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A method based on measurement of natural frequencies is presented for detection of the
location and size of a crack in a stepped cantilever beam. The crack is represented as a
rotational spring, and the method involves obtaining plots of its stiffness with crack
location for any three natural modes through the characteristic equation. The point of
intersection of the three curves gives the crack location. The crack size is then computed
using the standard relation between stiffness and crack size. An example to demonstrate
the usefulness and accuracy of the method is presented.
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1. INTRODUCTION

Vibration based methods of detection of a crack offer some advantages. They can help to
determine the location and size of a crack from the vibration data collected from a single
point on the component. When a crack develops in a component, it leads to a reduction in
the stiffness and an increase in its damping [1]. This, in turn, gives rise to a reduction of
natural frequencies and a change in the mode shapes. These effects are mode dependent.
Hence, it may be possible to estimate the location and size of a crack by measuring changes
in the vibration parameters. These could include either the modal parameters or the struc-
tural parameters. The modal parameters include natural frequencies and mode shapes, and
the structural parameters are the stiffness, mass, flexibility and damping matrices of the system.
Avibration basedmethodof crack detection utilizes any one of the above as the key parameter.

In all of the methods, the modelling of damage is important. Petroski [2] has proposed
a technique in which the section modulus is appropriately reduced to model a crack.
Grabowski [3], Mayes and Davies [4] and Christides and Barr [5] have employed the same
technique to study cracked rotors. Another approach has been to model the crack by a
local flexibility matrix [6], the dimensions of which depend on the degrees of freedom being
considered. Several researchers have determined various elements of this matrix, and a
complete 5×5 matrix (neglecting torsion) has been presented in reference [6]. In the case
of transverse vibrations, the dimension of the flexibility matrix is reduced. Dimarogonas
and Papadopoulos [7] have computed a flexibility matrix for a transverse surface crack on
a shaft. Papadopoulos and Dimarogonas [8] have modelled the coupled longitudinal and
bending vibrations of a cracked shaft by a 2×2 flexibility matrix. In the case of transverse
vibrations of beams this concept reduces to one of representing the crack by a rotational
spring inserted at the site of the crack [9–12]. The stiffness of the spring depends upon the
size of the crack. Ostachowicz and Krawczuk [12] have obtained equivalent stiffness of
open double-sided and single-sided cracks, and have studied the effects of two open cracks
upon the natural frequencies of flexural vibrations of a cantilever beam.

Adams et al. [13] have presented a method for detection of damage in a one-dimensional
component utilizing the natural frequencies of longitudinal vibrations. They modelled the
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damage by a linear spring and employed the receptance method for analysis. Cawley and
Adams [14] have given a method suitable for two-dimensional components using sensitivity
analysis and finite elementmodelling of the damage.Chondros andDimarogonas [9] have used
the concept of a rotational spring to model the crack and given a method to identify cracks in
welded joints. Rizos et al. [10] have applied this technique and detected the crack location
through the measurement of amplitudes at two points on the component. Liang et al. [11] have
studied a similar problem and have also represented the crack by a massless rotational spring.
The latter investigators indicate that, for a given natural frequency and crack location, the
characteristic equation can be solved to obtain the numerical value of the stiffness.

Kam and Lee [15] have given a method of crack detection using modal test data. Pandey
et al. [16] have proposed the measurement of curvature mode shapes. Another method has
also been proposed, based on changes in flexibility [17].

The method based on the rotational spring has always been applied to beams of uniform
cross-section. There is a need to examine whether it can be applied to more realistic beam
configurations, e.g. stepped beams. In this paper, the method [10, 11] is applied to a stepped
cantilever beam (see Figure 1).

