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A steady-state, two-dimensional model for  cocurrent gas and liquid flow in a 
trickle-bed reactor is described. The model includes gas-liquid interaction and 
isothermal, incompressible flow without phase change or chemical reaction. The 
momentum equation proposed by Saez and Carbonell is used, along with their 
expressions for  relative permeabilities of gas and liquid phases. Capillary pressure 
equations determine the difference in the pressures of flowing phases. The results 
of the model simulation agree with experimental data on flow distribution, liquid 
spreading, and phase segregation in a two-dimensional trickle bed with air-water 
flow in both low- and high-interaction flow regimes. 

Introduction 
Fixed-bed catalytic reactors with concurrent flow of gas and 

liquid, i.e., trickle-bed reactors, have often shown unaccept- 
able performance levels when scaled up from laboratory to 
commercial reactors (e.g., Shah, 1979). Much of the perform- 
ance reduction or reactor inefficiency at the large scale comes 
from gadliquid flow maldistribution. However, van Klinken 
and van Dongen (1 980) showed that very efficient gadliquid 
contacting can be achieved in small-scale laboratory units due 
to their smaller size and use of inert fines (sand) packed into 
the interstices of the catalyst particles. Many previous exper- 
imental and theoretical studies have examined the effects of 
flow maldistribution in trickle-bed reactors because of their 
practical importance. The present analysis involves a multi- 
dimensional mathematical model that directly describes two- 
phase fluid flow in a packed bed. 

Previous studies of modeling multidimensional flow in 
trickle beds include those of Stanek and coworkers (1981), who 
considered liquid distribution in a packed bed with a diffusion 
model. Zimmerman and Ng (1986) also developed a model for 
liquid distribution in a packed bed. However, each of these 
previous groups neglected or excluded the effects of the gas 
phase. Significant gas-liquid interaction occurs over the range 
of fluid mass fluxes used in commercial trickle-bed reactors. 
The present model considers the interaction of gas and liquid 
phases in contributing to the fluid flow behavior. Our objective 
is to determine the origins of maldistribution and the preferred 
commercial reactor design strategy for its prevention. Exper- 
imental results shown verify the model predictions. 

Our model formulation for two-phase flow in porous media 
is similar to those widely used in petroleum reservoir simu- 
lation. The latter models are based on Darcy’s law with ex- 

perimentally-determined correlations of relative permeability 
of each phase. They are used to calculate flow rates and pat- 
terns in an oil field to aid in improving hydrocarbon recovery. 
A principal concern there is the time dependence of the flow. 
In trickle-bed reactors, we are interested primarily in flow 
patterns as they are affected by reactor geometry, packing 
properties, fluid properties, flow rates, and flow regimes. 

Velocities in petroleum refining trickle beds are in the range 
of 0.005-0.025 m/s for liquid and 0.05-0.5 m/s for gas. These 
are much higher than the 5 x m/s velocity, typically found 
in petroleum reservoirs. Voidage and pore/particle size in 
trickle beds also greatly exceed those of reservoirs. In order 
to apply reservoir simulation methods to the flow study in 
trickle beds, Saez and Carbonell (1985) developed relative 
permeability correlations for trickle beds based on pressure 
drop and liquid holdup data. In addition, Grosser et al. (1988) 
applied these correlations in a macroscopic flow model to 
describe instabilities in one-dimensional trickle beds. Our 
steady-state model employs the relative permeability correla- 
tions and simplified multidimensional momentum balance of 
Saez and Carbonell. 

First, the model is developed along with appropriate bound- 
ary conditions for multidimensional flow. Then, we discuss 
the numerical solution method for the model. Finally, model 
results are shown along with experimental data for an example, 
two-dimensional system. 

Model 
Reservoir simulation includes the macroscopic (volume-av- 

eraged) models of flow in porous media that are generally 
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written in the Darcy’s law form describing flow velocity for 
each phase as proportional to pressure gradient (see Aziz and 
Settari, 1979, for example). Effects of phase interaction are 
included in the relative permeability coefficients which scale 
the flow velocity relative to that calculated for each phase 
flowing individually. The describing equation for flow in a 
multidimensional system is (with z the coordinate oriented 
vertically downward) 

- ui is the superficial velocity vector of the fluid phase i, and 
VP, is the pressure gradient in phase i. The gravity force is 
included in the term involving y;, where 

The permeability group is defined as: 

In reservoir simulation, the permeability ki depends on the 
physical properties of the porous medium, but not velocity or 
any fluid property. At the higher velocities in packed beds, 
pressure gradient also depends on the square of the velocity 
(Ergun equation, for example). This nonlinear dependence is 
indicated in the form of permeability used in the present model. 
For the liquid phase, kL is given by: 

