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1 Abstract

The proximity effect of high Tc superconductors is a new phenomenon that has

deeply confused physicists. The confusion arises from the fact that conventional

theories, do not seem to apply when a superconducting material comes into contact

with a normal conducting material, this phenomena is called the Giant proximity

effect. This report, is a theoretical investigation into the proximity effects of high

temperature superconductors. Modelling the supercurrent density as a macroscopic

condensate wavefunction, using an adaptation of the Gross Pitaevskii equation and

the ideas of the Abrikosov vortex. Three equations for the macroscopic condensate

wavefunction were derived, however due to the complexity of the equations, they

cannot yet be solved. The works of London, Ginzburg and Landau were used,

along with the Meissner-Ochsenfeld effect, Bose-Einstein Condensation and also the

Abrikosov vortex, as a basis for the understanding of the behavior at the surface of

both low and high temperature superconductors.
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2 Introduction

2.1 Brief History of High Tc superconductors

When a quantum system of interacting particles behaves as though some of the

particles are condensed, into a single current carrying state,it is known as a super-

fluid which is described by an effective wave function Ψ (r, t). A superconductor is

a charged superfluid.

Below a critical temperature Tc, the resistance of a superconductor falls to zero. For

different elements, compounds and alloys, the critical temperature varies. These

materials behave in this way because the spectrum of particles changes so that the

current does not decay. There was no theory or explaination of the superconduc-

tivity phenomenon untill 1957 by the works of Bardeen, Cooper and Schrieffer. At

this point frictionless flow of He4 had already been discovered below a temperature

of 2.17K, this was also known as Superfluidity.

At temperature below the critical temperature many metals, alloys, and doped

semiconducting inorganic and organic compounds carry an electric current for an

infinite time without any electric field.

In 1950, Ginzburg and Landau anticipated the phenomenological theory of the

superconducting phase transition, this lead to the comprehension of the electro-

magnetic properties below Tc.

In 1986, Bednorz and Müller discovered the possibility of superconductivity at

unusually high temperatures in a ceramic material consisting of four elements;

Lnthium, barium, copper, and oxygen.
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These discoveries could result in large scale commercial applications for cheap and

efficient electricity aslong as superconducting wires that operated above liquid ni-

trogen temperatures of 80K can be manufactured in vast quantities.

2.2 Proximity effect

Cuprate superconductors above the critical temperature Tc do not behave as con-

ventional metals. Up to now superconuctivity has been rather conventional, how-

ever, a possible exception that has grasped the attention of theoretical physi-

cists is the giant proximity effect. Many physcists have observed that in Joseph-

son junctions, with high temperature superconducting electrondes supercurrent

can penetrate the interface of the normal conducting material to a thickness of

1000− 10000
(

×10−10
)

m. However, such reports have been met with some reserva-

tions due to the conflict with current theory, and also due to exprimental problems.

The conventional theory was published by De Gennes, not long after Meissner

discovered that a superconductor and a normal conductor affect each other when

brought in contact. De Gennes proposed that cooper pairs drift from the supercon-

ducting material to the normal metal several times, over a certain distance ξ. This

distance whas later named the coherence length in the normal conducting material.

2.3 The magnetic Vector potential

The electric field is sometimes defined as the gradient of a scalar potential function;

E = −∇V . There is no scalar potential for magneticic field B, however it can be

shown as; B = ∇ × A. A is known as the vector potential, but unlike the scalar
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potential is not associated with work directly. The magnetic vector potential relies

on ampere’s law and is equated in terms of either the current or current density.

A =
µ0i

4π

∮

dl

r
(1)

A =
µ0

4π

∮

jdS dl

r
(2)

The vector potential is easier to calculate than the magnetic field from a given

source current and is usually used when describing electromagnetic waves.

Since the curl of A gives the magnetic field, based on the vector identity ∇×∇C = 0,

then any function where by the curl of the gradient is zero can be added to the

vector potential, hence A′ = A + ∇φ. This is named the Guage transformation.

2.4 Ginzburg-Landau Theory

The Ginzburg-Landau Theory is a mathematical theory that is used to model super-

conductivity. The theory only examines the macroscopic properties of a supercon-

ductor with help from general thermodynamics. Landau had previously established

the theory of second-order phase transitions, however they both argued that the

free energy of a superconductor at the interface of a superconducting transition,

can be described using the complex order parameter Ψ, which is used to describe

the depth at which the superconducting phase the system occurs.