2. FORMULATION

The crack, located at a distance e from the fixed end, is represented by a rotational spring
of stiffness Kt . The governing equation of flexural vibration is given by

d2

dx2 0EI
d2U
dx21+v2rAU=0, (1)

Figure 1. (a) The stepped cantilever beam. (b) The rotational spring representation of the crack.
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where v is the natural frequency. The four beam segments can be treated separately. The
equations for the four segments are as follows:

d4U1/db4 + l4
1U1 =0, 0E bE e/L, (2)

d4U2/db4 + l4
1U2 =0, e/LE bE b1, b1 =L1/L, (3)

d4U3/db4 + l4
2U3 =0, b1 E bE b2, b2 =L2/L, (4)

d4U4/db4 + l4
3U4 =0, b2 E bE 1, (5)

where l4
1 =v2rA1L4/EI1, l4

2 =v2rA2L4/EI2, l4
3 =v2rA3L4/EI3 and b= x/L. If there are

more steps, the total number of equations will be equal to the number of steps plus one.
The solutions of the four segments can be written in the following form:

U1 =A1 cosh l1b+A2 sinh l1b+A3 cos l1b+A4 sin l1b, (6)

U2 =A5 cosh l1b+A6 sinh l1b+A7 cos l1b+A8 sin l1b, (7)

U3 =A9 cosh l2b+A10 sinh l2b+A11 cos l2b+A12 sin l2b, (8)

U4 =A13 cosh l3b+A14 sinh l3b+A15 cos l3b+A16 sin l3b, (9)

where A1, . . . , A16 are arbitrary constants. With every additional step, four more constants
will appear.

The boundary conditions at the ends are as follows:

U1 =0, dU1/db=0, b=0, (10)

d2U4/db2 =0, d3U4/db3 =0, b=1. (11)

The compatibility conditions of the displacement, slope, moment and shear force at the
junction of the two steps are as follows:

U2 =U3, dU2/db=dU3/db

EI1
d2U2

db2 =EI2
d2U3

db2 , EI1
d3U2

db3 =EI2
d3U3

db3

h
J

j
b= b1, (12)

U3 =U4, dU3/db=dU4/db

EI2
d2U3

db2 =EI3
d2U4

db2 , EI2
d3U3

db3 =EI3
d3U4

db3

h
J

j
b= b2. (13)

The continuity of displacement, moment and shear force at the crack location (b= e/L)
can be written in the following form:

U1 =U2,
d2U1

db2 =
d2U2

db2 ,
d3U1

db3 =
d3U2

db3 . (14–16)

The crack is supposed to give rise to a jump in slope [10]. The transition can be written
in the following form:

dU1

dx
+

d2

dx2 (EI1U1)
1
Kt

=
dU2

dx
.

Writing this in terms of b,

dU1

db
+

l1

K
d2U1

db2 −
dU2

db
=0, (17)

where K=KtL/EI1 is the non-dimensional stiffness of the rotational spring representing
the crack.
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From the conditions (10)–( 17), the characteristic equation for the problem is obtained:

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 cosh a1 sinh a1 cos a1 sin a1

0 0 0 0 sinh a1 cosh a1 −sin a1 cos a1

0 0 0 0 cosh a1 sinh a1 −cos a1 −sin a1

0 0 0 0 sinh a1 cosh a1 sin a1 −cos a1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

cosh a sinh a cos a sin a −cosh a −sinh a −cos a −sin a

cosh a sinh a −cos a −sin a −cosh a −sinh a cos a sin a

sinh a cosh a sin a −cos a −sinh a −cosh a −sin a cos a

K
l1

sinh a+cosh a
K
l1

cosh a+sinh a −
K
l1

sin a−cos a
K
l1

cos a−sin a −
K
l1

sinh a −
K
l1

cosh a
K
l1

sin a −
K
l1

cos a

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 cosh l3 sinh l3 −cos l3 −sin l3

0 0 0 0 sinh l3 cosh l3 sin l3 −cos l3

−cosh a2 −sinh a2 −cos a2 −sin a2 0 0 0 0

−F1 sinh a1 −F1 cosh a2 F1 sin a2 −F1 cos a2 0 0 0 0

−G1 cosh a2 −G1 sinh a2 G1 cos a2 G1 sin a2 0 0 0 0

−H1 sinh a2 −H1 cosh a2 −H1 sin a2 H1 cos a2 0 0 0 0

cosh a3 sinh a3 cos a3 sin a3 −cosh a4 −sinh a4 −cos a4 −sin a4

sinh a3 cosh a3 −sin a3 cos a3 −F2 sinh a4 −F2 cosh a4 F2 sin a4 −F2 cos a4

cosh a3 sinh a3 −cos a3 −sin a3 −G2 cosh a4 −G2 sinh a4 G2 cos a4 G2 sin a4

sinh a3 cosh a3 sin a3 −cos a3 −H2 sinh a4 −H2 cos a4 −H2 sin a4 H2 cos a4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

=0, (18)

where a1 = l1b1, a2 = l2b1, a3 = l2b2, a4 = l3b2, a= l1e/L, F1 = l2/l1, G1 = (l2/l1)2(I2/I1),
H1 = (l2/l1)3(I2/I1), F2 = l3/l2, G2 = (l3/l2)2(I3/I2) and H2 = (l3/l2)3(I3/I2). With every
additional step, the characteristic equation will have four more rows and columns.
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Equation (18) can be written in the short form

=D ==0.