) (3) 
kL = 1/ (180(1 - E ) ~  1.8(1- E)PL I U L  I + 

I uL I is the magnitude of the local velocity of liquid. For the 
gas-phase permeability, kg,  substitute the gas-phase properties, 
p g ,  p g ,  and ug. Equations 1-3 are derived from equations used 
by Saez and Carbonell, where the original equations described 
the pressure gradient as a function of velocities and physical 
properties. There, relative permeabilities were determined by 
evaluating the literature data of pressure drop and liquid holdup 
in the low-interaction, trickle-flow regime as: 

d,2E3gc PLdeE3gc 

krL = S k:3 

SLr is the reduced saturation of the liquid phase, which sub- 
tracts out the static liquid holdup volume fraction, E Z ,  which 
remains on the packing after stopping liquid flow. 

SLr = (EL - E E ) / ( E  - €2)  (5 )  

For trickle beds, EZ was correlated by Saez and Carbonell as: 

€2 = 1/(20 + 0.9 Eo) (6a) 

where the Eotvos number, Eo, is defined as: 

EO = pLgd :E’/u( 1 - E)’ (6b) 
Absolute saturations of gas and liquid phases are E ~ / E  and 
E J E ,  respectively. 

We will evaluate the model predictions o f  m u 3  ?idimensional 
flow distribution in both low- and high-interat tion flow re- 
gimes. Good results were found in both flow egimes when 
compared with the data. This model, however, is not sufficient 
to describe all the details of flow behavior in t?e high-inter- 
action flow regime. Grosser et al. (1988) found ,hat inclusion 
of acceleration terms in the macroscopic momentum balance 
of Eq. 1 was necessary for determining the condition where 
transition occurs to an unstable, high gas-liquiJ interaction, 
pulsing-flow regime. Dankworth et al. (1990) further char- 
acterized the dynamics of pulsing flow with the same model. 

The flow equations (Eqs. 1) are solved along with the steady- 
state equations for mass conservation for each phase, I .  

(7) v.u,=o i=g , l  

These equations represent incompressible flow without phase 
change. Substituting u, from the flow equations produces two 
PDE’s (partial differential equations) with unknown pressures 
and saturations of each phase. Auxiliary equaiions that are 
used to eliminate two of these variables include ?valuation of 
capillary pressure (pressure difference between pas and liquid 
phases resulting from interfacial tension) and .i balance on 
void volume saturation. Capillary pressure is assumed to be a 
function of permeability of the packing and liquid saturation 
of the packing voidage. Leverett (1941) proposed the following 
form for capillary pressure in porous media. 

Pc= uJ(SL)(dk)”2 

u is the surface tension, k is the Darcy’s law permeability, and 
J is a dimensionless function of only the liquid saturation. 
Actually, capillary pressure dependence on satuc ation differs 
between circumstances of drainage and inhibition. We neglect 
this hysteresis here. Grosser et al. (1988) approximated J by: 

J=0.48+0.036 ln[(l - S L ) / S L ]  (9) 

For the present model in trickle beds, capillarv pressure is 
expected to be quite low, and we approximate this J function 
with a linear relationship to greatly simplify our calculations 

Void volume conservation requires 

Substituting Eq. 1 into Eq. 7 for both gas and liquid produces 
two partial differential equations in terms of the pressures and 
saturations of each phase. But, PL=Pg-Pc by the definition 
of capillary pressure, and SL= 1 -Sg by Eq. 10. Therefore, 
Eqs. 1-10 are consolidated to produce two partial differential 
equations with gas-phase pressure and liquid-phase saturation 
as unknowns. 

hi and P, are functions of the liquid saturation. 

378 March 1991 Vol. 37, No. 3 AIChE Journal 



- 1.2 rn c 

1.6 
U l X  = 0 U l X  = 0 
u g x =  0 u g x =  0 

A 

m 

1 

U l Z  = 0 
u g z =  0 

P = P, 
ds - = o  
dz 

Figure 1. Two-dimensional model boundary conditions. 

