
Chapter 1

Problem 1.1

Use Gauss’ theorem [and (1.21) if necessary] to prove the following:

(a) Any excess charge placed on a conductor must lie entirely on its surface.
(A conductor by definition contains charges capable of moving freely under
the action of applied electric fields.)

(b) A closed, hollow conductor shields its interior from fields due to charges
outside, but does not shield its exterior from the fields due to charges
placed inside it.

(c) The electric field at the surface of a conductor is normal to the surface
and has a magnitude σ/ε0, where σ is the charge density per unit area on
the surface.

Part a

Inside the conductor, we must have E = 0, otherwise the charges inside would
move. Application of Gauss’ law

∮

S

E · n da =
1

ε0

∫

V

ρ(x) d3x

with a surface S just inside the surface of V yields ρ(x)=0 so excess charge must
lie entirely on the surface of a conductor.

Part b

With a charge outside the conductor, one can construct a surface S completely
inside the conducting region and thus containing the hollow part. There is
not electric flux through S and thus the inner surface always has zero surface
charge density when no charge is contained within the hollow part. The effect of
the external charge is to induce a non-zero surface charge density on the outer
conductor surface in order to maintain E=0 inside the conductor. Since no net
charge resides on the inner surface, E is still zero in the hollow part. Thus the
conductor shields its entire interior from the fields of the external charge.

If on the other hand a charge is placed within the hollow part, a correspond-
ing charge of opposite sign is induced on the inner surface to keep E=0 in the
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Figure 1.1: Integration path used in 1.1c

conducting region. The charge induced on the inner surface obviously has to
come from the conductor itself, so a total charge equal to the charge in the
hollow part is induced on the outer surface. The fields from charges inside the
conductor are thus still present outside the conductor.

Part c

We prove the first part by the use of (1.21)

∮

E · dl = 0.

We use the integration path shown in Fig. 1.1. Inside the conductor E=0 so

0 =

∮

E · dl = −∆l · 0 +

∫

↑

+E · ∆l +

∫

↓

where the two integrals tend to zero as their path lengths are diminished. Any
field E at the surface can be divided into components parallel and perpendicular
to the surface: E = E⊥ +E‖ and since ∆l is parallel to the surface, E⊥ · ∆l=0
and we are left with E‖=0 and we have shown that the electric field is normal
to the surface.

For the second part, introduce a Gauss box with on end inside the conductor
and the other in vacuum. Again E=0 inside the conductor and we just showed
that the electric field at the surface is normal to the surface. If we let the
thickness across the surface tend to zero, there is no contribution to the electric
flux through the sides of the box and the only contribution is from the box
surface just outside the conductor surface. Thus from Gauss’ law

E⊥da =
σ

ε0
da

and E = σ/ε0 n.
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Problem 1.2

The Dirac delta function in three dimensions can be taken as the improper limit
as α→ 0 of the Gaussian function

D(α; x, y, z) = (2π)−3/2α−3 exp

[

− 1

2α2
(x2 + y2 + z2)

]

Consider a general orthogonal coordinate system specified by the surfaces u=
constant, v= constant, w= constant, with length elements du/U , dv/V , dw/W
in the three perpendicular directions. Show that

δ(x − x′) = δ(u− u′) δ(v − v′) δ(w − w′) · UVW

by considering the limit of the Gaussian above. Note that as α → 0 only the
infinitesimal length element need be used for the distance between the points in
the exponent.

Solution

I’m sorry to say that this problem is the only problem in Chapter 1 I have not
been able to solve. If any of you mathematician out there can present me a
simple solution, I would be most grateful.
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Problem 1.3

Using Dirac delta function in the appropriate coordinates, express the following
charge distributions as three-dimensional charge densities ρ(x)

(a) In spherical coordinates, a charge Q uniformly distributed over a spherical
shell of radius R.

(b) In cylindrical coordinates, a charge λ per unit length uniformly distributed
over a cylindrical surface of radius b.

(c) In cylindrical coordinates, a charge Q spread uniformly over a flat circular
disc of negligible thickness and radius R.

(d) The same as part (c), but using spherical coordinates.

Part a

We work in spherical coordinates (r, θ, φ) and volume element d3x = r2d(cos θ) dφ dr.
We can write charge density as

ρ(x) = f(x)δ(r −R) = f(r)δ(r −R) = f(R)δ(r −R)

where the factor f is still to be determined. An integration over all space should
give the total charge Q:

∫

ρ(x) d3x = f(R)

∫

r2dr dΩ δ(r −R) = 4πf(R)R2 = Q ⇒

f(R) =
Q

4πR2
⇒

ρ(x) =
Q

4πR2
δ(r −R)

Part b

Cylindrical coordinates (r, φ, z) and volume element d3x = ρ dρ dφ dz, see Fig. 1.2.
We consider an arbitrary length L along the z-axis.

ρ(x) = f(x)δ(ρ− b) = f(b)δ(ρ− b)
∫

ρ(x) d3x = f(b)

∫

ρ dρ dφ dz δ(ρ− b) = 2πbLf(b) = λL ⇒

f(b) =
λ

2πb
⇒

ρ(x) =
λ

2πb
δ(ρ− b)

Part c

Cylindrical coordinates (r, φ, z) and volume element d3x = ρ dρ dφ dz.
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Figure 1.2: Definition of variables

ρ(x) = f(R)δ(z)Θ(R− ρ)
∫

ρ(x) d3x = f(R)

∫

ρ dρ dφ dz δ(z)Θ(R− ρ) = 2πf(R)

∫

ρ dρΘ(R− ρ)

∫

dzδ(z)

= 2πf(R)

[

ρ2

2

]R

0

= 2πf(R)
R2

2
= Q ⇒

f(R) =
Q

πR2
⇒

ρ(x) =
Q

πR2
δ(z)Θ(R− ρ)

Part d

(r, θ, ρ), d3x = r2dr d(cos θ) dφ. This is the only example where the factor f will
depend on one of the independent variables, r.

ρ(x) = f(x)δ(cos θ)Θ(R− r) = f(r)δ(cos θ)Θ(R− r)
∫

ρ(x) d3x =

∫

f(r) δ(cos θ) d(cos θ)Θ(R− r)r2dr dφ

The δ-function kills the d(cos θ) and the step function defines the limits on
the r-integration to 0 ≤ r ≤ R.

∫

ρ(x) d3x =

∫ R

0

f(r)r2 dr dφ =

∫ R

0

[f(r)r] r dr dφ

Now, r dr dφ is an area element. Since the surface charge density is constant,
the factor multiplying the area element must be a constant. Thus f(r)r can be
moved outside the integration.

∫

ρ(x) d3x = 2πf(r)r

∫ R

0

r dr = πR2f(r)r = Q ⇒

f(r) =
Q

πR2

1

r
⇒

ρ(x) =
Q

πR2

1

r
δ(cos θ)Θ(R− r)
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Problem 1.4

Each of three charged spheres of radius a, one conducting, one having a uniform
charge density within its volume, and one having a spherically symmetric charge
density that varies radially as rn (n > −3), has a total charge Q. Use Gauss’s
theorem to obtain the electric fields both inside and outside each sphere. Sketch
the behavior of the fields as a function of radius for the first two spheres, and
for the third with n = −2,+2.

Solution

In all cases, the electric field is radially symmetric so E = E(r)er. Furthermore,
since all charge is found at r ≤ a, the electric field behavior for r > a is the
same for all cases, namely the field from a point charge at the origin.

(i) The sphere is conductive so Q resides on the surface only, see Sec. 1a, and
σ = Q/4πa2. According to Gauss’s theorem, E makes a sudden jump at
r = a and drops off as if Q were centered at the origin. Thus

E(r) =
Q

4πε0r2
Θ(r − a)

(ii) Here Q is distributed evenly in the sphere so the constant space charge
density is ρ = Q/ 4

3
πa3. Application of Gauss’s theorem for r ≤ a yields

E(r) · 4πr2 =
Q

4

3
πa3ε0

· 4

3
πr3 =

Q

ε0

( r

a

)3

⇒

E(r) =
Q

4πε0a3
r

The behavior for r > a has already been mentioned above.