The free energy density Fs can also be expressed in the form of the superconducting

state in terms of the superfluid wavefunction Ψ (r) which is complex. Near the
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critical temperature, the free energy density is thus;

Fs = Fn + α |Ψ|2 +
1

2
β |Ψ|4 + γ

∣

∣

∣

∣

∇Ψ +
2eA

−ih̄Ψ

∣

∣

∣

∣

2

+
1

2µ0
(B − BE)

2
(3)

Where Fn is the free energy in the normal phase, α, β are observable parameters,

A is the electromagnetic vector potential and (B − BE) is the magnetic field.

The free energy Fs depends on Ψ, however there is no assumptions for the micro-

scopic explaination of Ψ. If we assume that a uniform superconductor is placed in a

zero field, Fs can be expanded in powers of |Ψ|2 and only include the first 2 terms.

2.4.1 Ginzburg-Landau 1st equation

Taking the equation of the free energy density integrated over all space with respect

to ∆ψ and ∆β, we can achieve the two Ginzburg-Landau equations. The first of

which is;

1

2m
(−ih̄∇ + 2eA)

2
Ψ +

(

α+ β |Ψ|2
)

Ψ = 0 (4)

The first of the Ginzburg-Landau equation as shown in equation (4) is similar to the

time-independent Schrödinger equation, which determines Ψ based on the magnetic

field that is applied.

2.4.2 The derivation of current density Js

The second Ginzburg-Landau equation is an expression for the Supperconducting

current density Js, which can be derived by considering the electron drift velocity.
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Ĵ (r) = ev̂n̂ (5)

Where,

v̂ =
p̂

m
= −ih̄∇

m
(6)

n̂ (r) = δ (r − re) (7)

subbing equations 6 and 7 into 5 gives;

Ĵ (r) =
−eih̄
m

∇δ (r − re) (8)

This gives the supercurrent operator, when applied to the wavefunction and

integrated over all space with respect to re will give the superconducting current

j (r). Hence,

j (r) =

∫

∞

−∞

ψ∗ (re)

(−ih̄e
m

∇δ (r − re)

)

ψ (re) dre (9)

However for the one dimensional case this equation can be rewritten;

j (x) =
−ih̄e
m

∫

∞

−∞

ψ (x)
∗

[

∂

∂x
δ (x − xe)

]

ψ (x) dx (10)

The problem with this equation resides with the fact that the delta function is not

Hermition, hence it needs to be changed so that it is. Using the following identity

it is possible turn the delta function into a hermition operator.

∂

∂x
δ (x − xe) →

1

2

[

∂

∂x
δ (x − xe) + δ (x − xe)

∂

∂x

]

(11)
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The integral of a delta function can be evaluated using a mathematical property of

the delta function;

∫

∞

−∞

f (x) δ (x− xe) dx = f (a) (12)

Hence

−
∫

∞

−∞

δ (x − xe)ψ (x)
∂

∂x
dx = −ψ (x)

∂

∂x
ψ (x)

∗

(13)

Therefore

j (x) =
−ih̄e
2m

[

ψ (x)
∗ ∂

∂x
ψ (x) − ψ (x)

∂

∂x
ψ (x)

∗

]

(14)

2.5 The London Penetration depth

In 1935 F and H London modified an equation that was essential for electrodynam-

ics, they obtained without changing maxwells equations, the Meissner effect. This

lead Gorter and Casmir to develop the two fluid model. This model seperates the

the electron system into its superconducting component with an electron density of

ns, and a normal component with an electron density nn. Hence they achieved the

total electron density, n0 = ns+nn, and assumed that it behaved such that ns → 0

as T → 0 and also nn = n0 if T > Tc. They derived from their phenomenological

model, the London penetration depth λL.

1

λ2
L

=
4πe2ns
m∗c2

(15)

7



Where m∗ is the effective mass of the superconducting carriers.

λL arises from the failure of the Meissner effect, which occurs at the surface of a

superconductor. The magnetic field can only penetrate the bulk of the supercon-

ducting material by an amount given by λL.