Boundary Conditions 

For example, the model is applied to a two-dimensional 
system in rectangular geometry. Flow and no-flow boundary 
conditions are used. Liquid velocity and gas pressure are spec- 
ified at the inlet to the trickle bed. At the outlet, again gas 
pressure is specified, and the normal liquid saturation gradient 
is set to zero. Gas velocity is a result of the solution. Aziz and 
Settari (1979) discuss these outlet boundary conditions along 
with other alternatives. At the walls, there is no flow normal 
to the boundary. So with V, the normal gradient, Eq. 1 leads 
to: 

V, Pi - yiv,  z = 0 i = g,L (13) 

Figure 1 shows a schematic of a two-dimensional packed bed 
the model represents, along with the boundary conditions. In 
this example, the bottom is closed on the right side and open 
on the left. 
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Figure 3. Laboratory trickle-bed apparatus. 

Numerical Solution 

The model equations were solved numerically in the two- 
dimensional, rectangular geometry shown in Figure 1 using a 
finite difference technique. In summary, the solution domain 
was discretized with uniformly spaced nodes in the vertical 
and horizontal dimensions. The grid sizeused was either 10 x 15 
or 19 x 29. Discretization of PDE’s converted the nonlinear 
PDE’s to a system of nonlinear algebraic equations, with two 
equations at each node in the domain. These were solved using 
Newton’s method. One major obstacle in the use of this method, 
though, was the need for solving large, sparse linear systems. 
A biconjugate gradient technique was used for this purpose to 
overcome constraints on computer storage and computation 
time. 

Mikic and Morse (1985) discussed use of the biconjugate 
gradient (BCG) method for linear system solutions which result 
from solving finite-differenced PDE’s describing plasma dy- 
namics. This iterative procedure is similar to the conjugate 
gradient (CG) method and can be applied directly to nonsym- 
metric, indefinite matrix systems. Computational work for the 
BCG is not significantly greater than for the CG. Unlike CG, 
BCG does not have an error minimization property, so error 
will not necessarily decrease at every iteration. Mikic and Morse, 
however, found that when properly preconditioned, BCG rap- 
idly converged to the solution of their linear systems. 

In our evaluation of the BCG method for application to the 

Table 1. Model Parameters 

0.003 m 
0.39 
9.8 m/s2 
1 .o 
1.44 kg/m3 
1,OOO.O kg/m3 
0.073 N/m 
1.5 x Pa.s 
1 x Pa.s 
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flow in porous media solution, effectiveness was examined 
relative to the CG method and the extent of preconditioning. 
Diagonal scaling and incomplete LU (ILU) preconditionings 
are used similarly as shown by Mikic and Morse. Their block- 
wise forms are used as well, with a 2 x 2  block size corre- 
sponding to the two dependent variables. Our test example is 
a two-dimensional system finite differenced over a 10 x 15 node 
grid, which leads to  a 300-element solution vector and a 
300 x 300 linear system matrix. 

For a typical linear system in the course of our solution, 
Figure 2 shows convergence results when using the biconjugate 
gradient method with various preconditionings, as well as the 
use of the standard conjugate gradient method. The error 
shown is the sum of squared residuals of the linear solution. 
The CG method and unpreconditioned BCG method produce 
similar slow convergence results. Simple diagonal scaling pre- 
conditioning multiplies the matrix by its inverse diagonal and 
greatly improves convergence for the BCG method. Block di- 
agonal scaling (BDS) involves preconditioning with the inverse 
block diagonal matrix, which is easily calculated. It improves 
convergence further. These preconditionings are easily applied, 
adding only sparse matrix products with a vector (Mikic and 
Morse, 1985). They keep the method fully vectorizable for 
rapid computation. Applying BDS preconditioning to the CG 
method did not produce significant improvements in conver- 
gence. This superior convergence of the BCG method with 
easily-computed preconditioning is its primary benefit. 

Results vs. Experimental Data 

Our two-dimensional solution geometry was chosen to match 
the dimensions of a 1.2-m x 1.6-m x 0.025-m-thick cold flow 

a) Low Flux 

Liquid Streamlines 

Horizontal Position, m 

b) High Flux 

Liquid Streamlines 
1.6 

1.2 

Vertical 
Position. 
m 0.6 

0 
0 0 3 0.6 1.9 1 

Horizontal Position, rn 

Figure 4. Liquid streamlines in trickle bed with re- 
stricted outlet. 
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Figure 5. Cold flow experimental results. 
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apparatus used in our laboratory. This apparatus is similar to 
that described by Christensen et al. (1986). Air and water flow 
were used in the experiments over 0.003-m-diameter nonporous 
glass spheres. A schematic diagram of the apparatus is shown 
in Figure 3. The water was distributed over the packing at the 
top through 20 evenly spaced 1/4-in. (6.4-mm) tubes. Trans- 
parent walls allowed clear visualization of the flow behavior. 
Colored dye injected into several locations at the top indicated 
liquid flow paths to  the outlet for comparison with model 
predictions. Fluid and packing physical properties of this sys- 
tem are shown in Table 1 .  