(iii) Application of Gauss’s theorem for r ≤ a yields

E(r) · 4πr2 =
4π

ε0

∫ r

0

r′2 ·Krn dr′ =
4πK

ε0

rn+3

n+ 3
⇒

E(r) =
K

ε0(n+ 3)
rn+1

The constant K can be determined easily since the volume integral over
all space of the charge distribution is the total charge Q. Plugging in the
expression for K gives

E(r) =
Q

4πε0r2

( r

a

)n+3

Fig. 1.3 shows sketches of the electric fields.
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Figure 1.3: Sketch of the electric field behavior of the charge distribution in
Problem 1.4. The constant C is defined as C = Q

4πε0a2

Problem 1.5

The time-averaged potential of a neutral hydrogen atom is given by

Φ =
q

4πε0

e−αr

r

(

1 +
αr

2

)

where q is the magnitude of the electronic charge, and α−1 = a0/2, a0 being
the Bohr radius. Find the distribution of charge (both continuous and discrete)
that will give this potential and interpret your result physically.

Solution

Obviously we have to employ Poisson’s equation (1.28) here. Φ only depends
on r so we need the first term in the Laplacian in spherical coordinates (look
inside the back cover). Note that the radial Laplacian can be written in two
ways:

∇2ψ =
1

r2
∂

∂r

(

r2
∂ψ

∂r

)

=
1

r

∂2

∂r2
(rψ)

For some reason, only the first version automatically gives you the discrete
charge (the nucleus). It comes about when you manage to make one term look
like ∇2(1/r), which equals −4πδ(x). The second version is much easier, but you
have to add a δ-function after doing the derivative. Here goes:

∇2Φ =
q

4πε0

1

r2
∂

∂r

[

r2
(

−αe
−αr

r
+ e−αr ∂

∂r

(

1

r

)

− α2

2
e−αr

)]

=
q

4πε0

1

r2

[

α2re−αr − αe−αr +
∂

∂r

(

r2
∂

∂r

(

1

r

))

e−αr

− αe−αrr2
(

− 1

r2

)

− α2

2
2re−αr +

α3

2
r2e−αr

]
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The second term in the square bracket is the −4πδ(x) and since it only con-
tributes for r = 0, the factor multiplying it is just unity.

∇2Φ =
q

4πε0

[

α3

2
e−αr − 4πδ(x)

]

= − 1

ε0

[

qδ(x) − qα3

8π
e−αr

]

⇒

ρ(x) = qδ(x) − qα3

8π
e−αr

If you try to write up the wave function for a hydrogen s-state and form the
squared norm, you will find the second term is indeed the corresponding charge
density.
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Problem 1.6

A simple capacitor is a device formed by two insulated conductors adjacent to
each other. If equal and opposite charges are placed on the conductors, there will
be a certain difference of potential between them. The ratio of the magnitude
of the charge on one conductor to the magnitude of the potential difference is
called the capacitance (in SI units it is measured in farads). Using Gauss’s law,
calculate the capacitance of

(a) two large, flat, conducting sheets of area A, separated by a small distance
d;

(b) two concentric conducting spheres with radii a, b (b > a);

(c) two concentric conducting cylinders of length L, large compared to their
radii a, b (b > a).

(d) What is the inner diameter of the outer conductor in an air-filled coaxial
cable whose center conductor is a cylindrical wire of diameter 1 mm and
whose capacitance is 3 × 10−11 F/m? 3 × 10−12 F/m?

Solution

The technique here is to first find the behavior of E as a function of Q, the mag-
nitude of the charge on either conductor, and the geometric quantities describing
the system from Gauss’s law (1.11):

∮

S

E · n da =
1

ε0

∫

V

ρ(x) d3x

From this, one can find the potential difference V between the two conductors
(1.20):

∫ B

A

E · dl = −(ΦB − ΦA)

Part a

Use a Gauss box with one end inside the conductor where E = 0 (this is the
same as Problem 1.1c) and we get E = Q/Aε0. Then the potential difference is
simply V = Ed = Qd/Aε0 and capacitance

C =
Q

V
=
ε0A

d

Part b

Here the electric field is only non-zero between the two shells

E(r) =
Q

4πε0

1

r2

V = −
∫ a

b

E dr =
Q

4πε0

(

1

a
− 1

b

)

C =
Q

V
= 4πε0

(

1

a
− 1

b

)−1
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Part c

E(r) =
Q

2πε0L

1

r

V = −
∫ a

b

E dr =
Q

2πε0L
ln
b

a

C =
Q

V
= 2πε0L

(

ln
b

a

)−1

Part d

With 2a = 1 mm and specified values for C/L, we can find 2b from

2b = 2a exp

(

2πε0
C/L

)

C/L = 3 × 10−11 F/m: 2b = 6.4 mm
C/L = 3 × 10−12 F/m: 2b = 113 km!
This final example is probably included to demonstrate the difficulties in chang-
ing the capacitance by geometric means only.
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a1
a2

x

Q -Q

0 d

d-x

Figure 1.4: The situation in Problem 1.7. Notice that d� a1, a2.

Problem 1.7

Two long, cylindrical conductors of radii a1 and a2 are parallel and separated
by a distance d, which is large compared with either radius. Show that the
capacitance per unit length is given approximately by

C w πε0

(

ln
d

a

)−1

where a is the geometrical mean of the two radii.
Approximately what gauge wire (state diameter in millimeters) would be

necessary to make a two-wire transmission line with a capacitance of 1.2 ×
10−11 F/m if the separation of the wires was 0.5 cm? 1.5 cm? 5.0 cm?

Solution

The plan of attack is similar to that of the preceding solution. First, the geo-
metrical mean G is defined as G = n

√
a1a2 . . . an so here we have a = (a1a2)

1/2.
The configuration of conductors i seen in Fig. 1.4 The electric field in all space
in easily found from Gauss’s law:

E(x) =
1

2πε0L

(

Q

x
− −Q
d− x

)

We take E(x) to be positive in the direction of the axis. Next we find the
potential V :

V = −
∫ a1

d−a2

Q

2πε0L

(

1

x
+

1

d− x

)

dx =
Q

2πε0L
ln
d− a1

a1

d− a2

a2

d�a1,a2

=
Q

πε0L
ln
d

a

We then find the capacitance per unit length:

C

L
=

Q

V L
= πε0

(

ln
d

a

)−1
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To determine the gauge wire diameter 2a corresponding to a given C/L=1.2
× 10−11 F/m and separation d, isolate a:

2a = 2d exp

(

− πε0
C/L

)

d = 5 mm: 2a= 1 mm
d = 15 mm: 2a= 3 mm
d = 50 mm: 2a= 10 mm
What to say about these number? Well, 2a scales linearly in d but exponentially
in C/L.
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Problem 1.8

(a) For the three capacitor geometries in Problem 1.6 calculate the total elec-
trostatic energy and express it alternatively in terms of the equal and
opposite charges Q and −Q placed on the conductors and the potential
difference between them.

(b) Sketch the energy density of the electrostatic field in each case as a function
of the appropriate linear coordinate.

Solution

At this point, the progression in the problems deviates from that of the text sec-
tions in that we bypass the sections on Green functions and move on to Section
1.11 on electrostatic energy. Three expressions for the electrostatic energy W
are given; one emphasizing the charge distribution (1.53), one emphasizing the
electric field (1.54), and one involving the capacitance Cij and the potentials of
a system of conductors (1.62):

W =
1

2

∫

ρ(x)Φ(x) d3x =
ε0
2

∫

|E|2 d3x =
1

2

n
∑

i=1

n
∑

j=1

CijViVj

We already have expressions for E involving Q and equations connecting Q and
V from Problem 1.6 so the second form (1.54) is easily exploited. Even easier is
the application of the third form, which reduces to W = 1

2
CV 2 when only two

conductors are present.

