
THE SPHERICAL PENDULUM

DERIVING THE EQUATIONS OF MOTION

The spherical pendulum is similar to the simple pendulum, but moves in 3-dimensional space.
This means we need to introduce a new variable ϕ in order to describe the rotation of the
pendulum around the z -axis. We can then describe the position of the pendulum in reference to
the variables θ and ϕ , and so the system has 2 degrees of freedom.

Figure 1: The Spherical Pendulum

In order to describe this system with the new variable ϕ , we use spherical polar coordinates:

)cos()sin(ϕθlx =
)sin()sin(ϕθly =

)cos(θlz =

Now, as with the double pendulum, we need to find the Lagrangian of the system.

Remember that:

UTL −=

Where (in this case):

()222

2
zyx

m
T ��� ++=

mgzU −=

Thus in order to find T , we start by calculating:

)sin(sin()cos()cos(ϕθϕϕθθ)−= ��� llx

)cos()sin()sin()cos(ϕθϕϕθθ ��� lly +=

)sin(θθ�� lz −=

So:

)(sin)(sin)cos()sin()cos()sin(2)(cos)(cos 2222222222 ϕθϕϕϕθθϕθϕθθ ����� lllx +−=

)(cos)(sin)cos()sin()cos()sin(2)(sin)(cos 2222222222 ϕθϕϕϕθθϕθϕθθ ����� llly ++=

)(sin 2222 θθ�� lz =

And therefore:

�
�
�
�

�

�

�
�
�
�

�

�

+++

++−

=

)(sin

)(cos)(sin)cos()sin()cos()sin(2)(sin)(cos

)(sin)(sin)cos()sin()cos()sin(2)(cos)(cos

2
222

222222222

222222222

θθ
ϕθϕϕϕθθϕθϕθθ
ϕθϕϕϕθθϕθϕθθ

�

����

����

l

lll

lll
m

T

Simplifying we get:

())(sin
2

22222 θϕθ �� ll
m

T +=

And we know:

)cos(θmglmgzU −=−=

So the Lagrangian is:

 ())cos()(sin
2

22222 θθϕθ mglll
m

L ++= �� (1)

Using the property (1) from the documentation for the double pendulum, we can solve for θ�� by
using:

0=
∂
∂−�

�

�
�
�

�

∂
∂

θθ
LL

dt
d

�

Where:

)sin()cos()sin(22 θθθϕ
θ

mglml
L −=

∂
∂

�

θ
θ

�
�

2ml
L =

∂
∂

θ
θ

��
�

2ml
L

dt
d =�

�

�
�
�

�

∂
∂

We get:

0)sin()cos()sin(222 =+− θθθϕθ mglmlml ���

And rearranging for θ�� gives:

l

gl)sin()cos()sin(2 θθθϕθ −=
�

�� (2)

Similarly, in order to find the equation we need for ϕ�� we use:

0=
∂
∂−��

�

�
��
�

�

∂
∂

ϕϕ
LL

dt
d

�

Where:

0=
∂
∂
ϕ
L

)(sin 22 θϕ
ϕ

ml
L

�
�

=
∂
∂

)cos()sin(2)(sin 222 θθθϕθϕ
ϕ

����
�

mlml
L

dt
d +=��

�

�
��
�

�

∂
∂

So:

0)cos()sin(2)(sin 222 =+ θθθϕθϕ ���� mlml

And rearranging for ϕ�� gives:

)sin(

)cos(2
θ

θθϕϕ
��

��
−= (3)

PROGRAMMING THE JAVA APPLET

I realised at this point that there could well be a problem with using these equations in the applet
code even after I had integrated them numerically – the ‘)sin(θ ’ in the denominator of the
equation for ϕ�� would mean that ϕ�� would tend to infinity whenever πθ n≈ .

I tried implementing the geometric method to integrate equations (2) and (3) and programmed it
into a basic applet to see exactly how it would react; and as predicted, whenever the angle θ
neared πn , ϕ� tended to infinity, and obviously the motion of the pendulum was ruined.

To double check that this was not just a problem with the geometric integration method I wrote a
small program to calculate the fourth-order Runge-Kutta method within the applet. However, as
could be expected, this made little difference to the pendulum’s behaviour.

The next possible solution I tried was using ‘if’ statements within the applet code to ignore values
of θ that were close to πn . I found that although it was possible to stop the pendulum from
swinging wildly by doing this, the motion of the pendulum was erratic due to the alterations of
the way the motion was calculated.

Another solution I tried involved using the conservation of angular momentum together with a
new half-step numerical integration method. The necessary inputs for this new method are found
by using the following properties (see José and Saletan, 2002):

i

i q
L

P
�∂

∂= (4)

i

i q
L

P
∂
∂=� (5)

Where iP is the generalised momentum with respect to iq .

