Facebook Page
Twitter
RSS
+ Reply to Thread
Results 1 to 8 of 8
  1. MHB Master
    karush's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Location
    Wahiawa, Hawaii
    Posts
    1,319
    Thanks
    1,146 time
    Thanked
    323 times
    #1
    $\tiny{242.2q.3}$
    $\textsf{find the derivative}\\$
    \begin{align}
    \displaystyle
    y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
    \ln{y}&=\ln x
    + \frac{1}{2}\ln(x^2+1)
    - \frac{2}{3}\ln(x+1)\\
    \end{align}

    $\textit{thot this would help but what next??}$

  2. MHB Journeyman
    MHB Site Helper
    MHB Math Helper
    Rido12's Avatar
    Status
    Offline
    Join Date
    Jul 2013
    Posts
    695
    Thanks
    3,304 times
    Thanked
    793 times
    Thank/Post
    1.141
    Awards
    Chat Box Champion (2014)  

MHB Model User Award (2014)
    #2
    Use implicit differentiation, knowing that $\d{}{x}\ln\left({x}\right)=\frac{1}{x}$ and $\d{}{x}\ln\left({y}\right)=\frac{1}{y}\d{y}{x}$.

  3. MHB Master
    karush's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Location
    Wahiawa, Hawaii
    Posts
    1,319
    Thanks
    1,146 time
    Thanked
    323 times
    #3 Thread Author
    $\tiny{242.2q.3}$
    $\textsf{find the derivative}\\$
    \begin{align}
    \displaystyle
    y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
    \ln{y}&=\ln x
    + \frac{1}{2}\ln(x^2+1)
    - \frac{2}{3}\ln(x+1)\\
    \frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
    \d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
    \end{align}
    Last edited by karush; January 5th, 2017 at 19:55. Reason: latex

  4. MHB Master
    MHB Site Helper
    mathmari's Avatar
    Status
    Offline
    Join Date
    Apr 2013
    Posts
    2,588
    Thanks
    2,075 times
    Thanked
    665 times
    Trophies
    1 Highscore
    Awards
    MHB Chat Room Award (2015)  

MHB Model User Award (2015)  

MHB LaTeX Award (2015)
    #4
    $\displaystyle{y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}}}$

    Let $f=x \, \sqrt[]{x^2+1}$ and $g=(x+1)^{2/3}$.

    Then $\displaystyle{y'=\frac{f'\cdot g-f\cdot g'}{g^2}} \ \ \ (\star)$

    We have the following:
    \begin{align*}f' & =(x)' \, \sqrt[]{x^2+1}+x \, (\sqrt[]{x^2+1})'= \sqrt[]{x^2+1}+x \, \frac{1}{2\sqrt[]{x^2+1}}\cdot (x^2+1)' =\sqrt[]{x^2+1}+x \, \frac{2x}{2\sqrt[]{x^2+1}} \\ &=\sqrt[]{x^2+1}+ \, \frac{x^2}{\sqrt[]{x^2+1}} =\frac{\sqrt[]{x^2+1}^2+x^2}{\sqrt[]{x^2+1}}=\frac{x^2+1+x^2}{\sqrt[]{x^2+1}}\\ &=\frac{2x^2+1}{\sqrt[]{x^2+1}}\end{align*}

    $$g'=\frac{2}{3}(x+1)^{2/3-1}=\frac{2}{3}(x+1)^{-1/3}$$

    $$g^2=(x+1)^{4/3}$$

    So, substituting these at the relation $(\star)$ we get:
    \begin{align*}y' &=\frac{\frac{2x^2+1}{\sqrt[]{x^2+1}}\cdot (x+1)^{2/3}-x \, \sqrt[]{x^2+1}\cdot \frac{2}{3}(x+1)^{-1/3}}{(x+1)^{4/3}} \\ &=\frac{\sqrt{x^2+1}\left (\frac{2x^2+1}{\sqrt[]{x^2+1}}\cdot (x+1)^{2/3}-x \, \sqrt[]{x^2+1}\cdot \frac{2}{3}(x+1)^{-1/3}\right )}{(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{\left (2x^2+1\right )\cdot (x+1)^{2/3}-x \, (x^2+1)\cdot \frac{2}{3}(x+1)^{-1/3}}{(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{(x+1)^{1/3}\left (\left (2x^2+1\right )\cdot (x+1)^{2/3}-x \, (x^2+1)\cdot \frac{2}{3}(x+1)^{-1/3}\right )}{(x+1)^{1/3}(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{\left (2x^2+1\right )\cdot (x+1)-x \, (x^2+1)\cdot \frac{2}{3}}{(x+1)^{5/3}\sqrt{x^2+1}} \\ & =\frac{3\left (\left (2x^2+1\right )\cdot (x+1)-x \, (x^2+1)\cdot \frac{2}{3}\right )}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{3\left (2x^2+1\right )\cdot (x+1)-2x \, (x^2+1)}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{3\left (2x^3+x+2x^2+1\right )-2 \, (x^3+x)}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{6x^3+3x+6x^2+3-2x^3-2x}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{4x^3+6x^2+x+3}{3(x+1)^{5/3}\sqrt{x^2+1}}\end{align*}