Part a

For the parallel-plate capacitor, C = ε0A/d and V = Qd/Aε0 so

W =
1

2

ε0A

d
V 2 =

1

2

d

ε0A
Q2

For the spherical capacitor,

V =
Q

4πε0

(

1

a
− 1

b

)

C =
4πε0

1/a− 1/b

W =
1

2

4πε0
1/a− 1/b

V 2 =
2πε0

1/a− 1/b
V 2 =

1/a− 1/b

8πε0
Q2

For the cylindrical capacitor,

V =
Q

2πε0L
ln
b

a

C =
2πε0L

ln b/a

W =
πε0L

ln b/a
V 2 =

ln b/a

4πε0L
Q2
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a b,d

Parallel plate
Spherical
Cylindrical

Figure 1.5: Sketches of the energy densities w in the three capacitor geometries.

Part b

The energy density w is defined in (1.55) as

w =
ε0
2
|E|2

We already found E in Problem 1.6. The three expressions are easily found:

w =
Q2

2ε0A2
=

σ2

2ε0
, 0 < r < d

w =
Q2

32π2ε0

1

r4
, a < r < b

w =
Q2

8π2ε0L2

1

r2
=

λ2

8π2ε0

1

r2
, a < r < b

It is difficult to directly compare the energy densities for the three cases since
different geometric quantities are involved in the expressions for w. Sketches
are shown in Fig. 1.5. All we can say is that for the parallel-plate capacitor,
w is constant and for the spherical capacitor, the energy is more strongly con-
centrated close to the inner conductor than in the case of a parallel-cylinder
capacitor.
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V

x

Dx

+Q -Q

Figure 1.6: Sketch showing the concept of a small virtual displacement, ∆x.

Problem 1.9

Calculate the attractive force between conductors in the parallel plate capacitor
(Problem 1.6a) and the parallel cylinder capacitor (Problem 1.7) for

(a) fixed charges on each conductor;

(b) fixed potential difference between conductors.

Solution

The technique for solving this problem is described in Section 1.11, starting
below the middle of p. 42. We shall make sure to follow Jackson’s advice: “Care
must be taken to exhibit the energy in a form showing clearly the factors that
vary with a change in configuration and those that are kept constant.” The
change in total electrostatic energy (due to the work we have to do to change
the system) has two contributions when a virtual displacement is performed.
We can write up an expression taking both effects into account:

• A change in electrostatic energy ∆W as a result of the change in geometry
when the capacitor is subject to a small virtual displacement ∆x. This
term is illustrated in the example beginning p. 42 and on Fig. 1.6.

• A change due to the work necessary to move the charge added during the
displacement against a potential difference, V∆Q.

F∆x = ∆W + V∆Q ⇒

F =
∂W

∂x
+

∣

∣

∣

∣

∂Q

∂x

∣

∣

∣

∣

V
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Part a

Here Q is maintained constant, i.e. the conductors are electrically isolated from
each other, so the second term above is zero. Following Jackson’s warning, we
thus aim for expressions involving Q and not V .

(i) For the parallel plate capacitor, we already found the expression for W in
Problem 1.8a. The variable quantity is d, the distance between the plates:

F =
∂

∂x

(

Q2

2ε0A
x

)

=
Q2

2ε0A

(ii) For the parallel cylinders, we found the capacitance in Problem 1.7. From
(1.61) and (1.62) we get an expression involving Q and C:

W =
1

2
QV =

Q2

2C
=

Q2

2πε0L
ln
d

a

The variable quantity here is again d = x, the distance between the con-
ductors:

F =
∂

∂x

(

Q2

2πε0L
ln
x

a

)

=
Q2

2πε0xL

Part b

Here the potential difference V is maintained constant so Q varies with the
conductor distance. We thus aim for expressions involving V , not Q.

(i) In Problem 1.8a we found the necessary expressions:

F =
∂

∂x

(

ε0A

2x
V 2

)

+

∣

∣

∣

∣

∂

∂x

(

ε0AV

x

)
∣

∣

∣

∣

· V

=
ε0A

2x2
V 2 =

Q2

2ε0A

The same expression as in part a!

(ii) Here we need W = 1

2
CV 2 and the connection between Q and V from

Problem 1.7.

W =
πε0L

2 lnx/a
V 2

Q =
πε0L

lnx/a
V

F =
∂W

∂x
+

∣

∣

∣

∣

∂Q

∂x

∣

∣

∣

∣

V =
πε0LV

2

2x ln2 d/a
=

Q2

2πε0xL

Again the same expression as i part a!

The reemergence of the force expressions in part b is not surprising since for a
given V , the charge on the conductors is always Q = CV . Thus part b could
have been solved much easier simply by inserting Q = CV in the expressions
from part a. I used another method to demonstrate that the force in part b has
two contributions (and also because of Jackson’s remarks on p. 42).
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O

x

x’

x-x’

R

n’

Figure 1.7: The geometry in Problem 1.10.

Problem 1.10

Prove the mean value theorem: For charge-free space the value of the electro-
static potential at any point is equal to the average of the potential over the
surface of any sphere centered on that point.

Solution

There are many ways to do this, e.g. by direct integration, but here I only give
one method, which involves the integral form of the Poisson equation (1.36).
The quantities involved are shown if Fig. 1.7. Note that 1/R ≡ 1/|x− x′|, that
R is constant, and that x − x′ is parallel to n′. x is the vector ending in the
point of interest and x′ is the integration variable running over the spherical
surface S.

Φ(x) =
1

4πε0

∫

V

ρ(x′)

R
d3x′ +

1

4π

∮

S

[

1

R

∂Φ

∂n′
− Φ

∂

∂n′

(

1

R

)]

da′

We work in charge-free space, so the first term above is zero.

Φ(x) =
1

4πε0

∮

S

∇Φ · n′ da′ − 1

4π

∮

S

Φ(x′)

(

− 1

R2

)

da′

=
1

4πR

∮

S

(−E) · n′ da′ +
1

4πR2

∮

S

Φ(x′) da′

=
1

4πR2

∮

S

Φ(x′) da′

In the last step, I used Gauss’s theorem; the first term is zero since S enclosed
no charge. This equation says that the potential in x is the mean value of the
potential on a spherical surface S centered on x.
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R
1

Figure 1.8: The geometry in Problem 1.11.

Problem 1.11

Use Gauss’s theorem to prove that at the surface of a curved charged conductor,
the normal derivative of the electric field is given by

1

E

∂E

∂n
= −

(

1

R1

− 1

R2

)

where R1 and R2 are the principal radii of curvature of the surface.

Solution

The situation is shown in Fig. 1.8. Imagine a second circle perpendicular to
the paper plane with radius of curvature R2. As directed, we use Gauss’s
theorem, although I prefer to do it without the integrals, so we consider a
infinitesimal area da of the conductor containing a charge dq. At this particular
area, the radii of curvature are R1 and R2. Thus the area da can be written as
da = R1dθ1R2dθ2. Furthermore, since we need the normal derivative at da, we
write the normal unit vector n at da as

n =
R1

R1

+
R2

R2

The electric field just outside the conductor (remember E is perpendicular to
the conductor surface) due to the area da is then

E =
1

ε0

dq

da
=

1

ε0

dq

R1R2dθ1dθ2

We now need the normal derivative ∇E ·n where you project the gradient onto
the normal vector. Since the direction of n is given from the combined directions
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of R1 and R2, the derivative contains two terms as follows

∂E

∂n
=

∂E

∂R1

+
∂E

∂R2

=
1

ε0

dq

dθ1dθ2

(

− 1

R2
1R2

− 1

R1R2
2

)

= −E
(

1

R1

+
1

R2

)

⇒

1

E

∂E

∂n
= −

(

1

R1

− 1

R2

)
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Problem 1.12

Prove Green’s reciprocation theorem: If Φ is the potential due to a volume-charge
density ρ within a volume V and a surface-charge density σ on the conducting
surface S bounding the volume V , while Φ′ is the potential due to another
charge distribution ρ′ and σ′, then

∫

V

ρΦ′ d3x+

∫

S

σΦ′ da =

∫

V

ρ′Φ d3x+

∫

S

σ′Φ da

Solution

This theorem is most easily proven by invoking Green’s theorem (1.35) with
φ = Φ and ψ = Φ′. This enables a quick introduction of the space and surface
charge densities through the Poisson equation (1.28) ∇2Φ = −ρ/ε0 and σ =
ε0(∂Φ/∂n).

