Facebook Page
Twitter
RSS
+ Reply to Thread
Results 1 to 8 of 8
  1. MHB Master
    karush's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Location
    Wahiawa, Hawaii
    Posts
    1,475
    Thanks
    1,275 time
    Thanked
    381 times
    #1
    $\tiny{242.2q.3}$
    $\textsf{find the derivative}\\$
    \begin{align}
    \displaystyle
    y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
    \ln{y}&=\ln x
    + \frac{1}{2}\ln(x^2+1)
    - \frac{2}{3}\ln(x+1)\\
    \end{align}

    $\textit{thot this would help but what next??}$

  2. MHB Journeyman
    MHB Site Helper
    MHB Math Helper
    Rido12's Avatar
    Status
    Offline
    Join Date
    Jul 2013
    Posts
    698
    Thanks
    3,346 times
    Thanked
    806 times
    Thank/Post
    1.155
    Awards
    Chat Box Champion (2014)  

MHB Model User Award (2014)
    #2
    Use implicit differentiation, knowing that $\d{}{x}\ln\left({x}\right)=\frac{1}{x}$ and $\d{}{x}\ln\left({y}\right)=\frac{1}{y}\d{y}{x}$.

  3. MHB Master
    karush's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Location
    Wahiawa, Hawaii
    Posts
    1,475
    Thanks
    1,275 time
    Thanked
    381 times
    #3 Thread Author
    $\tiny{242.2q.3}$
    $\textsf{find the derivative}\\$
    \begin{align}
    \displaystyle
    y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
    \ln{y}&=\ln x
    + \frac{1}{2}\ln(x^2+1)
    - \frac{2}{3}\ln(x+1)\\
    \frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
    \d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
    \end{align}
    Last edited by karush; January 5th, 2017 at 19:55. Reason: latex

  4. MHB Master
    MHB Site Helper
    mathmari's Avatar
    Status
    Offline
    Join Date
    Apr 2013
    Posts
    2,729
    Thanks
    2,172 times
    Thanked
    691 times
    Awards
    MHB Chat Room Award (2015)  

MHB Model User Award (2015)  

MHB LaTeX Award (2015)
    #4
    $\displaystyle{y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}}}$

    Let $f=x \, \sqrt[]{x^2+1}$ and $g=(x+1)^{2/3}$.

    Then $\displaystyle{y'=\frac{f'\cdot g-f\cdot g'}{g^2}} \ \ \ (\star)$

    We have the following:
    \begin{align*}f' & =(x)' \, \sqrt[]{x^2+1}+x \, (\sqrt[]{x^2+1})'= \sqrt[]{x^2+1}+x \, \frac{1}{2\sqrt[]{x^2+1}}\cdot (x^2+1)' =\sqrt[]{x^2+1}+x \, \frac{2x}{2\sqrt[]{x^2+1}} \\ &=\sqrt[]{x^2+1}+ \, \frac{x^2}{\sqrt[]{x^2+1}} =\frac{\sqrt[]{x^2+1}^2+x^2}{\sqrt[]{x^2+1}}=\frac{x^2+1+x^2}{\sqrt[]{x^2+1}}\\ &=\frac{2x^2+1}{\sqrt[]{x^2+1}}\end{align*}

    $$g'=\frac{2}{3}(x+1)^{2/3-1}=\frac{2}{3}(x+1)^{-1/3}$$

    $$g^2=(x+1)^{4/3}$$

    So, substituting these at the relation $(\star)$ we get:
    \begin{align*}y' &=\frac{\frac{2x^2+1}{\sqrt[]{x^2+1}}\cdot (x+1)^{2/3}-x \, \sqrt[]{x^2+1}\cdot \frac{2}{3}(x+1)^{-1/3}}{(x+1)^{4/3}} \\ &=\frac{\sqrt{x^2+1}\left (\frac{2x^2+1}{\sqrt[]{x^2+1}}\cdot (x+1)^{2/3}-x \, \sqrt[]{x^2+1}\cdot \frac{2}{3}(x+1)^{-1/3}\right )}{(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{\left (2x^2+1\right )\cdot (x+1)^{2/3}-x \, (x^2+1)\cdot \frac{2}{3}(x+1)^{-1/3}}{(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{(x+1)^{1/3}\left (\left (2x^2+1\right )\cdot (x+1)^{2/3}-x \, (x^2+1)\cdot \frac{2}{3}(x+1)^{-1/3}\right )}{(x+1)^{1/3}(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{\left (2x^2+1\right )\cdot (x+1)-x \, (x^2+1)\cdot \frac{2}{3}}{(x+1)^{5/3}\sqrt{x^2+1}} \\ & =\frac{3\left (\left (2x^2+1\right )\cdot (x+1)-x \, (x^2+1)\cdot \frac{2}{3}\right )}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{3\left (2x^2+1\right )\cdot (x+1)-2x \, (x^2+1)}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{3\left (2x^3+x+2x^2+1\right )-2 \, (x^3+x)}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{6x^3+3x+6x^2+3-2x^3-2x}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{4x^3+6x^2+x+3}{3(x+1)^{5/3}\sqrt{x^2+1}}\end{align*}