3 Modelling the tunneling effect using the finite

potential wall example

When a superconducting material is in contact with a normal conducting material,

the normal material carries some of the supercurrent for a finite depth into the

material. This phenomena is known as the tunneling effect, or the proximity effect.

It is possible to model what happens at the surface of the normal conducting mate-

rial, by considering a paricle in a Quantum mechanical problem known as the finite

potential wall. One would predict that the particle with a particular wavefunction,

would be reflected at the surface of the wall due to the the potential. However,

there is some penetration as if the particle is trying to tunnel through the surface

of the normal conducting material.

The wave vector k is given by;

k =

√

2mE

h̄2 (16)

The model is split into two regions, we have region 1 and region 2, each one has

different events occuring. In region 1 the incident particle travels towards the wall

and is reflected in the opposite direction. We can denote the particle having a
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wavefunction as described by ψ (x)1;

ψ (x)1 = Aeik1x +Be−ik1x (17)

Where Aeik1x describes the particle in the positive direction in this case to the

right, and Be−ik1x for the particle travelling in the negative direction (the reflected

particle). We also have to consider the particle in region 2. The particle in this

region is illustrated by ψ (x)2.

ψ (x)2 = Ceik2x +De−ik2x (18)

Since there is no wave traveling in the negative direction, we can therefore say that;

ψ (x)2 = Ceik2x (19)

Where k1 and k2 are the wave vectors in the two regions.

The three constants A, B and C can be related if we take into consideration the

bounary conditions that ψ (x) and dψ(x)
dx

are continuous where the potential is

discontinuous where x=0.

Hence,

A+B = C (20)

ik1 (A−B) = ik2C (21)

It is possible to obtain the relationships for B/A and C/A, by rearranging a solving
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using simultaneous equations to get;

B

A
=

k2 − k1

k2
1 − k1k2

(22)

C

A
=

2k1

k1 − k2
(23)

3.1 Reflection and Transmission coefficients

The reflection coefficient R is defined as the ratio of the intensity of the reflected

probability current density h̄k
m

|B|2 to the incident probability density h̄k
m

|A|2, which

gives the following relationship;

R =
|B|2

|A|2
(24)

The transmission coefficient T is Similarly defined as the ratio of the intensity of the

transmitted probability current density to the incident probability current density

Therefore;

T =
|C|2

|A|2
(25)

Thus using equations 22 and 23 and also equation 14 we can obtain both the

transmission and the reflection coefficients;

R =
(k2 − k1)

2

(k2
1 − k1k2)

2 (26)
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T =
4k2

1

(k1 − k2)
2 (27)

where R+T=1.
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4 Modelling the penetration using the Vortex in

the charged Bose liquid model

4.1 Bose-Einstein Condensation

A Bose-Einstein condensate is a phase formed by bosons that are cooled to tem-

peratures close to absolute zero. The first of such a condensate was produced by

Eric Cornell and Carl Wieman in 1995 at the university of colorado. Cornell and

Wieman used a gas of rubidium atoms cooled to 170 nonokelvins. It was observed

that a large fraction of the atoms collapse into the lowest quantum state. These

quantum effects became apparent on a macroscopic level.

The properties of Bose-Einstein Condensates are not completely understood, such

as spontaneously flowing out of their containers. This is a consequence of quantum

mechanics; sytems can only obtain energy in discrete steps. If the system is at a

very low temperature, so that it is in the lowest energy state, it is not possible to

reduce its energy, not even by friction. Thus the fluid overcomes gravity due to

adhesion between the fluid and the container wall, therefore the fluid will take up

the most benificial position, which is usually all around the container.

The phenomenon of the Bose-Einstein condensation was predicted by Satyendra

Nath Bose and Albert Einstein in 1920. It was originally based on Bose’s work

on the statistical mechanics of photons, which was then generalised by Einstein.