∫

V

(ψ∇2φ− φ∇2ψ) d3x =

∮

S

[

φ
∂ψ

∂n
− ψ

∂φ

∂n

]

da

∫

V

(

−ρ
′

ε0
Φ +

ρ

ε0
Φ′

)

d3x =

∮

S

[

σ′

ε0
Φ − σ

ε0
Φ′

]

da

Multiplying out ε0 gives the desired theorem

∫

V

ρΦ′ d3x+

∫

S

σΦ′ da =

∫

V

ρ′Φ d3x+

∫

S

σ′Φ da
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Figure 1.9: Problem 1.13. (a) The “real” system. (b) The mirror setup.

Problem 1.13

Two infinite grounded parallel conducting planes are separated by a distance d.
A point charge q is placed between the planes. Use the reciprocation theorem
of Green to prove that the total induced charge on one of the planes is equal to
(−q) times the fractional perpendicular distance of the point charge from the
other plane. (Hint : As your comparison electrostatic problem with the same
surfaces choose one whose charge densities and potential are known and simple.)

Solution

As our comparison problem, we use a “mirror” setup with no charge in V but
the two planes maintained at potentials Φ′

1 and Φ′
2, see Fig. 1.9. For this system,

the potential is known and simple (a linear function).
First, several simplifications can be made in Green’s reciprocation theorem:

∫

V

ρΦ′ d3x+

∫

S

σΦ′ da =

∫

V

ρ′Φ d3x+

∫

S

σ′Φ da

• The whole RHS is zero since Φ = 0. ρ′ is of course zero but now we don’t
have to bother with the induced charges σ′ for the primed case.

• All induced surface charges in the unprimed case are multiplied by the
same potential and can be collected, i.e.

∫

S1

σΦ′ da = Φ′

∫

S1

σ da = q1Φ
′

for the left plane.

• The first term on the LHS is also simple since we can write

∫

V

ρΦ′ d3x =

∫

V

qδ(x− a)δ(y)δ(z)Φ′
P d

3x = qΦ′
P
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• We also know that q1+q2 = −q since the induced charges on the two planes
must shield the point charge to maintain E = 0 inside the conductors.

We thus end up with

qΦ′
P +

∫

S1

σΦ′ da+

∫

S2

σΦ′ da = 0 ⇔

qΦ′
P + q1Φ

′
1 + q2Φ

′
2 = 0

q1 = −qΦ′
P − Φ′

2

Φ′
1 − Φ′

2

∧ q2 = −qΦ′
1 − Φ′

P

Φ′
1 − Φ′

2

Here only Φ′
P is unknown but can be found from known quantities since

Φ′ = Φ′
1 +

x

d
(Φ′

2 − Φ′
1)

Inserting x = a yields

Φ′
P =

(

1 − a

d

)

Φ′
1 +

a

d
Φ′

2

Finally, the two arbitrary potentials Φ′
1 and Φ′

2 can be eliminated by inserting
the latter expression into the expressions for q1 and q2

q1 = −q d− a

d
∧ q2 = −q a

d

This is what we wanted to prove since the factors multiplying −q are the frac-
tional perpendicular distances of the point charge from the other plane.
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Problem 1.141

Consider the electrostatic Green functions of Section 1.10 for Dirichlet and
Neumann boundary conditions on the surface S bounding the volume V . Ap-
ply Green’s theorem (1.35) with integration variable y and φ = G(x,y), ψ =
G(x′,y), with ∇2

yG(z,y) = −4πδ(y − z). Find an expression for the difference
[G(x,x′) −G(x′,x)] in terms of an integral over the boundary surface S.

(a) For Dirichlet boundary conditions on the potential and the associated
boundary condition on the Green function, show that GD(x,x′) must be
symmetric in x and x′.

(b) For Neumann boundary conditions, use the boundary condition (1.45) for
GN (x,x′) to show that GN (x,x′) is not symmetric in general, but that
GN (x,x′) − F (x) is symmetric in x and x′, where

F (x) =
1

S

∮

S

GN (x,y) day

(c) Show that the addition of F (x) to the Green function does not affect the
potential Φ(x).

See Problem 3.26 for an example of the Neumann Green function.

Solution

We first apply Green’s theorem (1.35) with integration variable y and φ =
G(x,y), ψ = G(x′,y), with ∇2

yG(z,y) = −4πδ(y − z) (this works for both
Dirichlet and Neumann boundary conditions):

∫

V

(

φ∇2ψ − ψ∇2φ
)

d3y =

∮

S

[

φ
∂ψ

∂n
− ψ

∂φ

∂n

]

day

∫

V

[

G(x,y)∇2
yG(x′,y) −G(x′,y)∇2

yG(x,y)
]

d3y =

∮

S

[

G(x,y)
∂G(x′,y)

∂n
−G(x′,y)

∂G(x,y)

∂n

]

day

G(x,x′) −G(x′,x) = − 1

4π

∮

S

[

G(x,y)
∂G(x′,y)

∂n
−G(x′,y)

∂G(x,y)

∂n

]

day

This is the integral over S required before getting started with the next parts.

Part a

For Dirichlet boundary conditions we demand (1.43):

GD(x,x′) = 0 for x′ on S

1I solve the new problem from Jackson’s Errata. The last two sentences of the first para-

graph constitute a separate introductory part of the problem and should maybe have been

marked as part a of the problem. The progression of this problem is identical to that of

Jackson’s paper cited bottom p. 40. By the way, Problem 3.26 is an example from the same

paper. Also notice that in the Errata, there is a small mistake in the last sentence of the first

paragraph. . .
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In the integral over S above, our integration variable is y so substitute y for x′

in the boundary condition and we find

GD(x,x′) −GD(x′,x) = 0

GD(x,x′) is clearly symmetric in x and x′.

Part b

The simplest allowable boundary condition on GN (x,x′) is (1.45):

∂GN

∂n′
(x,x′) = −4π

S
for x′ on S

Inserting this in the difference [G(x,x′) −G(x′,x)] above yields

G(x,x′) −G(x′,x) =
1

S

∮

S

GN (x,y) day − 1

S

∮

S

GN (x′,y) day

G(x,x′) −G(x′,x) = F (x) − F (x′)

with the definition of F (x) given in the problem text. [G(x,x′) −G(x′,x)] is
thus not symmetric in general, but upon rearrangement of the latter equation

G(x,x′) − F (x) = G(x′,x) − F (x′)

we clearly see that the combination [G(x,x′) − F (x)] is symmetric in x and x′.

Part c

The solution for the potential Φ(x) corresponding to a Neumann Green function
is (1.46). The added contribution to the potential from F (x) is

∆Φ(x) =
1

4πε0

∫

V

ρ(x′)F (x) d3x′ +
1

4π

∮

S

∂Φ

∂n′
F (x) da′

=
F (x)

4π

(

1

ε0

∫

V

ρ(x′) d3x′ +

∮

S

∂Φ

∂n′
da′
)

=
F (x)

4π

(

1

ε0

∫

V

ρ(x′) d3x′ +

∮

S

∇Φ · n′ da′
)

=
F (x)

4π

(

1

ε0

∫

V

ρ(x′) d3x′ −
∮

S

E · n′ da′
)

= 0

In the last step, I used Gauss’s law. We have thus shown that the addition of
F (x) does not affect the potential Φ(x).
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Problem 1.15

Prove Thomson’s theorem: If a number of surfaces are fixed in position and a
given total charge is placed on each surface, then the electrostatic energy in
the region bounded by the surfaces is an absolute minimum when the charges
are placed so that every surface is an equipotential, as happens when they are
conductors.