Alternatively,

K=−l1 =D2 =/=D1 =, (19)

where explicit forms of =D1 = and =D2 = are given by

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 cosh a1 sinh a1 cos a1 sin a1

0 0 0 0 sinh a1 cosh a1 −sin a1 cos a1

0 0 0 0 cosh a1 sinh a1 −cos a1 −sin a1

0 0 0 0 sinh a1 cosh a1 sin a1 −cos a1

=D1 ==
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

cosh a sinh a cos a sin a −cosh a −sinh a −cos a −sin a

cosh a sinh a −cos a −sin a −cosh a −sinh a cos a sin a

sinh a cosh a sin a −cos a −sinh a −cosh a −sin a cos a

sinh a cosh a −sin a cos a −sinh a −cosh a sin a −cos a

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 cosh l3 sinh l3 −cos l3 −sin l3

0 0 0 0 sinh l3 cosh l3 sin l3 −cos l3

−cosh a2 −sinh a2 −cos a2 −sin a2 0 0 0 0

−F1 sinh a2 −F1 cosh a2 F1 sin a2 −F1 cos a2 0 0 0 0

−G1 cosh a2 −G1 sinh a2 G1 cos a2 G1 sin a2 0 0 0 0

−H1 sinh a2 −H1 cosh a2 −H1 sin a2 H1 cos a2 0 0 0 0

cosh a3 sinh a3 cos a3 sin a3 −cosh a4 −sinh a4 −cos a4 −sin a4

sinh a3 cosh a3 −sin a3 cos a3 −F2 sinh a4 −F2 cosh a4 F2 sin a4 −F2 cos a4

cosh a3 sinh a3 −cos a3 −sin a3 −G2 cosh a4 −G2 sinh a4 G2 cos a4 G2 sin a4

sinh a3 cosh a3 sin a3 −cos a3 −H2 sinh a4 −H2 cosh a4 −H2 sin a4 H2 cos a4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(20)
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and

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 cosh a1 sinh a1 cos a1 sin a1

0 0 0 0 sinh a1 cosh a1 −sin a1 cos a1

0 0 0 0 cosh a1 sinh a1 −cos a1 −sin a1

0 0 0 0 sinh a1 cosh a1 sin a1 −cos a1

=D2 == 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

cosh a sinh a cos a sin a −cosh a −sinh a −cos a −sin a

cosh a sinh a −cos a −sin a −cosh a −sinh a cos a sin a

sinh a cosh a sin a −cos a −sinh a −cosh a −sin a cos a

cosh a sinh a −cos a −sin a 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 cosh l3 sinh l3 −cos l3 −sin l3

0 0 0 0 sinh l3 cosh l3 sin l3 −cos l3

−cosh a2 −sinh a2 −cos a2 −sin a2 0 0 0 0

−F1 sinh a2 −F1 cosh a2 F1 sin a2 −F1 cos a2 0 0 0 0

−G1 cosh a2 −G1 sinh a2 G1 cosh a2 G1 sinh a2 0 0 0 0

−H1 sinh a2 −H1 cosh a2 −H1 sin a2 H1 cos a2 0 0 0 0

cosh a3 sinh a3 cos a3 sin a3 −cosh a4 −sinh a4 −cos a4 −sin a4

sinh a3 cosh a3 −sin a3 cos a3 −F2 sinh a4 −F2 cosh a4 F2 sin a4 −F2 cos a4

cosh a3 sinh a3 −cos a3 −sin a3 −G2 cosh a4 −G2 sinh a4 G2 cos a4 G2 sin a4

sinh a3 cosh a3 sin a3 −cos a3 −H2 sinh a4 −H2 cosh a4 −H2 sin a4 H2 cos a4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(21)

2.1.     For the beam, the first three natural
frequencies are measured. Using one of the frequencies and assuming a particular value
for e, the non-dimensionalized stiffness K is computed from equation (19). Thereby a
variation of stiffness with crack location is obtained. Similar curves can be plotted for
another two natural frequencies. Since physically there is only one crack, the position at
which the three curves intersect gives the crack location [11]. The crack size is then obtained
using the relationship between stiffness K and crack size a.

