{(z^2)^{k}}{k^n} = 2^{1-n} \, \operatorname{Li}_{\, n}(z^2) \, \square $



    [HW] prove that $ \displaystyle \operatorname{Li}_{\, 2}(z) = -\int^z_0 \frac{\log(1-t)}{t}\, dt$ Dilogarithm


    To Be Continued ...

  9. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,857 times
    Thank/Post
    2.315
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #29 Thread Author
    4.5.1.Dilogarithms


    Of all polylogarithms $ \displaystyle \operatorname{Li}_2(z) $ is the most interesting one , in this section we will see why.





    DEFINITION


    $ \displaystyle \operatorname{Li}_2(z) = \sum_{k\geq 1} \frac{z^k}{k^2} = - \int^z_0 \frac{\log(1-t)}{t}\, dt$






    The curious reader should try to prove the integral representation using the recursive definition we introduced in the previous section .





    Some Functional equations


    $ \displaystyle \operatorname{Li}_2\left(\frac{-1}{z}\right) + \operatorname{Li}_2(-z) = - \frac{1}{2}\log^2(z)-\frac{\pi^2}{6}$





    PROOF


    We will start by the following


    $ \displaystyle \operatorname{Li}_2\left(\frac{-1}{z}\right) = -\int^{\frac{-1}{z}}_0 \frac{\log(1-t)}{t}\, dt $


    Differentiate with respect to $z$


    $ \displaystyle \frac{d}{dz}\operatorname{Li}_2\left(\frac{-1}{z}\right) = \frac{1}{z^2} \left(-\frac{\log \left(1+\frac{1}{z} \right)}{\frac{-1}{z}} \right) = \frac{\log\left( 1+ \frac{1}{z} \right)}{z} = \frac{\log(1+z) - \log(z)}{z}$


    Now integrate with respect to $z$


    $ \displaystyle \operatorname{Li}_2\left(\frac{-1}{z}\right) = \int^{-z}_0 \frac{\log(1-t)}{t} \, dt - \frac{1}{2} \log^2(z) \,+ C $


    $ \displaystyle \operatorname{Li}_2\left(\frac{-1}{z}\right) = -\operatorname{Li}_2 {-z} - \frac{1}{2} \log^2(z) \,+ C $


    To find the constant $C$ let $z = 1$


    $ \displaystyle C= 2\operatorname{Li}_2\left(-1\right)$


    Now we must be aware that


    $ \displaystyle \displaystyle \operatorname{Li}_{2}(-1) =-\eta(2) = \frac{-\pi^2}{12}$


    Hence we have


    $ \displaystyle C= \frac{-\pi^2}{6}$


    which proves the result by simple rearrangement


    $ \displaystyle \operatorname{Li}_2\left(\frac{-1}{z}\right)+\operatorname{Li}_2(-z) = -\frac{1}{2} \log^2(z) -\frac{\pi^2}{6} \, \square$


    We can let $ \displaystyle z=-1$


    $ \displaystyle 2\operatorname{Li}_2\left(1\right)=-\frac{1}{2} \log^2(-1) -\frac{\pi^2}{6} \, $


    knowing that $ \displaystyle \log(-1) = i \pi $


    $ \displaystyle 2\operatorname{Li}_2\left(1\right)=\frac{\pi^2}{2} -\frac{\pi^2}{6} \, = \frac{\pi^2}{3} $


    Hence we have $ \displaystyle \operatorname{Li}_2\left(1\right) = \frac{\pi^2}{6}$ as expected .





    Another function equation


    $ \displaystyle \operatorname{Li}_2(z) + \operatorname{Li}_{2}(1-z) = \frac{\pi^2}{6}-\log(z) \log(1-z) \,\,\,\, 0<z<1$





    PROOF


    Start by the following


    $ \displaystyle \operatorname{Li}_2\left(z\right) = -\int^{z}_0 \frac{\log(1-t)}{t} \, dt $


    Now integrate by parts to obtain


    $ \displaystyle \operatorname{Li}_2\left(z\right)= -\int^z_0 \frac{\log(t)}{1-t} \, dt -\log(z) \log(1-z) $


    To solve $ \displaystyle \int^z_0 \frac{\log(t)}{1-t} \, dt \,$ let $ \displaystyle t = 1-x $