Solution

For the electrostatic situation, the following equations are valid:

∇ · E =
ρ

ε0
, ∇× E = 0, E = −∇Φ

We consider n conductors bounded by surfaces Si with total charges qi (i =
1, 2, . . . , n). Now let E be created by a distribution of charge such that

Φi = constant,

∫

Si

E · n da =
qi
ε0

Φ′,E′ is another possible electrostatic field satisfying

∇ · E′ =
ρ

ε0
, ∇× E′ = 0, E′ = −∇Φ′,

∫

Si

E′ · n da =
qi
ε0

but not the condition that every surface be an equipotential. We immediately
find two relations, which will prove useful later:

∇ · (E′ − E) = 0,

∫

Si

(E′ − E) · n da = 0

As the last quantities, we introduce W and W ′ to be the electrostatic energies
corresponding to E and E′ and here we clearly aim to calculate the difference
between W and W ′ and show that W ′ is always greater than W :

W ′ −W =
ε0
2

∫

V

E′2 d3x− ε0
2

∫

V

E2 d3x =
ε0
2

∫

V

(

E′2 − E2
)

d3x

The integrand involves the difference between the two squared fields, which in-
hibits the use of the two relations above. Instead we should aim for an integrand
which involves the difference between the fields themselves. We thus rewrite the
integrand in the following manner:

E′2 − E2 = (E′ − E)2 − 2E · (E′ − E)

The integral of the first term is obviously positive so we press on with the second
term (forgetting the factor of 2):

E · (E′ − E) = −∇Φ · (E′ − E) = − (∇[Φ(E′ − E)] − Φ∇ · (E′ − E))

Here, by the relation above, the second term is zero and the integral can be
written

∫

V

E · (E′ − E) d3x = −
∫

V

∇ [Φ(E′ − E)] d3x = −
∫

S

Φ(E′ − E) · n da
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In the last step, I used the divergence theorem. So, now we are getting close,
because the last integral can be split up into n integrals over each surface sepa-
rately. We also know that Φi is a constant on each of these surfaces and Φi can
thus be moved outside the integral for each surface. In short, we can write

∫

V

E · (E′ − E) d3x = −
n
∑

i=1

Φi

(
∫

Si

(E′ − E) · n da
)

The integral in the large curved parentheses is the other relation from above
and is zero (it simply says that the total charges qi are the same in the two
cases). Then we have shown

W ′ −W =
ε0
2

∫

V

(E′ − E)
2
d3x > 0 ⇒

W ′ > W

for any electrostatic field E′ different from the one due to equipotential surfaces.



27

Problem 1.16

Prove the following theorem: If a number of conducting surfaces are fixed in
position with a given total charge on each, the introduction of an uncharged,
insulated conductor into the region bounded by the surfaces lowers the electro-
static energy.

Solution

This problem is very similar to the previous one, the only difference being
the necessity to consider different integration volumes for the two electrostatic
energies.

Consider n conductors with bounding surfaces Si and total charges qi (i =
1, 2, . . . , n). The electric field is in this case E, the electrostatic energy W , and
the volume exterior to Si we designate V . Now introduce another conductor
with bounding surface S0 and volume V0. We designate the volume exterior to
both Si and S0 V1 ≡ V − V0. The electric field is now E′ and the electrostatic
energy W ′. The electrostatic-energy difference can now be written (notice the
different volumes being considered)

W −W ′ =
ε0
2

∫

V

E2 d3x− ε0
2

∫

V1

E′2 d3x

=
ε0
2

∫

V0

E2 d3x+
ε0
2

∫

V1

(

E2 − E′2
)

d3x

The second term is almost identical to the one considered in Problem 1.15;
primed and unprimed quantities are simply exchanged. We can then again split
the integral in two

W −W ′ =
ε0
2

∫

V0

E2 d3x+

[

ε0
2

∫

V1

(E − E′)
2
d3x+ ε0

∫

V1

E′ · (E − E′) d3x

]

We are dealing with equipotential surfaces so by analogy with Problem 1.15,
the last term is zero. We end up with

W −W ′ =
ε0
2

∫

V0

E2 d3x+
ε0
2

∫

V1

(E − E′)
2
d3x > 0

and we have shown that W ′ < W , i.e. introducing V0 lowers the electrostatic
energy.
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Problem 1.17

A volume V in vacuum is bounded by a surface S consisting of several separate
conducting surfaces Si. One conductor is held at unit potential and all the other
conductors at zero potential.

(a) Show that the capacitance of the one conductor is given by

C = ε0

∫

V

|∇Φ|2 d3x

where Φ(x) is the solution for the potential.

(b) Show that the true capacitance C is always less than or equal to the
quantity

C[Ψ] = ε0

∫

V

|∇Ψ|2 d3x

where Ψ is any trial function satisfying the boundary condition on the
conductors. This is a variational principle for the capacitance that yields
an upper bound.

Solution

This problem relates to the discussion at the end of Section 1.11 and Section
1.12 in that we shall use energy-like functionals to obtain an upper bound on
the true capacitance.

Part a

In order to be concrete we let S1 be at potential V1 = 1 and all the others at
potential zero. We can use both (1.54) and (1.62) to express the electrostatic
energy of the system.

W =
ε0
2

∫

V

|∇Φ|2 d3x =
1

2

n
∑

i=1

n
∑

j=1

CijViVj

Only S1 is at non-zero potential so the double sum is simply 1

2
C11V

2
1 = 1

2
C.

Thus

C = ε0

∫

V

|∇Φ|2 d3x

Part b

The trial function Ψ satisfies the Laplace equation ∇2Ψ = 0 in V and is given
on S and thus fulfills δΨ = 0 there. Additionally, since C[Ψ] is effectively an
energy-like functional through W = 1

2
CV 2, we can use the variational approach

from Section 1.12. We can split any deviation from the true potential Φ(x) into
infinitesimal changes like Φ → Φ + δΦ. The first-order change in the difference
C[Φ] = C[Φ + δΦ] − C[Φ] then vanishes since Ψ satisfies the Laplace equation
and C[Φ], the true capacitance C, is a stationary minimum. We have thus
shown that the true capacitance C is always less than or equal to C[Ψ]:

C ≤ C[Ψ] = ε0

∫

V

|∇Ψ|2 d3x
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Problem 1.18

Consider the configuration of conductors of Problem 1.17, with all conductors
except S1 at zero potential.

(a) Show that the potential Φ(x) in the volume V and on any of the surfaces
Si can be written

Φ(x) =
1

4πε0

∮

S1

σ1(x
′)G(x,x′) da′

where σ1(x
′) is the surface charge density on S1 and G(x,x′) is the Green

function potential for a point charge in the presence of all the surfaces
that are held at zero potential (but with S1 absent). Show also that the
electrostatic energy is

W =
1

8πε0

∮

S1

da

∮

S1

da′ σ1(x)G(x,x′)σ1(x
′)

where the integrals are only over the surface S1.

(b) Show that the variational expression

C−1[σ] =

∮

S1

da
∮

S1

da′ σ(x)G(x,x′)σ(x′)

4πε0

[

∮

S1

σ(x) da
]2

with an arbitrary integrable function σ(x) defined on S1, is stationary for
small variations of σ away from σ1. Use Thomson’s theorem to prove that
the reciprocal of C−1[σ] gives a lower bound to the true capacitance of the
conductor S1.

Solution

Here we shall exploit some formal aspects of the Green function from Section
1.10 as well as the formulas for the electrostatic energy in Section 1.11.

