
Proof that light rays can follow a purely radial

line in FLRW

The FLRW metric centred at S gives the following formula for the line element:

ds2 = dt2 − a(t)2[ dr2

1−kr2
+ r2(dθ2 + sin2θ dφ2)] [7]

t, r, θ and φ are the ’comoving coordinates’, corresponding to indices 0,1,2,3.
r is often denoted by χ, but here we use r. a(t) is the cosmic scale parameter at
cosmic time t. The values of the metric components in this coordinate system
are:

g00 = 1; g11 = − a(t)2

1−kr2
; g22 = −a(t)2r2; g33 = −a(t)2r2sin2θ [7a]

All other components (the off-diagonal ones) are zero. We will only need to
use the first two of the four nonzero components. Since the metric is diagonal
in the comoving coordinates, we also have the following inverse components:

g00 = 1; g11 = − 1−kr2

a(t)2 ; g22 and g33 are not used. [7b]

Let S be the spacetime location [0, 0, , ] in the FLRW coordinate system.
Let Λ be a curve starting at S and extending radially in a way that is lightlike
along its length, and which has constant θ and φ. We postulate that there is
a geodesic satisfying these criteria, which will be a lightlike geodesic and hence
can be the path of a light ray emanating from S.

Parameterise Λ by λ : R → Λ.
Along Λ we have, from [7], since θ and φ do not change, ds = 0, and the

curve is lightlike: dr√
1−kr2

= dt
a(t) [10]

The sign is positive because r increases with t (recall that r is radial distance
from S).

Now we need to find the equation for λ, if any, that satisfies the requirements
for a geodesic, ie the geodesic equation, written in terms of a parameter u.

The geodesic equation is: d2xi

du2 + Γi
kl

dxk

du
dxl

du
= 0 [11 - see Schutz 6.51]

And we must show that, for some function λ, the geodesic equation is satisfied
for each of the four cases i = 0, 1, 2, 3. We will use the case i = 0 to identify
the function and then show that that function satisfies the geodesic equations
for i = 1, 2, 3.

First consider the case i = 0.
We calculate the Christoffel symbol’s value for i=0 as follows:

Γ0
kl =

1

2
g0β(gβk,l + gβl,k − gkl,β) [11a - see Schutz 6.32]

=
1

2
g00(g0k,l + g0l,k − gkl,0) [since g0β = 0 unless β = 0]

=
1

2
g00(g00,l δ

0
k + g00,k δ0l − gkl,0)

= −1

2
gkl,0[since g00 = g00 = 1, which is constant]
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Hence [11] for i=0 becomes:

0 =
d2t

du2
− 1

2
gkl,0

dxk

du

dxl

du

=
d2t

du2
− 1

2
g00,0(

dt

du
)2 − 1

2
g11,0(

dr

du
)2 [since

dθ

du
and

dφ

du
must be zero]

=
d2t

du2
− 1

2

∂(−a(t)2

1−kr2
)

∂t
(
dr

du
)2 [since g00 is constant at 1]

=
d2t

du2
+ (

dr

du
)2
a(t)a′(t)

1− kr2
[12]

=
d2t

du2
+ (

dr

dt
)2(

dt

du
)2
a(t)a′(t)

1− kr2

=
d2t

du2
+

1− kr2

a(t)2
(
dt

du
)2
a(t)a′(t)

1− kr2
[by 10]

=
d2t

du2
+ (

dt

du
)2
a′(t)

a(t)

=
1

a(t)

d(a(t) dt
du

)

du

Hence, as a(t) 6= 0 we have 0 =
d(a(t) dt

du
)

du
, whence:

a(t) dt
du

= A for some constant A. [13]
Hence:

dr

du
=

dr

dt

dt

du

=
A

a(t)

√
1− kr2

a(t)
[by 13 and 10]

=
A
√
1− kr2

a(t)2
[14]

This enables u to be determined as a function of r (as the light moves from S to
O) and hence of t and, by inverting these, we get a definition of λ as a function
of u.
We can choose any positive real value we like for A. Choosing A = 1 would
be simplest, as it would make it disappear from the following equations. But
we’ll leave it in there for now, to preserve generality. For any given value of A,
we can define a point O = λ(1). Then, if we (without loss of generality) set
λ(0) = S and integrate [13], we obtain:

A =
∫ 1

0 A du =
∫ t(O)

t(S) a(t)dt [15]

Writing the above equations for r and t in terms of λ to make things clearer,
we get:
dλ0

du
= A

a(t) ,
dλ1

du
= A

√
1−kr2

a(t)2 , dλ2

du
= dλ3

du
= 0

Having identified the function λ as the solution to the geodesic equation [11] for
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i = 0, we now need to check that it satisfies the geodesic equation for i = 1, 2, 3.
First, consider the case i = 1 (r).