The first case, which we used to evaluate the model calcu- 
lations, was the effect of a restricted outlet on the flow pattern. 
In this case, the bottom was open only on the left 0.4 m out 
of the 1.2-m width. Liquid flow was uniform over the inlet. 
At relatively low fluxes of 2.2 kg/m2.s water and 0.14 kg/ 
m2. s air averaged over the cross-section, the liquid flow pattern 
remained mostly vertical and uniform until very near the bot- 
tom (Figure 4a). Pressure drop across the bed is about 4.8 
kPa. However, by increasing these fluxes t o  6.56 kg/m2. s water 
and 0.73 kg/m2.s air, more significant bending of the liquid 
streams toward the outlet was calculated (Figure 4b). Pressure 
drop here is about 62.1 kPa. The difference in these results 
occurs because gravity is more significant in influencing liquid 
flow in the low flux case, while the much higher pressure drop 
in the high flux case exhibits the greater effect of gas pressure 
on liquid flow. These mass fluxes represent the range of com- 
mercial trickle-bed reactor operation. Gas-liquid interaction is 
significant for both cases. 

Figure 5 shows experimental results at the same operating 
conditions with the one-third outlet opening on the left side. 
Liquid flow was uniformly distributed through 20 equally 
spaced inlets a t  the top. The dark stripes in the figure are 
produced by injecting colored dye in the liquid inlets a t  three 
locations. The experimental dye paths are also indicated on 
Figure 4, showing that the model agrees with the data both 
qualitatively and quantitatively. The impact of outlet geometry 
in affecting upstream liquid flow distribution at high fluxes is 
thus demonstrated. 

The low flux example was in the trickle-flow regime. How- 
ever, in the high flux example, pulsing flow behavior also 
resulted, which is in the high interaction-flow regime. These 
results indicate our flow model is valid for both high- and low- 
interaction flow regimes for the purpose of simulating liquid 
flow patterns. 

While liquid flow nonuniformity is greater at the higher 
fluxes, gas-to-liquid ratios are not constant at the lower fluxes. 
Figure 6 shows the flow model results that, a t  0.6 m above the 
outlet, the gas flow profile is significantly distorted by the 
restricted outlet while the liquid profile is nearly uniform. For 
the high-flux example, both gas and liquid profiles are similarly 
affected. There the pressure force has become almost equally 
significant for the gas and liquid phases. 

The second case of this study involves liquid flow introduced 
over only a small part of the top of the bed. For the model, 
the liquid flow boundary condition was set for flow over a 
portion of the top boundary. The water flux used was 8.4 kg/ 
m2 . s  over a single 0.076-m inlet cell width. However, the model 
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calculations average this over two cells, or about 0.15 m. Av- 
erage air flux was 0.73 kg/m2.s over the bed cross-section. 

Figure 7 shows liquid streamlines of the simulation: 80% of 
the flow is between the streamlines shown in the narrow zone 
beneath the inlet. We also observed in the cold flow unit only 
a minor degree of spreading, with the liquid flow velocity 
dropping off quickly outside of the region directly below the 
inlet. The colored tracer did not adequately reflect this behavior 
because of its diffusion outside the main flow region. Signif- 
icant saturation gradients were present, but the lateral liquid 
movement was small because of the minor effect of capillary 
pressure. Other previous experimental results, we obtained in 
a 20-in. (508-mm) packed column under similar conditions, 
also showed only minor spreading of 1 in. (25 mm) over 10 ft 
(3 m) of bed depth. Therefore, significant radial mixing is not 
anticipated for typical trickle-bed operation based on the ex- 
perimental results and our computer simulations. 
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Notation 
d, = 
g =  

gc = 
G =  
J =  
kj = 
kn = 
L =  
Pj = 
s, = 
gi = 

AX = 
z =  

x =  

effective particle diameter 
gravitational constant 
gravitational conversion factor 
gas phase mass flux 
Leverett J function 
permeability of phase i 
relative permeability of phase i 
liquid phase mass flux 
pressure of phase i 
saturation of phase i ,  t,/t 
velocity of phase i 
horizontal coordinate 
grid size 
vertical coordinate 

Greek letters 
yi = group defined by Eq. la 
t = interparticle void fraction 

Eg, EL = 
Pi  = 

Pi = 

u =  

reactor volume fractions of gas and liquid 
density of phase i 
surface tension 
viscosity of phase i 

Subscripts 
g = gas phase 
L = liquid phase 
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