Part a

Consider the configuration of conductors held at zero potential, i.e. without S1

present. Φ(x) is specified to be zero on the surface Si, i 6= 1. With Dirichlet
boundary conditions on the Green function, the expression for the potential
Φ(x) (1.44) becomes

Φ(x) =
1

4πε0

∫

V

ρ(x′)GD(x,x′) d3x′

The surface charge distribution on S1 can be introduced stepwise as a distribu-
tion of unit charges. The contribution to the potential from a single unit charge
at x′ is

Φ(x) =
1

4πε0

∫

V

4πε0δ(x
′)G(x,x′) d3x′ = G(x,x′)

and as mentioned in the problem text, G(x,x′) is the Green function for a point
charge in the presence of all the surfaces that are held at zero potential (but
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with S1 absent). Since the charges on S1 are all at its surface, constituting
the surface charge density σ1(x

′), we can write the potential anywhere in the
volume V as wanted

Φ(x) =
1

4πε0

∮

S1

σ1(x
′)G(x,x′) da′

We get the desired expression for the electrostatic energy W most easily by
inserting the expression for Φ(x) into (1.53)

W =
1

2

∫

V

ρ(x)Φ(x) d3x

=
1

8πε0

∫

V

ρ(x) d3x

∮

S1

σ1(x
′)G(x,x′) da′

=
1

8πε0

∮

S1

σ1(x) da

∮

S1

σ1(x
′)G(x,x′) da′

=
1

8πε0

∮

S1

da

∮

S1

da′ σ1(x)G(x,x′)σ1(x
′)

since the only charge is located on S1.

Part b

The total charge Q1 on S1 can be written

Q1 =

∮

S1

σ1(x) da

and the electrostatic energy W can be expressed as

W =
1

2
Q1Φ1 =

1

2

Q2
1

C

Thus

C−1 = 2W/Q2
1 =

∮

S1

da
∮

S1

da′ σ1(x)G(x,x′)σ1(x
′)

4πε0

[

∮

S1

σ1(x) da
]2

Next, we need to show that the variational expression

C−1[σ] =

∮

S1

da
∮

S1

da′ σ(x)G(x,x′)σ(x′)

4πε0

[

∮

S1

σ(x) da
]2

is stationary for small variations σ away from σ1. This can be done formally by
varying σ:

4πε0

[
∮

S1

σ(x) da

]2

C−1 =

∮

S1

da

∮

S1

da′ σ(x)G(x,x′)σ(x′)

4πε0

{

Q2δ(C−1)) + 2C−1Q

∮

S1

δσ da

}

= 2

∮

S1

da

∮

S1

da′G(x,x′)σ(x′)δσ(x)
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On the RHS, I used the symmetry property of G(x,x′) = G(x′,x). Rearranging,

4πε0Q
2δ(C−1) = 2

{
∮

S1

δσ(x)

[

−Q
C

+

∮

S1

da′G(x,x′)σ(x′)

]

da

}

The square parentheses contains two ways of expressing the equipotential Φ on
S1, with opposite signs. Thus the variation in C−1 vanishes.

Last thing to prove is that C−1[σ] gives an upper bound on C−1. The de-
nominator of the variational expression is obviously positive and the numerator
constitutes an expression for the potential energy. Thomson’s theorem states
that the potential-energy content of the volume V bounded by the surfaces Si is
a minimum, since all surfaces are conducting and thus equipotentials. Any other
potential configuration is thus of higher electrostatic energy and C−1[σ] gives
an upper bound on C−1 or equivalently a lower bound to the true capacitance
C of the conductor S1.
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Problem 1.19

For the cylindrical capacitor of Problem 1.6c, evaluate the variational upper
bound of Problem 1.17b with the naive trial function, Ψ1(ρ) = (b− ρ)/(b− a).
Compare the variational result with the exact result for b/a = 1.5, 2, 3. Explain
the trend of your results in terms of the functional form of Ψ1. An improved
trial function is treated by Collin (pp. 275–277).

Solution

The functional

C[Ψ1] = ε0

∫

V

|∇Ψ1|2 d3x

gives a variational upper bound on the true C.

C[Ψ1] = ε0

∫

V

∣

∣

∣

∣

∂Ψ1

∂ρ

∣

∣

∣

∣

2

d3x

= ε0

∫

V

1

(b− a)2
d3x

=
2πε0L

(b− a)2

∫ b

a

ρ dρ

= 2πε0L
b2 − a2

2(b− a)2

= 2πε0L
1

2

b+ a

b− a

= 2πε0L
1

2

b/a+ 1

b/a− 1

The exact expression for C is

Cexact = 2πε0L
1

ln b/a

Below we compare the values from the variational expression and exact expres-
sion for C:

b/a 2πε0LC[Ψ1] 2πε0LCexact Deviation

3/2 5/2 2.466 1%
2 3/2 1.443 4%
3 1 0.910 10%
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Figure 1.10: Problem 1.19. (a) Variational (straight lines) and exact potential

Cexact = ln b/r
ln b/a for selected values of b/a. (b) Variational (red) and exact (black)

values for the capacitance.

The variational expression is the first order Taylor expansion in b/a of Cexact.
We thus expect the variational value for C[Ψ1] to be better for small b/a. This is
indeed the case. Illustrative plot for the potentials and capacitances are shown
in Fig. 1.10. In Fig. 1.10a we see how the variational potential trails the exact
solution better for small b/a.



34 CHAPTER 1.

Problem 1.20

In estimating the capacitance of a given configuration of conductors, comparison
with known capacitances is often helpful. Consider two configurations of n
conductors in which the (n− 1) conductors held at zero potential are the same,
but the one conductor whose capacitance we wish to know is different. In
particular, let the conductor in one configuration have a closed surface S1 and
in the other configuration have surface S ′

1, with S′
1 totally inside S1.

(a) Use the extremum principle of Section 1.12 and the variational principle
of Problem 1.17 to prove that the capacitance C ′ of the conductor with
surface S′

1 is less than or equal to the capacitance C of the conductor with
surface S1 that encloses S′

1.

(b) Set upper and lower limits for the capacitance of a conducting cube of side
a. Compare your limits and also their average with the numerical value,
C w 0.655(4πε0a).

(c) By how much do you estimate the capacitance per unit length of the two-
wire system of Problem 1.7 will change (larger? smaller?) if one of the
wires is replaced by a wire of square cross section whose side is equal to
its diameter?

Solution

We shall consider two configurations. Both contain n conductors; (n− 1) are at
zero potential.

(i) S1 with capacitance C present. The correct expression for the potential
in this configuration is Φ1(x). The volume outside S1 is termed V1.

(ii) S1 not present but instead the smaller S ′
1 with capacitance C ′. The correct

potential is now Φ′
1(x). The volume outside S1 is termed V ′

1 .

Part a

The extremum principle of Section 1.12 states that C and C ′ have a stationary
minimum and the variational principle of Problem 1.17 states that

C[Ψ] = ε0

∫

V

|∇Ψ|2 d3x ≥ C = ε0

∫

V

|∇Φ|2 d3x

where Φ(x) is the correct expression for the potential in the given configuration
and Ψ(x) is any potential (meeting the correct boundary conditions) different
from Φ(x). We now construct an approximation Φ′

a(x) to Φ′
1(x), which is given

by Φ(x) outside S1, i.e. in V1, and is zero between S′
1 and S1, i.e. in V ′

1 − V1.
The correct capacitance of S1 can be written

C = ε0

∫

V1

|∇Φ1|2 d3x

while for the capacitance of S ′
1 we can write

C ′ = ε0

∫

V ′

1

|∇Φ′
1|

2
d3x ≤ ε0

∫

V ′

1

|∇Φ′
a|

2
d3x = ε0

∫

V1

|∇Φ1|2 d3x = C

We have thus shown that C ′ ≤ C.
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Part b

Here we use two spherical conductors: one with surface Sout, which completely
encloses the cube with side a and another with surface Sin completely enclosed
within the cube. The radii of Sout and Sin are (

√
3/2)a and a/2, respectively.