Thus, the angular momentum ϕP is found by using the Lagrangian (1) together with the equation

(4):

)(sin 22 θϕ
ϕϕ �
�

ml
L

P =
∂
∂= (6)

Also note that using equation (5) it can be confirmed that ϕP is constant:

0=ϕP�

Next we find an equation for θP using (4):

θ
θθ

�
�

2ml
L

P =
∂
∂=

So therefore:

2ml

Pθθ =� (7)

Finally we find θP� using (5):

)sin()cos()sin(22 θθθϕ
θθ mglml
L

P −=
∂
∂= �� (8)

The next step is to rearrange equation (6) to find ϕ� :

)(sin 22 θ

ϕ ϕ

ml

P
=� (9)

Then we substitute equation (9) into equation (8):

)sin(
)(sin

)cos()sin(
442

22

θ
θ

θθϕ
θ mgl

lm

mlP
P −=�

Simplifying:

)sin(
)(sin

)cos(
32

2

θ
θ
θϕ

θ mgl
ml

P
P −=� (10)

Using the equations (7), (9), and (10), I created an applet that used the geometric integration
method, but using half-steps for θP (see Leimkuhler and Reich (2000), unpublished), and solving

a set of first order ordinary differential equations as opposed to the second order equations I had
been integrating up until this point. This method is shown over the page.

�
�

�

�

�
�

�

�
−∆+=+)sin(

)(sin

)cos(

2 32

2

2
1

n
n

n
nn mgl

ml

Pt
PP θ

θ
θϕ

θθ

��
�

�

�

��
�

�

�
∆+=

+
+

2

2
1

1

ml
P

t
n

nn θθθ

�
�

�

�

�
�

�

�
−∆+= +

+

+
++)sin(

)(sin

)cos(

2
1

132

12

2
1

1 n
n

n
nn mgl

ml

Pt
PP θ

θ
θϕ

θθ

��
�

�
��
�

�
∆+= +

+

)(sin 122
1

n
nn

ml

P
t

θ
ϕϕ ϕ

Since ϕP is a constant, it was possible to calculate it from the initial conditions (θ at time 0=t ,

and ϕ� at time 0=t) before the numerical integration was employed in the code.

Whilst attempting to solve the problem with the numerical integration, I was also working to
improve the 3-dimensional graphical aspects of the applet.

I began by using the same program structure as the 2 previous applets – solving for θ and ϕ
first; then calculating the coordinates of the bob; and finally plotting them.

The obvious fault with using this method as before, was that I had originally only taken 2
dimensions into account, so there was no sense of perspective.

I decided to tackle the problem of perspective by thinking about how a 3-dimensional pendulum
would change as you looked at it – both the length of the rod and the size of the bob would alter
dynamically depending on the angle at which you are looking at it, and how far away the bob is
from your eye.

Using the spherical polar coordinate system to calculate the position of the bob solved the
problem of the dynamically changing rod length:

)cos()sin(' ϕθlx =
)sin()sin(' ϕθly = (11)

)cos(' θlz =

Note that 'l denotes the maximum visual length of the rod, and is measured in pixels.

By using this system, it was possible to plot the pendulum in the zx − plane (i.e. plot x against
z , and imagine the y -axis coming out of the computer screen) and the visual length of the
pendulum rod would vary according to the coordinate system.

Since the pendulum was plotted in the zx − plane, only the y coordinate of the bob had any
effect on how far away from the user the bob should appear. Thus it made sense to create a linear
function of y to determine the visual size of the bob – the larger the y -value, the closer to the
user the bob is, and so the larger the bob is, and vice versa.

Unfortunately, due to the way a circle (used to draw the bob) is plotted in Java, it was impossible
to create such a generalised function. The circle size is determined by an integer pixel radius, and
since the normal radius of the bob was only 5 pixels to begin with, it did not leave much scope
for altering the size of the bob.

After some brief investigation, it became apparent that in order to keep the size of the bob
sensible, 4 different bob radii could be used. Thus, I created 4 areas of y , with the idea that the
bob would change size each time it moved into a different area.

The next step was to determine which area the bob was in. Obviously use of the y -coordinate of
the bob was needed to do this, and since the maximum value of y occurs when

1)sin()sin(== ϕθ (see equation (11)), then the maximum value of y is 'lyMAX = . Similarly,

the minimum value of y is 'lyMIN −= . Therefore, the range of the y -coordinate of the bob is

'' lyl −≥≥ .

Since there are 4 possible sizes for the bob, it made sense to split this range into 4 to give the
aforementioned ‘areas’ for each bob size:

Range
2
'

'
l

yl ≤≤ 0
2
' ≤≤ y

l

2
'

0
l

y −≤< '
2
'

ly
l −≤<−

Area 1 2 3 4
Figure 2: Ranges of y and their Corresponding Areas

It is now possible to see that when the y -coordinate of the bob is in Area 1, the bob is at its
closest to the user and so the radius of the bob should be at its maximum value. Similarly, when
the bob is in Area 4, the bob is at its farthest from the user and so the radius of the bob should be
at its minimum. Using this logic, it was simple to create a function to use the y -coordinate of the
bob (obtained by using equation (11)) to detect which area the bob was in, and set the radius of
the bob to the appropriate value.

This function gave the applet the illusion of perspective, but I found it was still difficult to
visualise exactly what the pendulum was doing – it was very easy to become disorientated.

To solve this problem I created an ‘if’ statement to determine whether the y -coordinate was
positive or negative; and then plotted a set of axes onto the applet. The axes were plotted behind
the pendulum if the y -coordinate was positive, or in front of the pendulum if it was negative.
This gave the impression that the pendulum was moving in front of or behind the axes dependent
on the y -coordinate.

With this done, it was easy to visualise the motion of the pendulum.