3. CASE STUDY

The formulation for a beam with three steps is indicated. To verify the method, a beam
with two steps (see Figure 2(a)) is taken up for a case study. The explicit forms of =D1 =
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Figure 2. (a) The beam for the case study: thickness=12 mm. (b) The finite element discretization for case
2: e=100 mm, a/h=0·1, elements=260, nodes=863.

The material data are as follows: modulus of elasticity, E=2·1×1011 N/m2; density,
r=7860 kg/m3; Poisson’s ratio n=0·3. Eight crack locations are considered for
prediction. The natural frequencies for both the uncracked and cracked geometries are
computed by the finite element method. For this purpose, the beam is discretized by
eight-noded isoparametric elements (see Figure 2(b)). Around the crack tip, 12
quarter-point singularity elements are used. The natural frequencies thus obtained are
shown in Table 1.

While applying the method to the present problem, it is found that the three curves do
not intersect at a common point in a number of cases; e.g., case 1 (see Figure 3). In order
to avoid this difficulty, a scheme, which is a sort of calibration of modulus of elasticity,
suggested in reference [13], is employed. The modulus of elasticity used as an input in the
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T 1

The crack location and size considered for the case study and the finite element based natural
frequencies.

Natural frequencies (rad/s)
Case Crack position, Crack size, ZXXXXXXXCXXXXXXXV

number b a/h v1 v2 v3

Uncracked Uncracked 455·0 2345·9 6506·7
1 0·05 0·10 451·5 2334·0 6483·7
2 0·20 0·10 453·0 2345·7 6498·4
3 0·40 0·10 454·2 2341·6 6488·3
4 0·45 0·10 454·4 2340·1 6499·4
5 0·20 0·20 447·6 2344·6 6480·9
6 0·20 0·30 438·3 2342·7 6448·3
7 0·20 0·40 423·8 2339·7 6398·3
8 0·20 0·50 402·2 2335·5 6323·1

Figure 3. The variation of stiffness with location for case 1, for three fundamental modes, without any common
point of intersection (without zero setting).

analytical approach (equation (19)) for each mode is calculated using the FEM based
uncracked natural frequency for the corresponding mode.

With this sort of ‘‘zero setting’’ the curves are plotted for all of the eight cases (see
Figure 4). Figure 3 may be misread to give rise to a crack location at b=0·45 as against
the actual b=0·05. There is a tremendous improvement in the prediction only after the
zero setting (case 1, Figure 4). For all of the cases, the three plots for three natural
frequencies intersect and give the location of the crack. In some cases, the intersection point
cannot be easily read from the graph because of the scale. With magnification (see Figure 5)
this difficulty is eliminated.

To eliminate the subjective error involved in the graphical procedure, an alternative
numerical method is possible. The intersection point (K1, b1) for the pair of curves
corresponding to v1 and v2 is obtained. The similar intersections (K2, b2) and (K3, b3) are
obtained for the other two pairs (v1 and v3; v2 and v3). The averages of the three
intersection points, that is, K= 1

3S Ki and 1
3S bi , are taken as the prediction. The

intersection points (K1, b1), (K2, b2) and (K3, b3) must be selected judiciously. The crack size
is obtained using the formulae given in reference [12]. The relationship between K and
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Figure 4. The variation of stiffness with location for three fundamental modes.

crack size (a/h) is as follows:

K=
bh2L

72pI(a/h)2f(a/h)
, (24)

where

f(a/h)=0·6384−1·035(a/h)+3·7201(a/h)2 −5·1773(a/h)3 +7·553(a/h)4

−7·332(a/h)5 +2·4909(a/h)6 (25)

and b and h are the thickness and height, respectively, of the beam.
A comparison of the computed crack location and size with the actual values is given

in Table 2. The accuracy of prediction is good.
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Figure 5. The variation of stiffness with location, replotted at a larger scale, for four cases shown in Figure 4.