From part a we know that Cin ≤ C ≤ Cout. The capacitance of a sphere with
radius R is 4πε0R (see Problem 1.6b). We thus find lower and upper bounds on
the capacitance C of the cube:

1

2
(4πε0a) ≤ C ≤

√
3

2
(4πε0a) w 0.866(4πε0a)

The average of the lower and upper bounds is Cav = 1

2
(Cin+Cout) w 0.683(4πε0a).

This corresponds very well to the numerical value of C = 0.655(4πε0a).

Part c

Since the square conductor completely encloses the circular one, the capacitance
per unit length of the circular/square configuration is certainly larger than the
circular/circular configuration. But by how much then? Inspired by part b we
approximate the capacitance per unit length of the circular/square system Ccs

by the average capacitance per unit length of two circular/circular systems Cout

and Cin with obvious dimensions. Considering the capacitance as a function
of the geometrical mean a =

√
a1a2 of the two conductor radii we can write

approximately

Ccs w

1

2
(Cin + Cout) =

1

2
[C( (a1a2)

1/2 )+C( (a12
1/2a2)

1/2 )]

The first term is just the capacitance per unit length of the original system but
the second term is slightly modified. We thus consider this term in more detail:

Cout/πε0 =

(

ln
d

21/4a

)−1

=

(

ln d/a− 1

4
ln 2

)−1

= (ln d/a)
−1

(

1 − 1

4

ln 2

ln d/a

)−1

The last term is <1 so indeed Cout > C. We can then write Ccs as

Ccs w

C

2

[

1 +

(

1 − 1

4

ln 2

ln d/a

)−1
]

For example, let’s use the set of parameters in Problem 1.7 (d/a = 10) with
C = 1.2 × 10−11 F/m. This gives Ccs = 1.04C, i.e. a change of 4%.
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Problem 1.21

A two-dimensional potential problem consists of a unit square area (0 ≤ x ≤ 1,
0 ≤ y ≤ 1) bounded by “surfaces” held at zero potential. Over the entire square
there is a uniform charge density of unit strength (per unit length in z).

(a) Apply the variational principle (1.63) for the Poisson equation with the
“variational” trial function Ψ(x, y) = A ·x(1−x) ·y(1−y) to determine the
best value of the constant A. [I use quotation marks around variational
because there are no parameters to vary except the overall scale.]

(b) The exact (albeit series) solution for this problem is [See Problems 2.15
and 2.16]

4πε0Φ(x, y) =
16

π2

∞
∑

m=0

sin[(2m+ 1)πx]

(2m+ 1)3

{

1 − cosh[(2m+ 1)π(y − 1

2
)]

cosh[(2m+ 1)π/2]

}

For y = 0.25 and y = 0.5, plot and compare the simple variational solution
of part a with the exact solution as functions of x.

Part a

We need to minimize the functional in (1.63) wrt. A

I[Ψ] =
1

2

∫

V

∇Ψ · ∇Ψ d3x−
∫

V

gΨ d3x

The source term g is equal 1/ε0 and the gradient operator is simple is Cartesian
coordinates so we easily find

I[Ψ] =
A2

2

∫ 1

0

dx

∫ 1

0

dy
{

y2(1 − y)2(1 − 2x)2 + x2(1 − x)2(1 − 2y)2
}

− 1

ε0

∫ 1

0

dx

∫ 1

0

dy A · x(1 − x) · y(1 − y)

=
A2

90
− A

36ε0

Minimization wrt. A yields A = 5/4ε0. To facilitate comparison to the exact
solution, let’s write the result like this:

4πε0Ψ(x, y) = 5π · x(1 − x) · y(1 − y)

Part b

The desired plots are shown in Fig. 1.11. The correspondence is better for
smaller y. I also show the potential configuration in a 3D plot in Fig. 1.12.
We notice that the variational expression has remarkable likeness to the exact
potential. It just seems to be a bit too “pointy”.
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Figure 1.11: Problem 1.21. Variational and exact potential for selected values
of y.
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Figure 1.12: Problem 1.21. (a) Exact and (b) variational potential configuration.
Pretty isn’t it?
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Problem 1.22

Two-dimensional relaxation calculations commonly use sites on a square lattice
with spacing ∆x = ∆y = h, and label the sites by (i, j), where i, j are integers
and xi = ih + x0, yj = jh + y0. The value of the potential at (i, j) can be
approximated by the average of the values at neighboring sites. [Recall the
relevant theorem about harmonic functions.] But what average?

(a) If F (x, y) is a well-behaved function in the neighborhood of the origin, but
not necessarily harmonic, by explicit Taylor series expansions, show that
the “cross” sum

Sc = F (h, 0) + F (0, h) + F (−h, 0) + F (0,−h)

can be expressed as

Sc = 4F (0, 0) + h2∇2F +
h4

12
(Fxxxx + Fyyyy) +O(h6)

(b) Similarly, show that the “square” sum,

Ss = F (h, h) + F (−h, h) + F (−h,−h) + F (h,−h)

can be expressed as

Ss = 4F (0, 0) + 2h2∇2F − h4

3
(Fxxxx + Fyyyy) +

h4

2
∇2(∇2F ) +O(h6)

Here Fxxxx is the fourth partial derivative of F with respect to x, evaluated
at x = 0, y = 0, etc. If ∇2F = 0, the averages Sc/4 and Ss/4 each give the
value of F (0, 0), correct to order h3 inclusive. Note that an improvement
can be obtained by forming the “improved” average,

S̃ =
1

5

[

Sc +
1

4
Ss

]

where

S̃ = F (0, 0) +
3

10
h2∇2F +

h4

40
∇2(∇2F ) +O(h6)

If ∇2F = 0, then S̃ gives F (0, 0), correct to order h5 inclusive. For
Poisson’s equation, the charge density and its lowest order Laplacian can
be inserted for the same accuracy.

Solution

Since we are expanding around the origin, we need a two-dimensional Maclaurin
series, which can be written like this:

F (x, y) =

∞
∑

n=0

1

n!
{xFx(0, 0) + yFy(0, 0)}n

where Fx(0, 0), Fy(0, 0) denote partial derivatives with respect to x, y evaluated
at x = 0, y = 0.
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Part a

For the cross sum, we need e.g. F (±h, 0)

F (±h, 0) =

∞
∑

n=0

1

n!
{xFx(0, 0)}n

= F (0, 0) ± hFx +
h2

2!
Fxx ± h3

3!
Fxxx +

h4

4!
Fxxxx ± h5

5!
Fxxxxx +O(h6)

We see at once that odd terms cancel so the cross sum is

Sc = 4F (0, 0) + h2(Fxx + Fyy) +
h4

24
(2Fxxxx + 2Fyyyy) +O(h6)

= 4F (0, 0) + h2∇2F +
h4

12
(Fxxxx + Fyyyy) +O(h6)

Part b

For the square sum, odd terms cancel as well so I shall only consider even ones.
Furthermore, since for even terms the sign under the n exponent in

F (x, y) =
∞
∑

n=0

1

n!
{xFx(0, 0) + yFy(0, 0)}n

is of no consequence, we shall only consider the first two terms of the square
sum. The desired result is just twice the sum of these two terms. Here goes:

F (h, h) = F (0, 0) +
h2

2!
(Fxx + 2Fxy + Fyy) +

h4

4!
(Fxxxx + 4Fxxxy + 6Fxxyy + 4Fxyyy + Fyyyy) +O(h6)

F (h,−h) = F (0, 0) +
h2

2!
(Fxx − 2Fxy + Fyy) +

h4

4!
(Fxxxx − 4Fxxxy + 6Fxxyy − 4Fxyyy + Fyyyy) +O(h6)

The desired sum is then

Ss = 4F (0, 0) + 2h2(Fxx + Fyy) +
h4

6
(Fxxxx + 6Fxxyy + Fyyyy) +O(h6)

= 4F (0, 0) + 2h2∇2F +
h4

2
(Fxxxx + 2Fxxyy + Fyyyy) − h4

6
(2Fxxxx + 2Fyyyy) +O(h6)

= 4F (0, 0) + 2h2∇2F − h4

3
(Fxxxx + Fyyyy) +

h4

2
∇2(∇2F ) +O(h6)

The improved average is then formed by adding 1

4
Ss to Sc, thus eliminating the

horrible fourth partial derivatives, and we get the expression S̃ given in (1.81)
and the problem text.
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Problem 1.23

A transmission line consists of a long straight conductor with a hollow square
region in its interior, with a square conductor of one-quarter the area of the
hollow region centered in the empty space, with edges parallel to the inner
sides of outer conductor. If the conductors are raised to different potentials,
the potential and electric field in the space between them exhibit an eightfold
symmetry; the basic unit is sketched in the accompanying figure. The efficacy
of the relaxation method in determining the properties of the transmission line
can be illustrated by a simple calculation.