The results from Bose and Einstein is the idea of a Bose gas, which obeys Bose-

Einstein statistics. This describes the distribution of identical particles with integer

spin, namely bosons. Bosonic particles, including the photon aswell as atoms such
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as helium-4, can share quatum states with eachother. Einstein hypothesized that

cooling bosonic atoms to very low temperatures condenses them into the lowest

available quantum state, resulting in a new form of matter. Such a transition

occurs below a critical temperature, which for a uniform three-dimensional gas

compising of non-interacting particles with no internal degree of freedom can be

described by the following equation:

Tc =

(

2n

3ζ

)
2

3 h2

2πmkB
(28)

where;

n is the particle density,

m is the mass per boson,

ζ is the Riemann zeta function 3
2ζ ≈ 2.614

4.2 Meissner-Ochsenfeld effect and the London Equations

When a superconducting cylinder is exposed to an increasing magnetic field to a

finite value B a surface current is induced whose magnetic field is able to can-

cel the applied field in the interior by Lenz’s law. Since there is no resistance

in a superconductor, the surface current is constant if the applied field is kept

constant, the superconductor becomes like a perfect diamagnet below the critical

temperature Tc. Eddy currents are induced when the temperature is higher than

the critical temperature, because the external magnetic field increases. However

the eddy currents decay quickly due to the resistance and applied magnetic field

penetreates into the cylinder. If the temperature decreases below the critical tem-
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perature, a surface current is created to release the magnetic field from the bulk

of the superconducting cylinder. This effect is known as the Meissner-Ochsenfeld

effect. The transition from superconducting to normal conducting material can be

compared to different thermodynamic phases. The first theoretical explaination for

the Meissner-Ochsenfeld effect was established by H. and F. London, they assumed

that the supercurrent is carried by some conduction electrons in the metal without

friction, which can be called super-electrons. Their motion in a electric field can be

described by the following equation;

m
∂v

∂t
= −eE (29)

as previously defined in equation (3) the current density is.

Js = −ensv (30)

Where ns is the super-electron density. By partially differentiating equation (30)

with respect to time, the equation can be equated to (27) which when rearranged

gives Londons first equation;

∂Js

∂t
= −ens

∂v

∂t
(31)

hence.

∂Js

∂t
=
nse

2E

m
(32)

Equation (32) is Londons first equation. The rearrangement of this equation leads
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to the maxwells equation of iduction ∇× E = −∂B
∂t

, if the curl of equation (32) is

taken. Thus;

m

nse2
∇× ∂Js

∂t
= ∇× E (33)

substituting Maxwells equation;

m

nse2
∇× ∂Js

∂t
+
∂B

∂t
= 0 (34)

∂

∂t

(

m

nse2
∇× Js + B

)

= 0 (35)

H and F London therefore assumed that the brackets tended to zero, hence giving

the second London equation.

∇× Js = − m

nse2
B (36)

This equation only applies to superconductors. When equation (36) is combined

with the fourth maxwells equation; ∇ × B = µ0J, the equation for the magnetic

field in a superconductor can be achieved.

∆B − µ0nse
2

m
B = 0 (37)

Where; µ0nse
2

m
= 1

λ2

L

which is the london penetration depth. Therefore the magnetic

field can be rewritten;
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∆B − 1

λ2
L

B = 0 (38)

4.3 Vortex in the charged Bose liquid

In 1958 M.R Schafroth showed that below the ideal bose-gas condensation tempera-

ture, a gas of charged bosons demonstrated the Meissner-Ochsenfeld effect. Further

work was conducted by L.L Foldy, whilst working on the one-particle excitation

spectrum of the Coulomb Bose gas of high density. Foldy used the Bogoliubov

approach, working at zero temperature, leading to the elementary excitation of the

system, that has plasma oscillation energy characteristics for small momenta.

Charged Bose liquids are of high accademic interest and have been for a long time,

inspite of experimental understanding of the Bose-Einstein condensation. Trapped

ultra-cooled atoms make it possible to create ultracold plasma, by using lasers to

trap and cool neutral atoms to temperatures close to absolute zero. Ionisation oc-

curs using another laser, which gives the outer electrons enough energy to escape

the electrical attraction of the associated ion. There is also experimental evidence

for bosons with a charge of 2e in high temperature superconductors, physicists have

reported normal state gap properties and unusual upper critical fields. Charged bo-

son physics is also anticipated in a lattice of superconducting dots, provided suit-

able parameters are chosen so that single-electron tunnelling to be concealed. This

means that only cooper pairs can tunnel between the two regions, using Joseph-

son tunnelling which is similar to the model described in section (3). The model

as described in the previous section, does not describe a typical superconducting

junction as in Josephson junctions, instead it models an n-s junction. In order to
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model the transition in terms of bosons, the coulomb repulsion has to be taken

into consideration, or else the bosons would collapse into the lowest highly localised

state.

