Facebook Page
Twitter
RSS
+ Reply to Thread
Page 1 of 3 123 LastLast
Results 1 to 10 of 24
  1. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,865 times
    Thank/Post
    2.320
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #1
    This thread will be dedicated to discuss the convergence of various definite integrals and infinite series , if you have any question to post , please don't hesitate , I hope someone make the thread sticky.

    1- $ \displaystyle \int^{\infty}_0 \left(\frac{e^{-x}}{x} \,-\,\frac{1}{x(x+1)^2}\right)\,dx\,=1-\gamma$

    Let us have some ideas

  2. MHB Craftsman
    MHB Math Helper
    Random Variable's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Posts
    253
    Thanks
    83 times
    Thanked
    616 times
    Thank/Post
    2.435
    #2
    $\frac{e^{-x}}{x} = \frac{1}{x} \Big( 1 - x + O(x^{2}) \Big) = \frac{1}{x} - 1 + O(x)$

    $\lim_{x \to 0} \Big( \frac{e^{-x}}{x} - \frac{1}{x(x+1)^{2}} \Big) = \lim_{x \to 0} \Big( \frac{1}{x} - 1 + O(x) - \frac{1}{x} + \frac{1}{x+1} + \frac{1}{(x+1)^{2}} \Big)$

    $ \lim_{x \to 0} \Big(- 1 + O(x) + \frac{1}{x+1} + \frac{1}{(x+1)^{2}} \Big) =1$

    So the singularity at $x=0$ is removable.

    EDIT: And there is no issue at $\infty$ since the integral can be separated into two integrals that both converge on $[\epsilon, \infty)$.
    Last edited by Random Variable; May 13th, 2013 at 18:53.

  3. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,865 times
    Thank/Post
    2.320
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #3 Thread Author
    Quote Originally Posted by Random Variable View Post
    $\frac{e^{-x}}{x} = \frac{1}{x} \Big( 1 - x + O(x^{2}) \Big) = \frac{1}{x} - 1 + O(x)$

    $\lim_{x \to 0} \Big( \frac{e^{-x}}{x} - \frac{1}{x(x+1)^{2}} \Big) = \lim_{x \to 0} \Big( \frac{1}{x} - 1 + O(x) - \frac{1}{x} + \frac{1}{x+1} + \frac{1}{(x+1)^{2}} \Big)$

    $ \lim_{x \to 0} \Big(- 1 + O(x) + \frac{1}{x+1} + \frac{1}{(x+1)^{2}} \Big) =1$

    So the singularity at $x=0$ is removable.

    EDIT: And there is no issue at $\infty$ since the integral can be separated into two integrals that both converge on $[\epsilon, \infty)$.
    Well, that is better . Very good .

  4. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,865 times
    Thank/Post
    2.320
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #4 Thread Author
    2-$ \displaystyle \int^{\infty}_0 \frac{\sin x}{x}$

  5. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,865 times
    Thank/Post
    2.320
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #5 Thread Author
    Quote Originally Posted by ZaidAlyafey View Post
    2-$ \displaystyle \int^{\infty}_0 \frac{\sin x}{x}$
    The integral has a removable singularity at the origin , so it converges there , now let us examine at infinity

    $ \displaystyle \int^{\infty}_{\frac{\pi}{2}} \frac{\sin x}{x}$

    Integrating by parts we get

    $ \displaystyle \int^{\infty}_{\frac{\pi}{2}} \frac{\sin x}{x}= \frac{-\cos x}{x} \biggr]^ {\infty }_{\frac{\pi}{2}} -\int^{\infty}_{\frac{\pi}{2}} \frac{\cos x}{x^2}$

    The first term vanishes , for the second one

    Because the integral is absolutley convergent it converges

    $ \displaystyle \int^{\infty}_{\frac{\pi}{2}} \frac{1}{x^2}< \infty$

    Now Let us look at another form

    3-$ \displaystyle \int^{\infty}_0 \frac{\cos x}{x}$

  6. MHB Craftsman
    MHB Math Helper
    Random Variable's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Posts
    253
    Thanks
    83 times
    Thanked
    616 times
    Thank/Post
    2.435
    #6
    $\int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x} \ dx$ is also convergent by Dirichlet's convergence test since $\frac{1}{x}$ is bounded, monotonic, and tends to zero, while $\int_{\frac{\pi}{2}}^{a} \sin x \ dx $ is bounded for any $a > \frac{\pi}{2}$