(a) Using only the four interior points indicated in the figure, write down
the relaxation equation for each point for the “cross” and the “improved”
averaging schemes (defined in Problem 1.22) if the inner conductor has
Φ=100 V and the outer conductor has Φ=0. By performing either the
relaxation iteration process or solving the set of algebraic equations for
each scheme, find estimates for the potential at each of the four points for
the two schemes.

(b) From the results of part a make the best estimate (or estimates) you can
for the capacitance per unit length of the transmission line.

(c) (Optional) Using your favorite computational tools, repeat the relaxation
calculation with half the lattice spacing (21 interior points) and compare.

Answer: Φ1=48.872 V, Φ2=47.171 V, Φ3=38.297 V, Φ4=19.786 V and C=
10.257 ε0 F/m [from an accurate numerical calculation].2

Solution

The conductor configuration is shown in Fig. 1.13a. The dashed lines outline the
basic unit in this eight-fold symmetric setup though I haven’t tried to exploit
this symmetry in the numerical calculations. With the limited number of points
involved in parts a and b, the symmetry is easily exploited.

Part a

Cross averaging is simply the average of the potential of the four points closest
to the points of interest. i.e. F = 1

4
Sc with the definition of the cross sum from

Problem 1.22. The algebraic equations look like this with Φ=100 V and Φ0 = 0

Φ1 =
1

4
[Φ2 + Φ2 + Φ + Φ0] =

1

4
[2Φ2 + Φ]

Φ2 =
1

4
[Φ1 + Φ3 + Φ + Φ0] =

1

4
[Φ1 + Φ3 + Φ]

Φ3 =
1

4
[Φ2 + Φ4 + Φ + Φ0] =

1

4
[Φ2 + Φ4 + Φ]

Φ3 =
1

4
[Φ3 + Φ3 + Φ0 + Φ0] =

1

2
Φ3

2I give values slightly different from Jackson’s; I have performed about 5000 iterations on

a 256×256 grid to achieve excellent accuracy. If you disagree, let me know.
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The corresponding augmented matrix is









4 −2 0 0 1
−1 4 −1 0 1
0 −1 4 −1 1
0 0 −1 2 0









where I solve for Φi in units of Φ, the potential on the inner conductor. The so-
lution is Φ1= 44/90 Φ=48.89 V, Φ2= 43/90 Φ=47.78 V, Φ3= 38/90 Φ=42.22 V,
and Φ4= 19/90 Φ=21.11 V.

For the improved averaging scheme we need 1

5

[

Sc + 1

4
Ss

]

and the corre-
sponding augmented matrix is, again in units of Φ









5 −2 0 0 3/2
−1 5 −1 0 3/2
0 −1 19/4 −1 5/4
0 0 −2 5 1/4









Here we get Φ1=49.21 V, Φ2=48.03 V, Φ3=40.93 V, and Φ4=21.37 V. The two
methods are both quite close to the correct values but fail badly when the po-
tential changes rapidly, i.e. close to the corners. The improved averaging scheme
doesn’t seem to perform better than the cross average in terms of accuracy.

Part b

To find the capacitance (per unit length) C of the transmission line, we need
the charge per unit length on the inner conductor. For convenience, we can
find the charge per unit length Q on one side and multiply by four to get the
total charge. Since the electric field is perpendicular to the surface of the inner
conductor, we can find the surface charge density σ as the normal derivative at
the conductor surface

σ = ε0
∂Φ

∂n

For the present discrete lattice, the lattice spacing h is the same in both direc-
tions so the contribution from a horisontal segment becomes

∆Q = ε0
∂Φ

∂n
d` = ε0

Φ − Φ′

∆y
∆x = Φ − Φ′

where Φ′ is the potential at the point next to the inner conductor. For instance,
charge and capacitance per unit length for the cross and improved averaging
schemes are

Qc = ε0(5Φ − Φ1 − 2Φ2 − 2Φ3) = 271.1ε0 C/m

Qi = ε0(5Φ − Φ1 − 2Φ2 − 2Φ3) = 272.9ε0 C/m

Cc = 4
Qc

Φ
= 10.84ε0 F/m

Ci = 4
Qi

Φ
= 10.91ε0 F/m
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Figure 1.13: Problem 1.23. (a) The conductor configuration and (b) contour
plot for an accurate calculation with h=1/256.

Part c

With half the lattice spacing (21 interior points), the algebraic method becomes
impractical and the relaxation method has to be employed. I used the improved
averaging Gauss-Seidel iteration scheme to achieve faster convergence. I get
Φ1=49.00 V, Φ2=47.50 V, Φ3=39.29 V, and Φ4=20.40 V and C=10.54ε0 F/m,
clearly close to the correct values. For h =1/256 I get the accurate values
cited in the problem answer. Figure 1.13b shows a contour plot for this latter
calculation. Figure 1.14 shows a 3D plot.
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Figure 1.14: Problem 1.23. 3D plot of the potential.
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Figure 1.15: Problem 1.24. Sketch of the 2D situation.

Problem 1.24

Consider solution of the two-dimensional Poisson equation problem of Problem
1.21, a unit square with zero potential on the boundary and a constant unit
charge density in the interior, by the technique of relaxation. Choose h=0.25 so
that there are nine interior sites. Use symmetry to reduce the number of needed
sites to three, at (0.25, 0.25), (0.5, 0.25), and (0.5, 0.5). With so few sites, it is
easy to do the iterations with a block of paper and a pocket calculator, but suit
yourself.

(a) Use the “improved grid” averaging of Problem 1.22 and the simple (Jaco-
bian) iteration scheme, starting with 4πε0=1.0 at all three interior sites.
Do at least six iterations, preferably eight or ten.

(b) Repeat the iteration procedure with the same starting values, but using
Gauss-Seidel iteration.

(c) Graph the two sets of results of each iteration versus iteration number and
compare with the exact values, 4πε0Φ(0.25, 0.25) = 0.5691, 4πε0Φ(0.5, 0.25)
= 0.7205, 4πε0Φ(0.5, 0.5) = 0.9258. Comment on rate of convergence and
final accuracy.

Solution

By symmetry it is easy to find the equivalent points shown in Fig. 1.15.

Parts a, b and c

Defining Ψ = 4πε0Φ and 〈〈Ψ(x, y)〉〉 = 1

5

[

Sc + 1

4
Ss

]

, we can use the expression
from the end of Problem 1.22, which is the same as (1.81), or (1.82). One gets

Ψ(x, y) = 〈〈Ψ(x, y)〉〉 +
6

5
πh2 = 〈〈Ψ(x, y)〉〉 +

3

40
π

i.e. the surface charge density has the effect of adding a constant during each
iteration. Fig. 1.16 shows the evolution of the potential for both the Jacobian
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Figure 1.16: Problem 1.24. Evolution of the grid values in the Jacobian and
Gauss-Seidel iteration schemes.

and Gauss-Seidel iteration scheme. Both methods converge towards the same
value, but the Gauss-Seidel converges much more rapidly. As Jackson remarks
bottom p. 49, the Gauss-Seidel method benefits immediately from the improved
values so that 〈〈Ψ(x, y)〉〉 is typically made up half of old values and half of new
ones. The accuracy is the same for both methods and actually surprisingly close
to the exact values given in the problem text.