    $ \displaystyle -\int^{1-z}_{1} \frac{\log(1-x)}{x} \, dx$


    For $ \displaystyle 0<z <1 $


    $ \displaystyle \int^{1}_{1-z} \frac{\log(1-x)}{x} \, dx = \int^1_0 \frac{\log(1-x)}{x}\, dx - \int_0^{1-z} \frac{\log(1-x)}{x}\, dx$


    Now it is easy to see that


    $ \displaystyle \int^{1}_{1-z} \frac{\log(1-x)}{x} \, dx =-\operatorname{Li}_2(1)+\operatorname{Li}_2(1-z)$



    $ \displaystyle \operatorname{Li}_2\left(z\right)= \operatorname{Li}_2(1)-\operatorname{Li}_2(1-z) -\log(z) \log(1-z) $



    $ \displaystyle \operatorname{Li}_2\left(z\right)+\operatorname{Li}_2(1-z)\, = \, \operatorname{Li}_2(1)-\log(z) \log(1-z) $



    Now since $ \displaystyle \operatorname{Li}_2(1) = \frac{\pi^2}{6}$


    $ \displaystyle \operatorname{Li}_2\left(z\right)+\operatorname{Li}_2(1-z)\, = \frac{\pi^2}{6}-\log(z) \log(1-z) \,\, \square$


    We can easily deduce that for $ \displaystyle z=\frac{1}{2}$


    $ \displaystyle 2\operatorname{Li}_2\left(\frac{1}{2}\right)= \frac{\pi^2}{6}-\log^2\left(\frac{1}{2}\right) \,\,$


    $ \displaystyle \operatorname{Li}_2\left(\frac{1}{2}\right)= \frac{\pi^2}{12}-\frac{1}{2}\log^2 \left(\frac{1}{2}\right) $


    To be continued ...
    Last edited by ZaidAlyafey; August 13th, 2013 at 18:00.

  10. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,857 times
    Thank/Post
    2.315
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #30 Thread Author
    4.5.1.Dilogarithms (continued)


    In this section we shall continue looking at some amazing results related to the dilogarithm.





    Yet another functional equation


    $ \displaystyle \operatorname{Li}_2(z) + \operatorname{Li}_2 \left(\frac{z}{z-1} \right) = - \frac{1}{2} \log^2 (1-z) \,\,\,\, \, z<1$





    PROOF


    Start by the following


    $ \displaystyle \operatorname{Li}_2 \left(\frac{z}{z-1} \right) = -\int^{\frac{z}{z-1}}_0 \frac{ \log(1-t)}{t}\, dt$



    Differentiate both sides with respect to $z$



    $ \displaystyle \frac{d}{dz}\operatorname{Li}_2 \left(\frac{z}{z-1} \right) = \frac{1}{(z-1)^2}\left( \frac{ \log \left(1-\frac{z}{z-1}\right)}{\frac{z}{z-1}} \right)$



    Upon simplification we obtain



    $ \displaystyle \frac{d}{dz}\operatorname{Li}_2 \left(\frac{z}{z-1} \right) = \frac{- \log(1-z)}{z(z-1)} $



    Using partial fractions decomposition



    $ \displaystyle \frac{d}{dz}\operatorname{Li}_2 \left(\frac{z}{z-1} \right) = \frac{\log(1-z)}{1-z}+ \frac{\log(1-z)}{z} $



    Integrate both sides with respect to $z$



    $ \displaystyle \operatorname{Li}_2 \left(\frac{z}{z-1} \right) = -\frac{1}{2} \log^2(1-z) - \operatorname{Li}_2(z) +C$



    put $z=-1$ to find the constant



    $ \displaystyle \operatorname{Li}_2 \left(\frac{1}{2} \right) = -\frac{1}{2} \log^2(2) - \operatorname{Li}_2(-1) +C$



    Remember that



    • $ \displaystyle \operatorname{Li}_2 \left(\frac{1}{2} \right) = \frac{\pi^2}{12}-\frac{1}{2} \log^2\left(\frac{1}{2} \right) $
    • $ \displaystyle \operatorname{Li}_2(-1) = -\frac{\pi^2}{12}$
    • $ \displaystyle \log^2 \left( \frac{1}{2} \right) = \log^2 \left(2 \right) $



    Hence we deduce that $C=0$ , so



    $ \displaystyle \operatorname{Li}_2 \left(\frac{z}{z-1} \right) = -\frac{1}{2} \log^2(1-z) - \operatorname{Li}_2(z) $



    which can be written as


    $ \displaystyle \operatorname{Li}_2 \left(\frac{z}{z-1} \right)+\operatorname{Li}_2(z) = -\frac{1}{2} \log^2(1-z) \, \,\square$






