1. the probability of getting a head on flipping a biased coin is p. the coin is flipped n times producing a sequence containing m heads and (n-m) tails what is the probability of obtaining this sequence from n flips.
i cant understand the wording

2. I've moved this thread since our advanced forum is for calculus based stats.

A few things we need to observe:

The probability of getting heads is:

$\displaystyle P(H)=p$

Now, we know that it is certain that we will either get heads or tails, so we may state:

$\displaystyle P(H)+P(T)=1\implies P(T)=1-P(H)=1-p$

So, the probability of getting $m$ heads is:

$\displaystyle P\left(H_m\right)=p^m$

And the probability of getting $n-m$ tails is:

$\displaystyle P\left(T_{n-m}\right)=(1-p)^{n-m}$

Next we need to look at the number $N$ of ways to choose $m$ from $n$:

$\displaystyle N={n \choose m}$

Can you put all this together to find the requested probability?

when i put this all together i get (n ncr m)*p*(1-p)^n-m however at the back of the book it says the answer is p^m(1-p)^n-m

4. What I get is:

$\displaystyle P(X)={n \choose m}p^m(1-p)^{n-m}$

And this agrees with the binomial probability formula.

This is the probability of getting any sequence with $m$ heads, for any particular such sequence, then it would be:

$\displaystyle P(X)=p^m(1-p)^{n-m}$