  5. MHB Master
    MHB Math Helper

    Status
    Offline
    Join Date
    Jan 2012
    Posts
    1,263
    Thanks
    130 times
    Thanked
    2,010 times
    Thank/Post
    1.591
    #5
    Quote Originally Posted by karush View Post
    $\tiny{242.2q.3}$
    $\textsf{find the derivative}\\$
    \begin{align}
    \displaystyle
    y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
    \ln{y}&=\ln x
    + \frac{1}{2}\ln(x^2+1)
    - \frac{2}{3}\ln(x+1)\\
    \frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
    \d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
    \end{align}
    Good job so far, now remember that you already know what y is in terms of x, so you can write the derivative completely in terms of x as well.

  6. MHB Master
    karush's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Location
    Wahiawa, Hawaii
    Posts
    1,319
    Thanks
    1,146 time
    Thanked
    323 times
    #6 Thread Author
    Quote Originally Posted by Prove It View Post
    Good job so far, now remember that you already know what y is in terms of x, so you can write the derivative completely in terms of x as well.

    \begin{align}
    \displaystyle
    y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
    \ln{y}&=\ln x
    + \frac{1}{2}\ln(x^2+1)
    - \frac{2}{3}\ln(x+1)\\
    \frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
    \d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
    \end{align}

    $\displaystyle
    y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \therefore \frac{y}{x}=\frac{\sqrt[]{x^2+1}}{(x+1)^{2/3}}$
    which is the first term


    online calculator returned this for the answer so not sure how the 2nd term was derived the third is just 2y in numerator then simplify

    $y'=\dfrac{\sqrt{x^2+1}}{\left(x+1\right)^\frac{2}{3}}
    +\dfrac{x^2}{\left(x+1\right)^\frac{2}{3}\sqrt{x^2+1}}
    -\dfrac{2x\sqrt{x^2+1}}{3\left(x+1\right)^\frac{5}{3}}$

  7. MHB Master
    MHB Math Helper

    Status
    Offline
    Join Date
    Jan 2012
    Posts
    1,263
    Thanks
    130 times
    Thanked
    2,010 times
    Thank/Post
    1.591
    #7
    Quote Originally Posted by karush View Post
    \begin{align}
    \displaystyle
    y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
    \ln{y}&=\ln x
    + \frac{1}{2}\ln(x^2+1)
    - \frac{2}{3}\ln(x+1)\\
    \frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
    \d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
    \end{align}

    $\displaystyle
    y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \therefore \frac{y}{x}=\frac{\sqrt[]{x^2+1}}{(x+1)^{2/3}}$
    which is the first term


    online calculator returned this for the answer so not sure how the 2nd term was derived the third is just 2y in numerator then simplify

    $y'=\dfrac{\sqrt{x^2+1}}{\left(x+1\right)^\frac{2}{3}}
    +\dfrac{x^2}{\left(x+1\right)^\frac{2}{3}\sqrt{x^2+1}}
    -\dfrac{2x\sqrt{x^2+1}}{3\left(x+1\right)^\frac{5}{3}}$
    I suppose you could do it that way, I would have just done...

    $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= y \left[ \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{2}{3 \left( x + 1 \right) } \right] \\ &= \frac{x\,\sqrt{ x^2 + 1 }}{\left( x + 1 \right) ^{\frac{2}{3}}} \left[ \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{2}{3\left( x + 1 \right) } \right] \end{align*}$

  8. MHB Master
    karush's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Location
    Wahiawa, Hawaii
    Posts
    1,319
    Thanks
    1,146 time
    Thanked
    323 times
    #8 Thread Author
    well that make more semse,,

Similar Threads

  1. [SOLVED] 242.2q.3 Find the derivative (1+ln{(t))/(1-ln{(t))
    By karush in forum Calculus
    Replies: 2
    Last Post: January 5th, 2017, 17:09
  2. Find the derivative again!
    By Teh in forum Calculus
    Replies: 2
    Last Post: October 31st, 2016, 17:06
  3. Find the derivative
    By Teh in forum Calculus
    Replies: 7
    Last Post: October 30th, 2016, 00:42
  4. Find derivative of a g(x)
    By riri in forum Calculus
    Replies: 3
    Last Post: November 5th, 2015, 04:13
  5. Find the derivative
    By veronica1999 in forum Calculus
    Replies: 10
    Last Post: May 8th, 2013, 03:26

Tags for this Thread

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  
Math Help Boards