T 2

A comparison of the predicted and actual crack location and size

Actual crack Predicted crack
ZXXXCXXXV ZXXXXXXXXXXXXCXXXXXXXXXXXXV

Case Location, Size, Location, Stiffness, Size,
number b a/h b % error K a/h % error

1 0·05 0·10 0·0494 −1·20 215·77 0·1042 4·22
2 0·20 0·10 0·2061 3·05 224·96 0·1020 1·99
3 0·40 0·10 0·4028 0·70 220·36 0·1031 3·09
4 0·45 0·10 0·4583 1·84 229·78 0·1009 0·87
5 0·20 0·20 0·2013 0·65 62·48 0·1967 −1·65
6 0·20 0·30 0·2004 0·20 25·95 0·2999 −0·02
7 0·20 0·40 0·2001 0·05 13·02 0·4053 1·33
8 0·20 0·50 0·2002 0·10 6·96 0·5212 4·24

4. CONCLUSIONS

A method for detection of the location and size of a crack in a stepped cantilever beam
has been presented. The details of the method are given. The accuracy of the method is
illustrated by a case study involving a two-step beam. The method predicts the location
of crack quite accurately. The error in prediction of the location is always less than about
3%. The crack size is also predicted accurately; the error is again less than 4·5%. The
procedure can easily be adapted for more steps and for a crack located in any of the
segments.

REFERENCES

1. R. D. A, D. W, J. E. F and D. S 1975 Composite Reliability, ASTM
STP 580, 159–175. Philadelphia: American Society for Testing Materials. Vibration testing as
a nondestructive test tool for composite materials.



. .   . . 446

2. H. J. P 1981 International Journal of Fracture 17, R71–R76. Simple static and dynamic
models for the cracked elastic beam.

3. B. G 1979 Journal of Mechanical Design 102, 140–146. The vibrational behaviour of
a turbine rotor containing a transverse crack.

4. I. W. M and W. G. R. D 1976 Institution of Mechanical Engineers Conference
Publication ‘‘Vibrations in Rotating Machinery’’, Paper C 168/76. The vibrational behaviour of
a rotating shaft system containing a transverse crack.

5. S. C and A. D. S. B 1984 International Journal of Mechanical Sciences 26, 639–648.
One-dimensional theory of cracked Bernoulli–Euler beams.

6. A. D. D and S. A. P 1983 Analytical Methods in Rotor Dynamics. London:
Applied Science Publishers.

7. A. D. D and C. A. P 1983 Journal of Sound and Vibration 91, 583–593.
Vibration of cracked shafts in bending.

8. C. A. P and A. D. D 1983 Transactions of the American Society of
Mechanical Engineers, Journal of Vibration, Acoustics, Stress, and Reliability in Design 110(1),
1–8. Coupled longitudinal and bending vibrations of a cracked shaft.

9. T. G. C and A. D. D 1980 Journal of Sound and Vibration 69, 531–538.
Identification of cracks in welded joints of complex structures.

10. P. F. R, N. A and A. D. D 1990 Journal of Sound and Vibration
138, 381–388. Identification of crack location and magnitude in a cantilever beam from the
vibration modes.

11. R. Y. L, F. K. C and J. H 1991 Journal of the Franklin Institute 328(4), 505–518.
Detection of cracks in beam structures using measurements of natural frequencies.

12. W. M. O and M. K 1991 Journal of Sound and Vibration 150, 191–201.
Analysis of the effect of cracks on the natural frequencies of a cantilever beam.

13. R. D. A, P. C, C. J. P and B. J. S 1978 Journal of Mechanical Engineering
Science 20(2), 93–100. A vibration technique for non-destructively assessing the integrity of
structures.

14. P. C and R. D. A 1979 Journal of Strain Analysis 14(2), 49–57. The location of
defects in structure from measurements of natural frequencies.

15. T. Y. K and T. Y. L 1991 Engineering Fracture Mechanics 42(2), 381–387. Detection of
cracks in structures using modal test data.

16. A. K. P, M. B and M. M. S 1991 Journal of Sound and Vibration 145,
321–332. Damage detection from changes in curvature mode shapes.

17. A. K. P and M. B 1994 Journal of Sound and Vibration 169, 3–17. Damage detection
in structures using changes in flexibility.