  7. MHB Craftsman
    MHB Math Helper
    Random Variable's Avatar
    Status
    Offline
    Join Date
    Jan 2012
    Posts
    253
    Thanks
    83 times
    Thanked
    616 times
    Thank/Post
    2.435
    #7
    $\frac{\cos x}{x} = \frac{1}{x} \big( 1-\frac{x^{2}}{2!} + O(x^{4}) \Big)= \frac{1}{x} - \frac{x}{2!}+ O(x^{3})$

    Since $\frac{1}{x}$ is not integrable at zero, $\frac{\cos x}{x}$ is not integrable at zero.

  8. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,865 times
    Thank/Post
    2.320
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #8 Thread Author
    4-$ \displaystyle \int_{0}^{1}\frac{\ln^{2}(x)}{x^{2}+x-2}dx$
    Last edited by ZaidAlyafey; May 16th, 2013 at 17:36. Reason: wrong constant

  9. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,865 times
    Thank/Post
    2.320
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #9 Thread Author
    Quote Originally Posted by ZaidAlyafey View Post
    4-$ \displaystyle \int_{0}^{1}\frac{\ln^{2}(x)}{x^{2}+x-2}dx$
    $ \displaystyle \frac{1}{x}=\frac{1}{1+x-x} = \frac{1}{1-(1-x)}$

    $ \displaystyle \frac{1}{x}=\sum^{\infty}_{n=0}(1-x)^n$ converges $ \displaystyle \forall \, x \, : \, \,\, |1-x|<1$

    $ \displaystyle \ln(x) =-\sum^{\infty}_{n=0} \frac{(1-x)^{n+1}}{n+1}$

    At $1$ we have a removable singularity .

    $ \displaystyle \lim_{x \to 1}\frac{ \left( (1-x) + \frac{(1-x)^2}{2}+ \cdots \right)^2 }{ (x+2) (x-1) } < \infty$

    To examine the integral near zero , let us make the substitution

    $ \displaystyle \ln(x) =-t $

    $ \displaystyle -\int_{\epsilon}^{\infty} \frac{t^2 \, e^{t}}{2e^{2t}-e^{t}-1}< - \frac{1}{2}\, \int^{\infty}_{\epsilon} t^2 e^{-t}< \infty$

    The integral converges ...

  10. زيد اليافعي
    MHB Site Helper
    MHB Math Helper
    ZaidAlyafey's Avatar
    Status
    Offline
    Join Date
    Jan 2013
    Location
    KSA
    Posts
    1,666
    Thanks
    3,671 times
    Thanked
    3,865 times
    Thank/Post
    2.320
    Awards
    MHB Math Notes Award (2014)  

MHB Best Ideas (2014)  

MHB Best Ideas (Jul-Dec 2013)  

MHB Analysis Award (Jul-Dec 2013)  

MHB Calculus Award (Jul-Dec 2013)
    #10 Thread Author
    5- $ \displaystyle \sum^{\infty}_{n=1}\frac{\sin(nx)}{n}$

Similar Threads

  1. Infinite series convergence II
    By cacophony in forum Calculus
    Replies: 5
    Last Post: April 23rd, 2013, 00:00
  2. series convergence with a floor
    By Lisa91 in forum Analysis
    Replies: 11
    Last Post: January 17th, 2013, 16:36
  3. series convergence
    By Lisa91 in forum Analysis
    Replies: 6
    Last Post: January 16th, 2013, 17:48
  4. Convergence of a series
    By dwsmith in forum Calculus
    Replies: 1
    Last Post: November 29th, 2012, 04:49
  5. Replies: 2
    Last Post: July 26th, 2012, 02:49

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  
Math Help Boards