These advancements have brought the interest in charged boson liquids as an ele-

mentary reference system. A noninteracting gas of charged bosons cannot condense

at any fixed magnetic field due to the one-dimensional motion in the lowest lan-

dau band. Nethertheless below the upper critical field, interacting charged bosons,

have the ability to condense given that the collisions they make eliminate the one-

dimensional demonstration of the density of states. A vortex in a charge boson

liquid has a charged center and an electric field inside, whilst having a magnetic

field identical to the Abrikosov vortex.

The Abrikosov vortex comprises of a vortex of supercurrent in a type II supercon-

ductor. Supercurrent moves around the normal material core of the vortex, which

has a size comparable to the coherence length in Ginzberg-Landau theory ξ. The

supercurrent decays at a distance of about λL from the core, in type II supercon-

ductors, λL > ξ. The supercurrent in the core induces a magnetic field with the

total flux equal to a single flux Φ0, hence the Abrikosov vortex is sometimes called

a fluxon. The distribution of the magnetic field for a vortex can can be determined

using the equation;

B (r) =
Φ0

2πλL
K0

(

r

λL

)

≈
√

λL
r

exp

(

− r

λL

)

(39)

Where K0 is the McDonald function. When r tends to zero, the magnetic field will

diverge logarithmically, for real world problems the magnetic field becomes;
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B (0) ≈ Φ0

2πλ2
L

ln (k) (40)

where k = λL

ξ
is the Ginzberg-Landau parameter. In type II superconductors

k >
√

2.

The magnetic field penetrates the boundary in terms of the Abrikosov Vortices,

each vortex carries a string of magnetic field with a flux of Φ0. They are able to

form a lattice of vortices with an average vortex density equal approxiamtely to the

applied external magnetic field.

The following section of the report is a derivation of the one-dimensional macro-

scopic condensate wave-function, substituting the bogoliubov displacement trans-

formation into the equation of motion.

4.4 The Macroscopic condensate wavefunction

With the Vortex in charged bose liquid model, the supercurrent density, that pen-

etrates the interface between the normal conductor and the superconductor, is

modelled as charged bosons, with a long range coulomb interaction between them.

The Hamiltonian of the charged bosons on a homogenius background, with an ex-

ternal magnetic field and a vector potential A (r) can be shown by the following

equation.

H =

∫

drψ∗(r)

[

− (h̄∇− ieA/c)2

2m
− µ

]

ψ (r)

+
1

2

∫

dr

∫

dr′V (r − r′) [ψ∗ (r)ψ∗ (r′)ψ (r′)ψ (r) − 2nψ∗ (r)ψ (r)] (41)
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where m, e, n, µ are the mass, charge, average density and the chemical potential

of bosons, respectively. V (r) is the coulomb potential. Using this hamiltonian,

the equation of motion for the Heisenberg field operator ψ (r, t) can be derived.

Assuming the density n to be very high, so that the dimensionless coulomb potential

is small (repulsion is small), the occupation of a uniparticle state can be considered

similar to the ideal bose gas. One of the states stays macroscopically occupied at

absolute zero.

The expectation of the equation of motion < ψ (r, t) >≈ √
n in a homogeneous sys-

tem at T=0. Hence by substituting the Bogoliubov displacement transformation

into the equation of motion, and collecting all c-number terms of ψ0, the macro-

scopic condensate wavefunction can be derived from the following equation.

[

(h̄∇− ieA/c)
2

2m
+ µ

]

ψ (r) =

∫

dr′V (r − r′) [ψ∗

0 (r′)ψ0 (r′) − n]ψ0 (r) (42)

This equation, is different to the convensional Ginzberg-Landau and the Gross-

Pitavskii equations, that includes the order parameters in the Bardeen Cooper and

SchriefferCS and neutral superfluids. For this investigation, there is no external

field and no chemical potential by convention, hence A = 0 and µ = 0. Therefore

equation (40) can be rewritten as;

h̄2

2m
∇2ψ0 (r) =

∫

dr′V (r − r′) [ψ∗

0 (r′)ψ0 (r′) − n]ψ0 (r) (43)

Since ψ0 (r) does not depend on r’ it can be taken out of the integral. The equation

can be simplified further by applying a potential operator on the right handside

which will be denoted as Φ (r). Hence the equation becomes;
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h̄2