    Well, that doesn't end here , prove



    $ \displaystyle \frac{1}{2} \operatorname{Li}_2 (z^2) = \operatorname{Li}_2 (z)+\operatorname{Li}_2 (-z)$






    PROOF


    We will continue with the same manner



    $ \displaystyle \frac{d}{dz}\operatorname{Li}_2 (z^2) = -\int^{z^2}_0 \frac{\log(1-t)}{t}\, dt$



    $ \displaystyle \frac{d}{dz}\operatorname{Li}_2 (z^2) = -2 \frac{\log(1-z^2)}{z}$



    $ \displaystyle \frac{1}{2} \frac{d}{dz} \operatorname{Li}_2 (z^2) = -\frac{\log(1-z)}{z}- \frac{\log(1+z)}{z}$



    $ \displaystyle \frac{1}{2}\operatorname{Li}_2 (z^2) = \operatorname{Li}_2(z)+\operatorname{Li}_2(-z) \,+ C$



    putting $ \displaystyle z=1$ we get $ \displaystyle C=0 $ , hence the result



    $ \displaystyle \frac{1}{2}\operatorname{Li}_2 (z^2) = \operatorname{Li}_2(z)+\operatorname{Li}_2(-z) \, \square$





    Prove


    $ \displaystyle \operatorname{Li}_2\left( \frac{\sqrt{5}-1}{2} \right) = \frac{\pi^2}{10} - \log^2 \left( \frac{\sqrt{5}-1}{2}\right)$






    PROOF


    First we add the two functional equations of this section to obtain



    $ \displaystyle \operatorname{Li}_2 \left( \frac{z}{z-1} \right) + \frac{1}{2} \operatorname{Li}_2 (z^2) - \operatorname{Li}_2(-z) = -\frac{1}{2} \log^2 (1-z) $


    Now let $ \displaystyle z = \frac{1-\sqrt{5}}{2}$


    • $ \displaystyle z^2 = \frac{1-2\sqrt{5}+5}{4}= \frac{3-\sqrt{5}}{2}$


    • $ \displaystyle \frac{z}{z-1} = \frac{\sqrt{5}-1}{1+\sqrt{5}} = \frac{3-\sqrt{5}}{2}$




    $ \displaystyle \frac{3}{2} \operatorname{Li}_2 \left( \frac{3-\sqrt{5}}{2} \right) - \operatorname{Li}_2 \left( \frac{\sqrt{5}-1}{2} \right) = -\frac{1}{2} \log^2 \left( \frac{\sqrt{5}+1}{2}\right) $ ----(1)



    We already established the following functional equation



    $ \displaystyle \operatorname{Li}_2 (z) + \operatorname{Li}_2 (1-z) = \frac{\pi^2}{6} - \log(z) \log(1-z)$



    putting $ \displaystyle z = \frac{3-\sqrt{5}}{2}$



    $ \displaystyle \operatorname{Li}_2 \left( \frac{3-\sqrt{5}}{2}\right) + \operatorname{Li}_2 \left(\frac{\sqrt{5}-1}{2}\right) = \frac{\pi^2}{6} - \log\left(\frac{3-\sqrt{5}}{2} \right) \log \left(\frac{\sqrt{5}-1}{2}\right) $ -----(2)



    Solving (1) , (2) for $ \displaystyle \operatorname{Li}_2 \left(\frac{\sqrt{5}-1}{2}\right)$ we get our result $ \displaystyle \square$





    [HW] prove that $ \displaystyle \operatorname{Li}_2 \left( \frac{3-\sqrt{5}}{2} \right) = \frac{\pi^2}{15} - \frac{1}{4}\log^2 \left( \frac{3-\sqrt{5}}{2}\right)$ .


    To Be continued ...

Similar Threads

  1. Commentary for "Advanced Integration techniques"
    By ZaidAlyafey in forum Commentary threads
    Replies: 0
    Last Post: April 7th, 2013, 04:05
  2. A not very advanced integration technique...
    By chisigma in forum Math Notes
    Replies: 3
    Last Post: February 10th, 2013, 08:12
  3. Commentary for "A not very advanced integration technique..."
    By ZaidAlyafey in forum Commentary threads
    Replies: 5
    Last Post: February 8th, 2013, 14:40
  4. Replies: 5
    Last Post: March 24th, 2012, 13:34

Tags for this Thread

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  
Math Help Boards