We calculate the Christoffel symbol’s value for i=1 as follows:

Γ1
kl =

1

2
g1β(gβk,l + gβl,k − gkl,β) [11a - see Schutz 6.32]

=
1

2
g11(g1k,l + g1l,k − gkl,1) [since g1β = 1 unless β = 1]

=
1

2
g11(g11,l δ

1
k + g11,k δ1l − gkl,1)

Hence [11] for i=1 becomes:

0 = d2r
du2 + 1

2g
11(g11,l δ

1
k + g11,k δ1l − gkl,1)

dxk

du
dxl

du

= d2r
du2+

1
2g

11(2g11,k
dr
du

dxk

du
−g00,1(

dt
du

)2−g11,1(
dr
du

)2) [since dθ
du

and dφ
du

must be zero]

= d2r
du2 + 1

2g
11(2g11,0

dr
du

dt
du

+ 2g11,1(
dr
du

)2 − g00,1(
dt
du

)2 − g11,1(
dr
du

)2)

= d2r
du2 + 1

2g
11(2g11,0

dr
du

dt
du

+ g11,1(
dr
du
)2) [since g00 = 1 is constant]

= d
du
(Aa(u)−2

√

1− kr(u)2) + g11g11,0
dr
du

dt
du

+ 1
2g

11g11,1(
dr
du

)2

= (−2Aa′(t) dt
du

a−3
√

1− kr(u)2+ 1
2
−2krAa−2

√
1−kr2

dr
du

)− 1−kr2

a2 ( ∂
∂t
(−a(t)2

1−kr2
) dr
du

dt
du

+ 1
2

∂
∂r
(−a(t)2

1−kr2
)( dr

du
)2)

= −A
√
1−kr2

a3 (2a′(t) dt
du

+ kra
1−kr2

dr
du
) + 1−kr2

a2 (2a(t)a
′(t)

1−kr2
dr
du

dt
du

+ 1
2 (

−2kr(−1)a2

(1−kr2)2 )( dr
du
)2)

= −A
√
1−kr2

a3 (2a′(t)A
a
+ kra

1−kr2
A
√
1−kr2

a2 )+ 1
a2 (2a(t)a

′(t)A
√
1−kr2

a2

A
a
+ kra2

1−kr2
(A

√
1−kr2

a2 )2)

= −A2
√
1−kr2

a4 (2a′(t) + kr√
1−kr2

− 2a′(t)− kr√
1−kr2

)

= 0 as required. So the geodesic equation for i = 1 is satisfied by the λ we chose.

Now check for i = 2 (θ)

We calculate the Christoffel symbol’s value for i=2 as follows:

Γ2
kl =

1

2
g2β(gβk,l + gβl,k − gkl,β) [11a - see Schutz 6.32]

=
1

2
g22(g2k,l + g2l,k − gkl,2) [since g1β = 1 unless β = 1]

=
1

2
g22(g22,l δ

2
k + g22,k δ2l − gkl,2)

Now if {k, l} ⊂ {0, 1} this is zero because δ2k = δ2l = 0 and gkl does not depend
on θ.

Hence [11] for i=2 becomes:
d2θ
du2 = −Γ2

kl
dxk

du
dxl

du

and at least one of k and l must be in {2, 3} but then at least one of dxk

du
and dxl

du

must be zero. So the geodesic requirement for θ becomes d2θ
du2 = 0, which is sat-

isfied because θ is constant along Λ by definition.

To check for i = 3 we can use the same argument as we did for i = 2 to
show that the geodesic requirement for φ is satisfied.
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Hence, there exists a geodesic that follows the path Λ and is lightlike. Hence
a light ray can traverse that path.

Corollary - Parallel Transport along the radial ray

Now we want to prove a more general result, that any vector ~VS ∈ TSM with
zero components V θ

S and V
φ
S will maintain those zero components upon parallel

transport along the lightlike radial geodesic Λ.
The parallel transport equation is:
dxk

du
∂vi

∂xk + Γi
kl

dxk

du
dvl

du
= 0 [30 - see Schutz 6.48]

From the above, we know that dx2

du
= dx3

du
= 0 so for i = 2 this equation becomes:

dt
du

∂V 2

dt
+ dr

du
∂V 2

dr
+ Γ2

0l
dt
du

dvl

du
+ Γ2

1l
dr
du

dvl

du
= 0

Next we use the fact that Γ2
00 = Γ2

01 = 0 to transform this equation to:
dV 2

du
+ Γ2

02
dt
du

dV 2

du
+ Γ2

03
dt
du

dV 3

du
+ Γ2

12
dr
du

dV 2

du
+ Γ2

13
dr
du

dV 3

du
= 0

It is easy to find the following values of Christoffel symbols: Γθ
tφ = Γθ

rφ =

0,Γθ
tθ = a′(t)

a
,Γθ

rθ = 1
r
. Inserting these in the parallel transport equation for θ

we get dV 2

du
(1 + a′(t)

a
dt
du

+ 1
r
dr
du

) = 0.

Substituting in this for dt
du

and dr
du

gives:
dV 2

du
(1+ Aa′(t)

a2 + A
√
1−kr2

a2r
) = 0. All components of the second factor are positive

with the possible exception of a′(t), which is positive as long as the universe is

expanding. So in an expanding universe it must be the case that dV 2

du
= 0. This

result is probably also true in a non-expanding universe, but proving that is a
little more work, which we do not undertake here.

We need to prove the same result for dV 3

du
. The results for Christoffel symbols

are analogous:

Γφ
tθ = Γφ

rθ = 0,Γφ
tφ = a′(t)

a
,Γφ

rφ = 1
r
. We can then run through the same

argument as we used for dV 2

du
but with θ and φ everywhere swapped. That gives

the result that dV 3

du
= 0.

Hence we can conclude that the θ and φ components of ~VS remain zero as
it is parallel transported along the radial null geodesic.
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