2m
∆ψ0 (r) = φ (r)ψ0 (r) (44)

Where φ (r) = V (r − r’ () 1 − n). The potential is the coulomb repulsion hence

V (r) = e2

4πǫ0r . However the coulomb potential is interms of the subtracton of two

vectors, r− r’, hence with a simple subtraction of 2 vectors the coulomb potential

changes to;

V (r − r′) =
e2

4πǫ0

1

|r − r′| (45)

Thus;

φ (r) =
e2

4πǫ0

1

|r − r′| (1 − n) (46)

Applying the wavefunction to φ (r) will give an equation for φ;

φ =

∫

dr′V (r − r′) [ψ∗

0 (r′)ψ0 (r′) − n] (47)

φ =

∫

dr′V (r − r′)
[

|ψ0 (r′)|2 − n
]

(48)

Taking the laplacian of φ, the following is true;

∆φ (r) =

∫

dr′ (∆rV (r − r′))
[

|ψ0 (r′)|2 − n
]

(49)

The coulomb repulsion becomes quite interesting in this equation, because; us-

ing equations from electromagnetic field theory; −∇V (r) = E which leads to
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∇E = ρ = eδ (r) hence, ∆rV (r − r’) = ∆r−r′V (r − r’) = eδ (r − r’). Due

to the fact that only the one-dimensional case is being considered, ∆V (r − r’)

changes to ∆V (x − x’) = eδ (x − x’). Therefore using the delta function identity;

∫

δ (x− a) f (x) dx = f (a). ∆φ can be rewritten.

∆φ (x) =

∫

dx′δ (x − x′)
[

|ψ0 (x′)|2 − n
]

(50)

Using the delta function equality;

∫

δ (x − x′) f (x) = f (x′) (51)

we get the equation;

∆φ = −
(

|ψ0 (x′)|2 − n
)

(52)

From equations (44) and (52) the following two equations can be derived;

∆ψ0 = φψ0 (53)

∆φ = n− |ψ0|2 (54)

Where ψ0 = nf , hence f = ψ0

n
. Therefore we can achieve solutions for the macro-

scopic condensate wavefunction.

d2f

dx2
= φ (x) f (x) (55)

d2

dx2
φ = 1 − |f (x)|2 if x < 0 (56)
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d2

dx2
φ = − |f (x)|2 if x > 0 (57)

These three equations portray the condensate wavefunctions in different regions

the two last equations show what happens when x < 0 and when x > 0, which

give a good representation for the density distribution of bosons in the supercon-

ducting material and in the normal conducting material. Unfortunately current

mathematical abilities prohibit the solutions to these differential equations.

5 Summary

In summation for the Theoretical investigation of the proximity effects of High

temperature superconductors. The brief understanding of works done by Ginzburg,

Landau and London was achieved using available resources. The derivation of

the Ginzburg-Landau superconducting current was obtained and the reduction of

the free energy density was understood to give Ginzburg Landau’s first equation.

A brief comprehension of the significance of the London penetration depth was

transcribed using literature.

A model for the understanding of the penetration depth was worked through, using

the finite step potential Quantum mechanical problem, giving quantitative expres-

sions for the Refelection and Transmission Coefficients in terms of the wave vector.

These coefficients provide a way to understand what happens, when the wavefunc-

tion penetrates the potential barrier. This gives a crude model, which describes

what is going on at the proximity between the superconducting material and the

normal conducting material.
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To deepen the understanding of what happens at the interface of the two mate-

rials, the Meissner-Ochsenfeld effect was explained. Also an understanding into

the ideas of Bose-Einstein condensation was conducting to lead into the study of

the Abrikosov vortex and the macroscopic condensate wavefunction, which repre-

sents the density distribution of bosons in the two media. Three equations were

derived using an adaption to the Gross-Pitaevskii type equations and also the Bo-

goliubov transformation, these describe the macroscopic wavefuncton for the one-

dimensional no external field case. However, the resulting equations, make it ex-

tremely difficult to get a more comprehensive answer. This is due to the complexity

of the resulting non-linear differential equations. Hopefully further studies will be

conducted to try and find quantitative answers for the differential equations I de-

rived. Although the understanding of the proximity effect is increasing all the time,

this is a problem for the future theoretical physicist.
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