  5. MHB Master
    MHB Math Helper

    Status
    Offline
    Join Date
    Jan 2012
    Posts
    1,295
    Thanks
    130 times
    Thanked
    2,058 times
    Thank/Post
    1.589
    #5
    Quote Originally Posted by karush View Post
    $\tiny{242.2q.3}$
    $\textsf{find the derivative}\\$
    \begin{align}
    \displaystyle
    y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
    \ln{y}&=\ln x
    + \frac{1}{2}\ln(x^2+1)
    - \frac{2}{3}\ln(x+1)\\
    \frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
    \d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
    \end{align}
    Good job so far, now remember that you already know what y is in terms of x, so you can write the derivative completely in terms of x as well.

  6. MHB Master
    karush's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Location
    Wahiawa, Hawaii
    Posts
    1,475
    Thanks
    1,275 time
    Thanked
    381 times
    #6 Thread Author
    Quote Originally Posted by Prove It View Post
    Good job so far, now remember that you already know what y is in terms of x, so you can write the derivative completely in terms of x as well.

    \begin{align}
    \displaystyle
    y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
    \ln{y}&=\ln x
    + \frac{1}{2}\ln(x^2+1)
    - \frac{2}{3}\ln(x+1)\\
    \frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
    \d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
    \end{align}

    $\displaystyle
    y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \therefore \frac{y}{x}=\frac{\sqrt[]{x^2+1}}{(x+1)^{2/3}}$
    which is the first term


    online calculator returned this for the answer so not sure how the 2nd term was derived the third is just 2y in numerator then simplify

    $y'=\dfrac{\sqrt{x^2+1}}{\left(x+1\right)^\frac{2}{3}}
    +\dfrac{x^2}{\left(x+1\right)^\frac{2}{3}\sqrt{x^2+1}}
    -\dfrac{2x\sqrt{x^2+1}}{3\left(x+1\right)^\frac{5}{3}}$

  7. MHB Master
    MHB Math Helper

    Status
    Offline
    Join Date
    Jan 2012
    Posts
    1,295
    Thanks
    130 times
    Thanked
    2,058 times
    Thank/Post
    1.589
    #7
    Quote Originally Posted by karush View Post
    \begin{align}
    \displaystyle
    y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
    \ln{y}&=\ln x
    + \frac{1}{2}\ln(x^2+1)
    - \frac{2}{3}\ln(x+1)\\
    \frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
    \d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
    \end{align}

    $\displaystyle
    y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \therefore \frac{y}{x}=\frac{\sqrt[]{x^2+1}}{(x+1)^{2/3}}$
    which is the first term


    online calculator returned this for the answer so not sure how the 2nd term was derived the third is just 2y in numerator then simplify

    $y'=\dfrac{\sqrt{x^2+1}}{\left(x+1\right)^\frac{2}{3}}
    +\dfrac{x^2}{\left(x+1\right)^\frac{2}{3}\sqrt{x^2+1}}
    -\dfrac{2x\sqrt{x^2+1}}{3\left(x+1\right)^\frac{5}{3}}$
    I suppose you could do it that way, I would have just done...

    $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= y \left[ \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{2}{3 \left( x + 1 \right) } \right] \\ &= \frac{x\,\sqrt{ x^2 + 1 }}{\left( x + 1 \right) ^{\frac{2}{3}}} \left[ \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{2}{3\left( x + 1 \right) } \right] \end{align*}$

  8. MHB Master
    karush's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Location
    Wahiawa, Hawaii
    Posts
    1,475
    Thanks
    1,275 time
    Thanked
    381 times
    #8 Thread Author
    well that make more semse,,

Similar Threads

  1. [SOLVED] 242.2q.3 Find the derivative (1+ln{(t))/(1-ln{(t))
    By karush in forum Calculus
    Replies: 2
    Last Post: January 5th, 2017, 17:09
  2. Find the derivative again!
    By Teh in forum Calculus
    Replies: 2
    Last Post: October 31st, 2016, 17:06
  3. Find the derivative
    By Teh in forum Calculus
    Replies: 7
    Last Post: October 30th, 2016, 00:42
  4. Find derivative of a g(x)
    By riri in forum Calculus
    Replies: 3
    Last Post: November 5th, 2015, 04:13
  5. Find the derivative
    By veronica1999 in forum Calculus
    Replies: 10
    Last Post: May 8th, 2013, 03:26

Tags for this Thread

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  
Math Help Boards